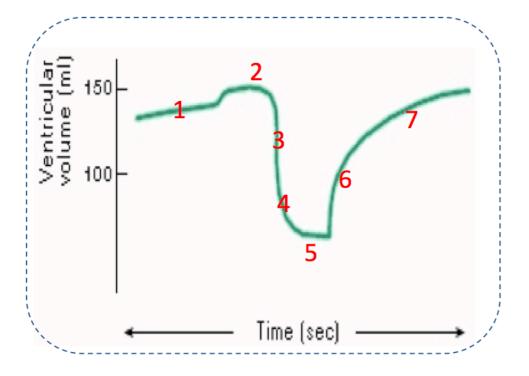

Action potential in Cardiac muscles:

- Resting membrane potential = -90 mV
- Duration of the cardiac action potential = 0.4 s

Phase	Ionic changes	Value
• Phase 0 : Depolarization "Rapid depolarization"	 Fast Na+ channel open, Na+ flow <u>into</u> the cell. 	+20 mV
• Phase 1 : Initial "partial" repolarization	• K+ flow out the cell	5-10 mv
• Phase 2 : Action potential Plateau	 Slow calcium channels <u>open</u> Ca++ moving in slowly. membrane permeability to K+ will decrease 	0 mv
• Phase 3 : Rapid repolarization	 Ca+ channels <u>close</u> K+ outflow . End of plateau . 	-
• Phase 4 : Resting membrane potential	back to normal level	–90 mV

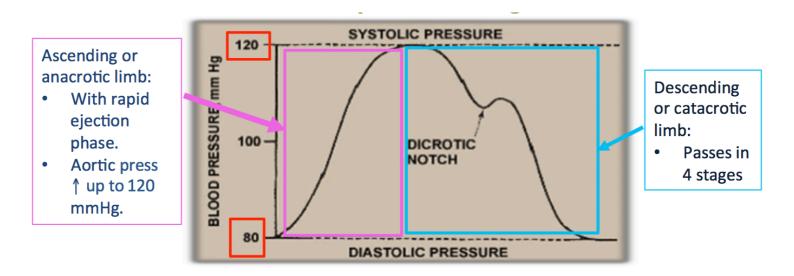
They might choose a point and ask you what it represents:

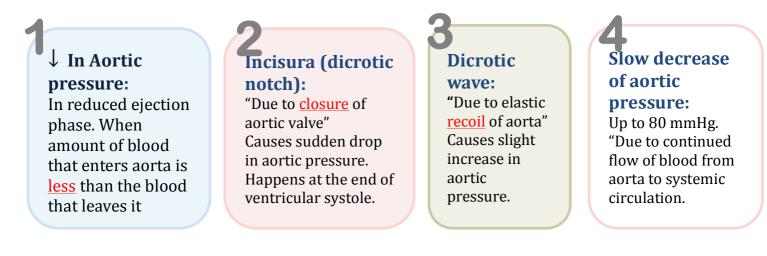

Differentiate between the normal pacemaker, ectopic pacemaker and blockage pacemaker:

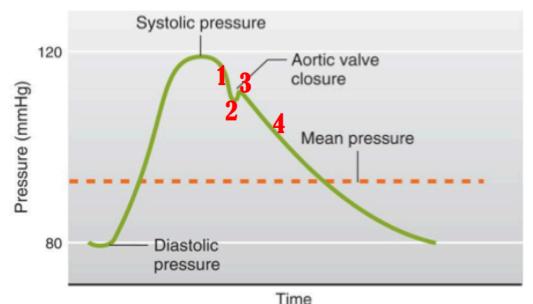
	Blockage pacemaker	Ectopic pacemaker	SA Node
Definition	Resulted from blockage of transmission of the cardiac impulse from the sinus node to the other parts of the heart.	A pacemaker elsewhere other than the sinus node.	Located in the superior lateral wall of the right atrium near the opening of the superior vena cava.
Cause	-	Developing of a rhythmical discharge rate that is more rapid than that of the sinus node at any part or the heart.	 Highest Frequency Is capable of originating Action Potential. Its rate of rhythmic discharge is greater than any other part in the heart
Examples	A-V blockage	 A-V node Purkinje fibers	-
Consequences	Cardiac impulses fail to pass from atria into the ventricles. ↓ Atria beats with its normal rate of rhythm of the (S-A) node. ↓ New pacemaker developed in purkinje fibers with a new rate.	Abnormal heart beats	-

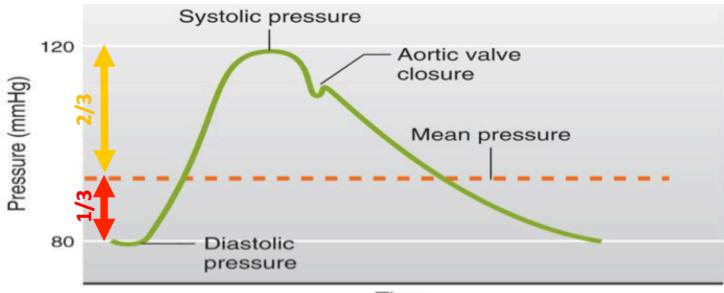
Phase	Definition	Valves	Time	Pressure changes	Sounds	Volume changes
Atrial systole	Atrial systole (atrial contraction) is at the end of ventricular diastole . Atrial systole is Preceded by atrial depolarization .	AV-vs open (semilunar- vs closed.)	0.1 sec	↑ Atrial pressure.	4th Heart sound In elderly & pathologic al conditions	Tops off last 27- 30% of ventricular filling. Blood arriving the heart can't enter atria, it flows back up jugular vein.
lsovolumetric Contraction	 It is the first phase (beginning) of ventricular systole. Period between closure of AV- vs & opening of Semilunar- vs. It is Preceded by ventricular depolarization. Ventricle in this phase is a closed chamber 	 <u>Starts</u> with closure of AV- vs. Semilunar are already closed Aortic valve opens at the end of this phase, when left ventricle exceeds 80 mmHg 	0.04 sec	↑ Ventricular pressure	1st Heart sound heard (LUB)	- volume of blood in ventricle = EDV - Ventricle contracts with no changes in volume.
Rapid Ejection	This is the second phase of the systole phases "rapid ejection phase", the blood will flow from aorta to the rest of the body which will cause reduction of the ventricle pressure Almost 75% of ventricular blood is ejected, i.e. 75% of stroke volume	Semilunar- vs open at beginning of this phase ,when LV pressure exceeds 80 mmHg .	-	Ventricular pressure reaches 120 mmHg . which equal to aortic pressure.	-	-
Reduced Ejection	It is the End of systole . Almost 25% of ventricular blood is ejected, i.e. 25% of Stroke volume	Aortic- v closes at the end of this phase when left ventricle pressure reaches 110 mmHg .	-	-	-	-
Isovolumetric Relaxation	Period between closure of semilunar- vs & opening of AV- vs. Happens at the Beginning of diastole. It is Preceded by ventricular repolarization .	AV- vs open at the end of this phase; semilunar –vs close	0.04 sec	-	2nd Heart sound heard.	 LV is a closed chamber, i.e. no changes in volume. Volume of blood in ventricle = ESV
Rapid Filling	From the atrium 60-70% of blood passes passively move to the ventricles along pressure gradient.	AV- vs open Semilunar valves are closed	-	Atrial pressure > ventricular pressure	3rd Heart sound heard. (children)	-
Reduced Filling (Diastasis)	Remaining atrial blood flows slowly into ventricles	AV- vs still open - Semilunar valves are closed	-	-	-	-

Volume changes:


Ventricular volume	Phases
1	1. Atrial systole.
Constant	2.Isometric contraction phase.
↓ Rapidly	3. Rapid ejection phase.
↓ Slowly	4. Reduced ejection phase.
Constant	?.Protodiastole.
Constant	5. Isometric relaxation phase.
↑ rapidly	6. Rapid filling phase.
↑ slowly	7. Reduced filling phase.


End-diastole volume (EDV)	 Volume of blood in ventricles at the end of diastole. ≈ 110-130ml
Stroke volume (SV)	 Amount of blood ejected from ventricles during systole. ≈ 70ml/beat
End-systolic volume (ESV)	 Amount of blood left in ventricles at the end of systole. ≈ 40-60ml SV = EDV - ESV
Ejection fraction (EF)	• Fraction of end-diastolic volume that is ejected. • $\approx 60-65\%$ • $EF = \frac{SV (EDV-ESV)}{EDV} \times 100$


Pressure changes:

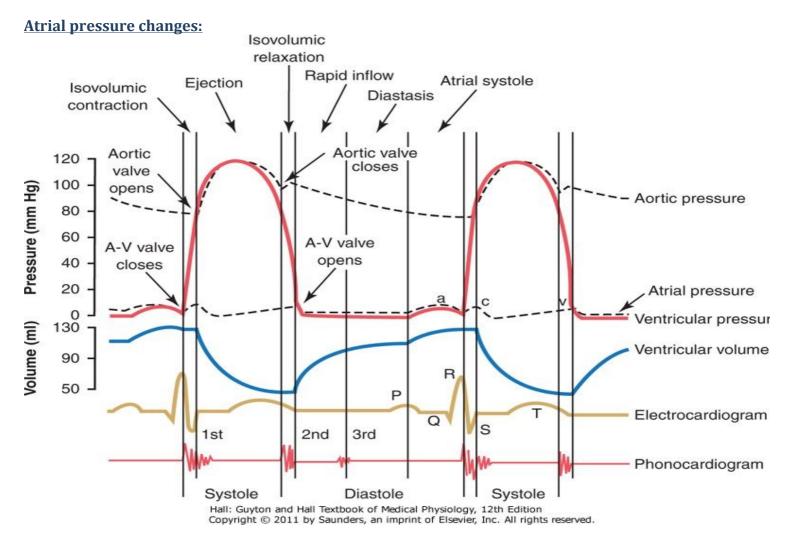

Aortic pressure changes:

Descending/Catacrotid Limb:

Time

Mean pressure:

Diastolic pressure + 1/3 (systolic pressure – diastolic pressure)


Pulse pressure:

Systolic pressure – diastolic pressure

Aortic pressure: is 120/80

Differences between arteries and aorta:

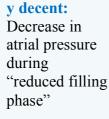
Arterial pressure changes	Pulmonary artery pressure changes
 110-130/70-85 Similar to aortic pressure waves, but sharper. (Its waves are Sharper than aortic pressure waves.) Reflects a systolic peak pressure of 110-130 mmHg & a diastolic pressure 70-85 mmHg. 	 25-30/4-12 Similar to aortic pressure changes, bu with difference in magnitude. (Differs from aortic pressure changes by magnitude)

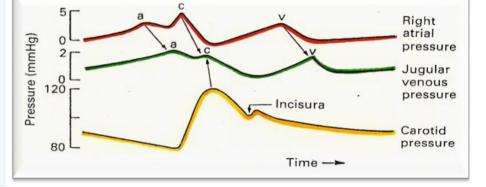
Causes of Atrial pressure waves:

- 3 upward deflections. (a, c & v)
- 2 downward deflections. (x & y)

<u>a</u> wave: (<u>a</u>trial systole) -Increase in atrial pressure during atrial systole.

c wave:


(ventricular systole)
+ve → bulging of AV valves into atria during
"isovolumetric contraction phase"
-ve → pulling of the atrial muscle & AV
cusps down during "rapid ejection phase".


v wave:

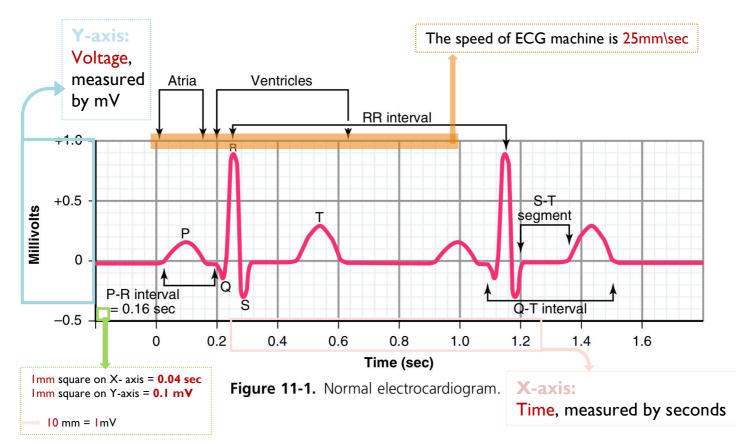
+ve: increase in atrial pressure due to the increase in venous return during "atrial diastole". -ve: decrease in atrial pressure during "rapid filling phase"

x decent:

Downward displacement of AV valves during "reduced ejection phase"

- +ve = **increase** in pressure
- -ve = **decrease** in pressure
- The 3 waves a,c&v are equal to **ONE** cardiac cycle = **0.8 sec.**

Jugular venous pressure (JVP):

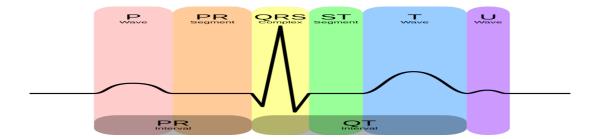

Note that it has similar recordings of transmitted delayed **atrial** waves: **3 upward** waves: **a, c, & v 2 downward** waves: **x & y**

Normal heart sounds

S1	S2	S 3	S4
Due to closure of the <mark>AV- vs</mark> .	Due to closure <mark>of semilunar-</mark> vs.	S3 is usually <mark>not</mark> audible (very low pitch.)	S4 is usually <mark>not</mark> audible (very low pitch.)
Recorded at the beginning of the 'isovolumetric contraction phase.'	Recorded at the beginning of the 'isovolumetric relaxation phase.'	Recorded during the'rapid filing phase'due to rush of blood into the ventricle.	Recorded during 'atrial systole.'
It marks beginning of ventricular systole.	Marks the beginning of ventricular diastole.	It can be heard in <mark>children</mark> .	It can heard in elderly & pathological conditions
Long in duration <mark>0.15</mark> sec	Short in duration <mark>0.11-0.125</mark> sec	0.05 sec.	0.04 sec.
Of low pitch <mark>(LUB)</mark> , Loud.	Of high pitch <mark>(DUB)</mark> Soft & Sharp.	-	-
25-35 Hz.	50 Hz.	-	-
Best heard at Mitral & Tricuspid areas.	Best heard at Aortic & Pulmonary areas.	Best heard at Mitral area.	Best heard at Mitral area.
-	S2 splits physiologically into 2 sounds during inspiration due to delay closure of pulmonary valve = physiological splitting	-	-

ECG:

The axis of ECG graph:

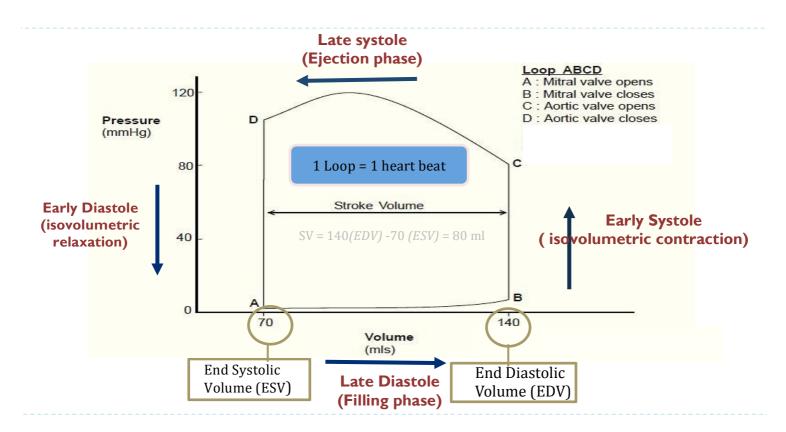

One heartbeat is normally recorded as:

2 segments	2 interval between waves	3 waves	
PR segment	PR interval	P-wave	
(start from the end of P to the beginning of QRS)	(stare from the beginning of P to the beginning of Q)	QRS-complex	
ST segment (start from the end of	QT interval (start from the beginning of Q		
QRS to the beginning of T)	to the end of T)	T-wave	
		2 (-) waves (Q,S)	3 (+) waves (P,R,T)

Name of the waves	T-wave	QRS-complex	P-wave
Diagram showing the waves	P-wave T-wave	P-wave T-wave	P-wave
Due to	Ventricular repolarization	Ventricular depolarization	Atrial depolarization
Recorded before	The onset of ventricular Diastole (isometric relaxation phase)	The onset of ventricular systole (isometric contraction phase)	The onset of the Atrial systole

Ventricular depolarization and repolarization (Q-T interval)	Ventricular repolarization (T wave)	Ventricular repolarization (S-T segment)	Ventricular depolarization (QRS)	P-R interval	Atrial depolarization (p-wave)
Including the QRS complex , ST segment and T wave	The repolarization of both ventricles is represented by T wave. The ST segment and the T wave are sensitive indicators of the oxygen demand - oxygen supply status of the ventricular myocardium	Earlier phase repolarization of both ventricles extends from the end of the QRS to the beginning of the T wave. The point at which the ST segment joins the QRS is known as the J (junction)- point	Ventricular depolarization is indicated by the QRS complex. The R wave is the initial positive deflection; the negative deflection before the R wave is the Q ; the negative deflection after the R wave is the S wave	Electrical transmission from the atria to the ventricles. Including the P wave and PR segment.	The depolarization of both atria is represented by the P wave, the P wave is the <u>first</u> ECG deflection

QRS	ST segment	QT interval	PR segment	PR interval
<0.10 sec	0.3 - 0.32 sec	0.35 - 0.45 sec	0.06 - 0.11 sec	0.12 - 0.20 sec


Left Ventricular Pressure - Volume Loop:

Both ventricular systole and diastole can be divided into:

Early phase	Diastole	Systole
	Early diastole : Isovolumetric Relaxation	Early systole Isovolumetric Contraction
Late phase	Late diastole : Isotonic Relaxation <i>(Filling Phase)</i>	Late systole : Isotonic Contraction (<i>Ejection Phase</i>)

The following Volume-Pressure loop shows plots of the left ventricle <u>pressure</u> values (*Y*-axis) and <u>volume</u> values (*X*-axis) through one complete cardiac cycle:

- **Systole** is divided into early and late systoles. (Begins at <u>B</u> & end at <u>D</u>)
- **Diastole** is divided into early and late diastoles. (Begins at <u>D</u> & end at <u>B</u>)

- 1- At point <u>A</u> the mitral valve opens then it closes at point <u>B</u> between them the diastolic filling occurs (<u>A</u> <u>&</u> <u>B</u>).
- 2- At point <u>C</u> the aortic valve opens then closes at <u>D</u> point between them ejection phase occurs (<u>C & D</u>).

Stroke Volume: It is the volume of blood pumped from one ventricle of the heart with each beat. Stroke Volume = End diastolic - End Systolic (SV = EDV – ESV)

ECG:

Einthoven's Law:

• It states that if the electrical potential of any two of the three bipolar limb leads are <u>known</u>, the third one can be determined mathematically by summing the first two.

(Note the +ve and -ve signs).

• The sum of voltages in Lead I and Lead III is equal to the voltage in Lead II.

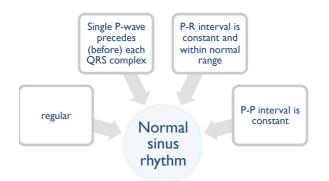
Arrhythmias:

<u>Rate=</u> divide **300** by the number of boxes between each QRS e.g.:

Rate= 300/6= 50 bpm

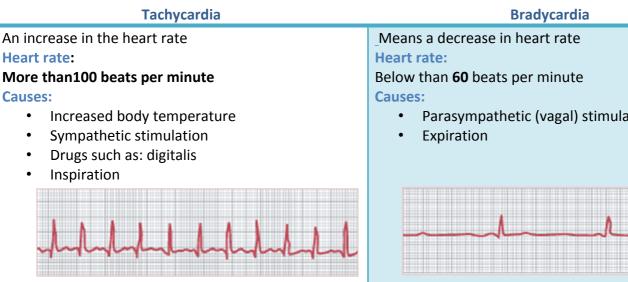
Number of big boxes	Heart Rate	
1	300	
2	150	>100 bpm is tachycardia
3	100	<60 bpm is bradycardia
4	75	
5	60	60-100 bpm is normal
6	50	

Common arrhythmias:


Rate Location	Bradyarrhythmia	Tachyarrhythmia
SA node	Sinus bradycardia Sick sinus syndrome	Sinus tachycardia
Atria		Atrial premature beats - Atrial flutter - Atrial fibrillation Paroxysmal SVT (supraventricular tachycardia) - Multifocal atrial tachycardia
Av node	Conduction blocks Junctional escape rhythm	
ventricles	Ventricular escape rhythm	Ventricular premature beats - Ventricular tachycardia Torsade's de pointes - Ventricular fibrillation

Tachycardia	Narrow Complex	Wide Complex
Regular	ST (sinus tachycardia) SVT (supraventricular tachycardia) Atrial flutter	ST w/ aberrancy SVT w/ aberrancy VT (ventricular tachycardia)
Irregular	A-fib (atrial fibrillation) A-flutter w/ variable conduction MAT (multifocal atrial tachycardia)	A-fib w/ aberrancy A-fib w/ WPW (Wolff-Parkinson-White Syndrome) VT

Causes of Cardiac Arrhythmias:


- · Spontaneous generation of impulses at any part of the heart
- Abnormal rhythmicity of the pacemaker (means SA node stops working)
- · Shift of the pacemaker from the sinus node to another place in the heart
- · Blocks at different points during the spread of the impulse through the heart
- · Abnormal pathways of impulse transmission through the heart
- · Rate above or below normal
- Regular or irregular rhythm
- Narrow or broad QRS complex
- · Relation to P waves

Normal sinus rhythm:

Abnormal sinus rhythm:

Abnormal Cardiac Rhythms that Result from Impulse Conduction Block:

1- Sinoatrial Block:

- Blockade of the S-A node impulse before ٠ entering atrial muscle
- Cessation of P wave (No SA node activity) •

Causes:

- Ischemia of the A-V node •
- Compression of the A-V node by scar formation •
- Inflammation of the A-V node ٠
- Strong vagal stimulation •

2-A-V Block

When impulse from the S-A node is blocked **Causes:**

- Ischemia of the A-V node ٠
- Compression of the A-V node by scar formation ٠
- Inflammation of the A-V node •
- Strong vagal stimulation •

Parasympathetic (vagal) stimulation

Types of the A-V Block

First degree block:

- o Prolong P-R interval (0.2 seconds).
- o "<u>NO</u>" beats Drop

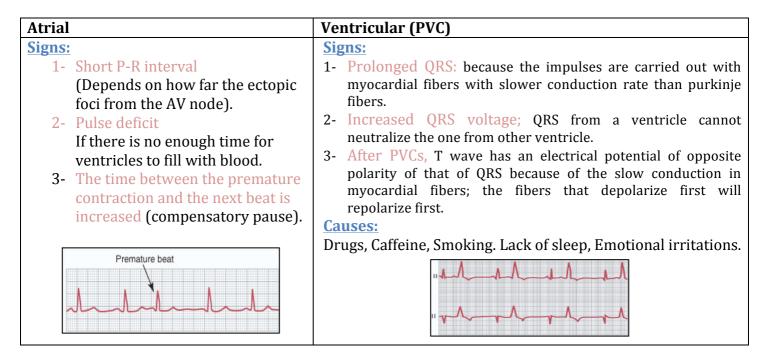
Second degree block:

- P-R interval > 0.25 second.
- o Only few impulses pass to the ventricles.
- $\circ \rightarrow$ atria beat faster than ventricles.
- $\circ \rightarrow$ "dropped beats" of the ventricles.

Third degree block (complete):

- Complete dissociation of P wave and QRS waves.
- Ventricle escape from the influence of S-A node.
- Atrial rate is 100 beats/min.
- Ventricular rate is **40** beats/min.
- o Stokes-Adams Syndrome: AV block comes and goes.

Premature contractions:


Premature contractions, extrasystoles, or ectopic beat: result's from *ectopic foci* that generate abnormal cardiac impulses (pulse deficit).

Ectopic foci are abnormal pacemaker sites within the heart (outside of the <u>SA node</u>)

The premature contractions can originate in **atria**, **A-V** junctions or **ventricles**.

Caused By:

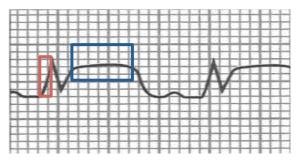
- Drugs like caffeine
- Myocardium irritations
- Ischemia

	Ventricular fibrillation (V-fib)	Atrial fibrillation (A-fib)	Atrial flutter
What is it?	The most serious form of arrhythmias. It is the uncoordinated contraction of the cardiac muscle of the ventricles in the heart. As if the ventricles are quivering not pumping.	Same mechanism as ventricular fibrillation, but as the name suggests it affects ATRIA.	- A single large wave travels around and around in the <u>atria</u> , which results in abnormal heart rhythm.
Causes	 Sudden electric shock or Ischemia. Impulses stimulate one part of the ventricles, then another, then itself. Many part contracts at the same time while other parts relax (Circus movement). 	Frequent in patients with enlarged hearts	 Contraction of atria occurs at 250 Beats/minute. (high rate) The refractory period of the AV node causes 2-3 beats of atria for one single ventricular beat
Manifestations	 Tachycardia Irregular rhythm Broad QRS complex No P wave 	The efficiency of ventricular filling is decreased 20 to 30%. As seen in the ECG above you either see no P wave or high frequency of low voltage P wave.	2:1 or 2:3 rhythm.
Treatment	Direct current sh		

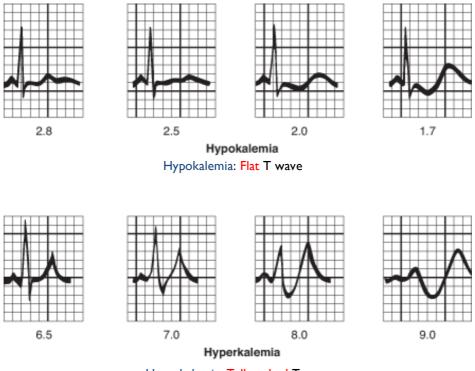
Ischemia and ECG:

One of the common uses of the ECG is in acute assessment of chest pain Cause: restriction of blood flow to the myocardium, either:

- Reversible: angina pectoris:
 - Inverted T wave as shown in blue box
 - ST segment depression as shown in black box


• Irreversible: myocardial infarction

Cause:


Complete loss of blood supply to the myocardium resulting in necrosis or death of tissue

- ST segment elevation as shown in blue box
- Deep Q wave as shown in red box

Ischemia \rightarrow injury \rightarrow infarction

K+ and the ECG:

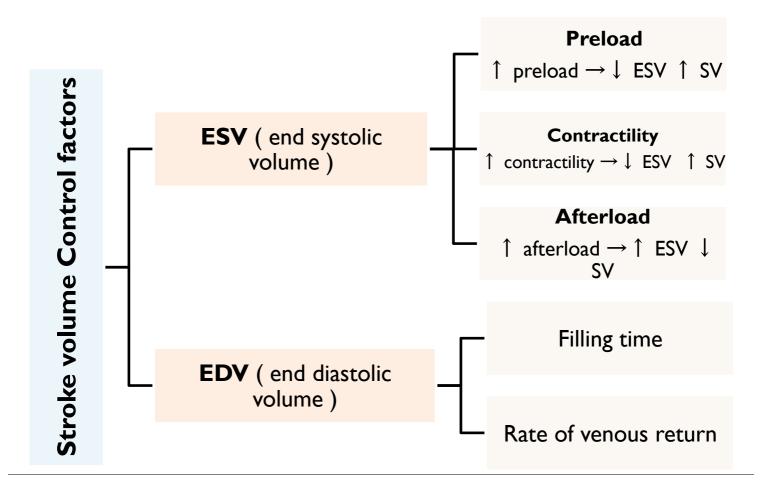
Hyperkalemia: Tall peaked T wave

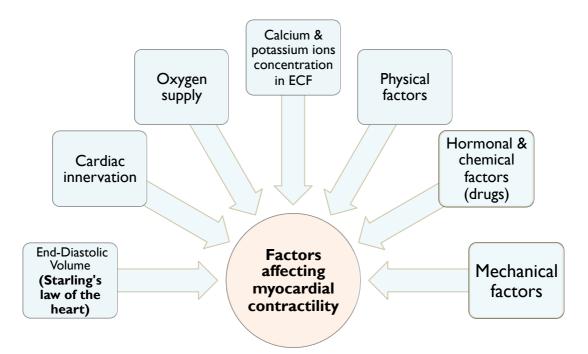
Stroke Volume:

EDV = ESV + SV

- EDV (End diastolic volume): The volume of blood present in each ventricle at the end of ventricular diastole. It also called Preload . Value: 120-130 mL
- ESV (End systolic volume):

The volume of blood present in each ventricle at the end of ventricular systole "After pumping the blood" Value: 50-60 mL


• <u>SV (Stroke volume)</u>:


The volume of blood ejected by each ventricle during each ventricular systole. Value: 70-80 mL\beat

EDV " Preload "	ESV	Afterload
It depends on: I- Filling time: Which is the duration of ventricular diastole. $FT = SV$ 2- Venous return: The rate of blood flow during ventricular diastole. $VR = SV$ EDV = SV Note: It is the main determinant of stroke volume.	 ESV = SV ESV = SV ESV = SV Remember that EDV = ESV+SV let suppose that EDV is constant, when one of (ESV and SV) increase, the other as a result will decrease of course. that's why when ESV decrease = increase SV to give the same constant value (EDV) 	 It is expressed as tension which must be developed in the wall of ventricles during systole to open the semilunar valves and eject blood to aorta or pulmonary artery. Is increased by any factor that restricts arterial blood, e.g.: Interial blood pressure. Vasoconstriction "Low diameter" AL = 1 SV AL = 1 SV AL = 1 SV

The Frank-Starling Principle (Starling's law of the heart):

- It is based on the length-tension relationship within the ventricle.
- If EDV (preload) ↑ it follows that the ventricular fiber length is also ↑ resulting in an increased 'tension' of the muscle.
- Cardiac output is directly related to venous return.
- The most important determining factor is preload.
- The contraction has a direct proportion to SV, and therefore SV in response to changes in venous return is called the Frank-Starling mechanism (Starling's Law of the heart).

1- Starling's law of the heart:

- Within limits, the power of contraction is *directly proportional* to the initial length of The muscle fiber. ٠
- Overstretching the fiber as in *heart failure* its power of contractility decreases. ٠

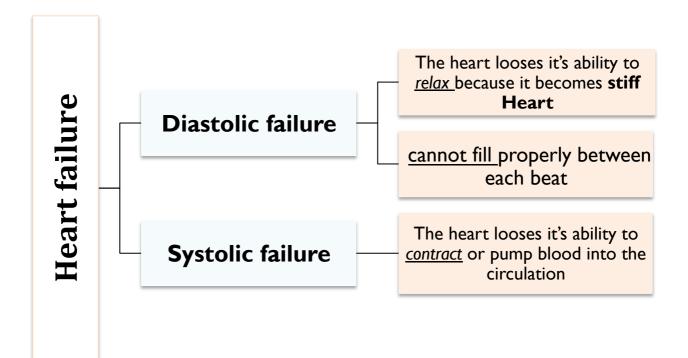
2- Cardiac innervation:

- Sympathetic NS:
 - ↑ Force of contraction.
 - Parasympathetic NS (vagus)
 - Atrial force of contraction with no significant effect on *Ventricular* contraction.

3- Oxygen supply:

- Hypoxia $\rightarrow \downarrow$ contractility.
- 4- Calcium and potassium ions concentration
 - \uparrow Ca²⁺ \rightarrow \uparrow contractility.
 - \uparrow K⁺ \rightarrow \downarrow contractility. -
- 5- Physical factors:
 - Warming $\rightarrow \uparrow$ contractility.
 - Cooling $\rightarrow \downarrow$ contractility. -
- 6- Hormonal & chemical factors (drugs):

Negative inotropics:


- Adrenaline
- Noradrenaline
- Alkalosis
- Digitalis
- •Ca²⁺
- caffeine

- Acetylcholine Acidosis
- Ether
- Chloroform
- some bacterial toxins (diphtheria toxins).
- •K⁺
- 7- Mechanical factors:
 - Cardiac muscle obeys "all or none law": Minimal or threshold stimuli lead to maximal cardiac contraction, because cardiac muscle behaves as a syncytium.
 - Cardiac muscle cannot be stimulated while it is contracted, because its excitability during contraction is zero due to long absolute refractory period, so it cannot be tetanized.
 - Cardiac muscle can perform both *isometric* & *isotonic* types of contractions.

Heart Failure:

It is the pathophysiological process in which the heart as a pump is *unable* to meet the metabolic requirements of the tissue for oxygen and substrates *despite* the venous return to heart is either *normal* or *increased*.

- Occurs when either side of the heart cannot keep up with the flow of blood.
- Can involve the *left* or *right* side of the heart or both BUT Usually the left side is affected first.

Symptoms of congestive heart failure:

	SYMPTOM	WHY?
Persistent Cough or Wheezing	Coughing that produces white or pink blood-tinged sputum	Fluid "backs up" in the lungs
Edema	 Swelling in feet, ankles, legs or abdomen Weight gain 	Decreased blood flow out of the weak heart Blood returning to the heart from the veins "backs up" causing fluid to build up in tissues
Tiredness, fatigue	 Constant tired feeling Difficulty with everyday activities 	Heart can't pump enough blood to meet needs of bodies tissues Body diverts blood away from less vital organs (muscles in limbs) and sends it to the heart and brain
Lack of appetite/ Nausea	Feeling of being full or sick to your stomach	The digestive system receives less blood causing problems with digestion

Left heart failure:

- **Systolic** and **diastolic** heart failure are treated with different types of medications. **Both** types can cause:
 - The 'backing-up' of blood back into the lungs. "Pulmonary Edema".
 - As fluid builds up in tissues throughout the body.

Pathogenesis

Increase Aortic pressure causes backward pressure travels to Left ventricle \rightarrow Then Pulmonary Veins \rightarrow finally goes to the lung \rightarrow Sort of accumulation of the blood in the lung that can not go back to the heart, , Causing Pulmonary Edema present as area of consolidation on the X-ray imaging.

Signs and Symptoms:

- o Dyspnea
- o Orthopnea and paroxysmal nocturnal dyspnea
- Cheyne Stokes breathing (abnormal pattern of breathing which is deeper and faster than normal).
- o Fatigue, Anxiety
- Rales (abnormal sound heard from unhealthy lung by stethoscope)
- o Pallor, cyanosis
- Increased heart rate and blood pressure.

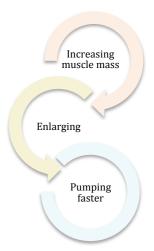
Right Heart Failure:

- Usually occurs as a result of left heart failure.
- Occasionally isolated right heart failure can occur due to lung disease or blood clots to the lung (pulmonary embolism).

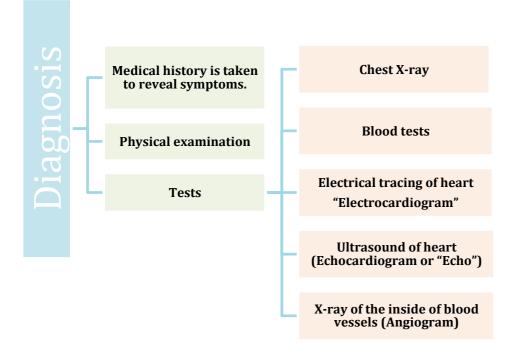
Pathogenesis:

Increase <u>Right Ventricle</u> pressure causes backward pressure on <u>Right Atria</u> \rightarrow Increasing <u>right atrial</u> <u>pressure</u> \rightarrow Stagnation of the blood On the:

1- Superior Vena Cava \rightarrow increased Jugular venous pressure


2- Inferior Vena Cava \rightarrow Ascites (An accumulation of fluid in the peritoneal cavity –Abdomen-). Signs and Symptoms:

- o Fatigue
- \circ Weakness
- o Lethargy
- Weight gain, including abdominal girth
- o Anorexia
- Elevated neck veins
- Hepatomegaly
- Pitting edema (present in the extremity)


Causes of heart failure:

Acute non cardiac condition • Volume overload • Fever • Hyperthyroidism • Infection	 Increased cardiac workload: Hypertension Valvular disorders Anemias Congenital heart defects 	Impaired cardiac function: Coronary heart disease Cardiomyopathies (muscle disease) Rheumatic fever Endocarditis
--	--	--

Compensating mechanism:

Indicator for diagnosing heart failure:

Ejection fraction (EF):

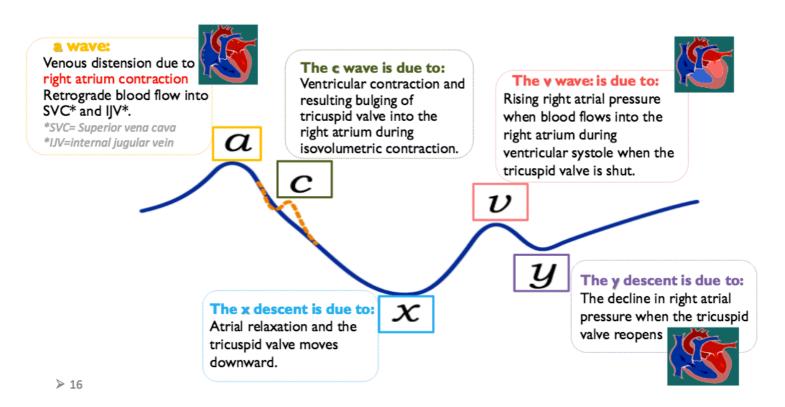
The percentage of blood that is pumped out of your heart during each beat.

How do we calculate EF?

It is the fraction of end-diastolic volume ejected during a heartbeat.

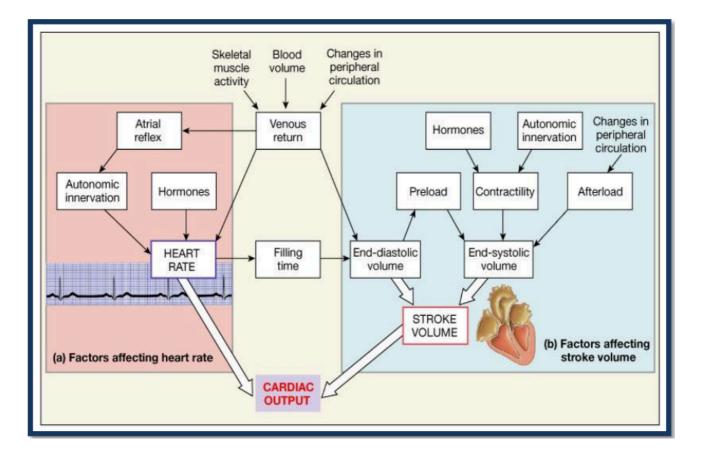
Ejection Fraction = Stroke volume / End diastolic volume

$$EF = \frac{SV}{EDV} = \frac{70 \ ml}{130 \ ml} = 0.54 \ (no \ unit)$$


Heart sounds:	Normal		Abnormal "Murmurs"						
led o					Systol	Systolic PASS*		lic Continuous *	
Divided into	S1	S2	S3	S4	Pulmonary + Aortic	Mitral +tricuspid	Pulmona ry + Aortic	Mitral + tricuspi d	-
Caused by:	Closure of <u>AV valves</u>	Closure of <u>Semilunar</u> <u>valve</u>	Rush of blood	Contraction of atrial muscle	Stenosis	insufficiency	insuffici ency	stenosis	ventricu lar septal defect Patent Ductus Arterios us
Characters	LUB 50-60Htz	DUB Physiological splitting 80-90Htz	Heard in children 20-30Htz	Heard in elderly < 20htz	Mid ejection between S1-S2	Pan, begins with S1 until S2	Early	Mid-late	Begins in systole, continue into diastole.
Best heard	AV VALVES area	SEMILUNAR VALVE area	Mitral area	Mitral area	**an easy mnemonic to remember abnormal heart sounds: <u>PASS:</u> Pulmonary Aortic Stenosis, Systolic. <u>PAID:</u> Pulmonary Aortic insufficiency, Diastolic And the opposite in the mitral and tricuspid valves.			lic	
Relation to cardiac cycle	(Pue of the second of the seco								

Venous return:

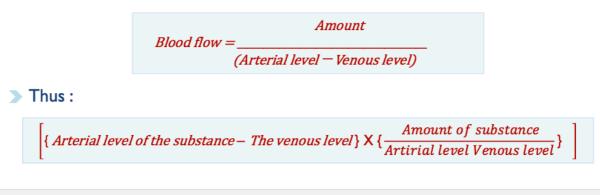
What is it	is the quantity of blood flowing from large veins into the right atrium each minute
Factors controlling venous return	Pressure drop during inspiration → ↑venous return -Forceful expiration (Valsalva maneuver) → ↓venous return. ↑Blood volume → ↑venous return. ↑Pressure gradient → ↑venous return



The normal JVP reflects phasic pressure changes in the right atrium and consists of three positive waves and two negative descents.

Causes of raised JVP				
I- increased right ventricular filling pressure. e.g.: in heart failure, fluid overload.	2-Obstruction of blood flow from right atrium to right ventricle. e.g.: tricuspid stenosis.	3-superior vena caval obstruction. e.g.: retrosternal thyroid goitre.	4- positive intrathoracic pressure. e.g.: pleural effusion, pneumothorax.	

What is Cardiac	Cardiac output is the volume of blood ejected from the right or left ventricle
output	per minute.
	(C.O. = Heart Rate x Stroke Volume)
Values	Normal H.R.= 72 beats\min S.V.= 70ml\min
	C.O.=5l\min



Measurement Of C.O

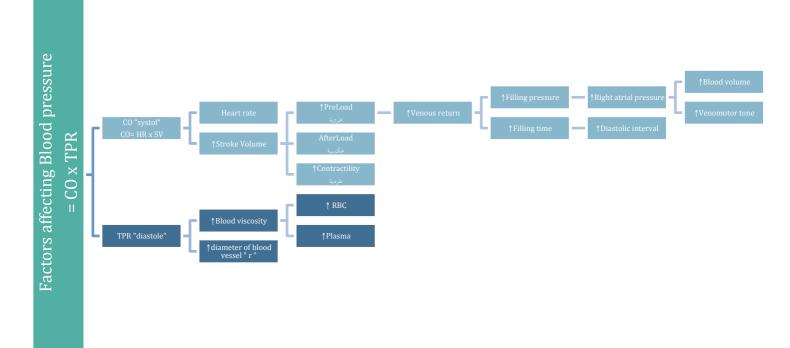
> The Direct Fick's Method:

It states that, the amount or volume of any substance taken up by an organ or by the whole body is equal to: (The arterial level of the substance — the venous level) X blood flow.

Guyton corner :

In animal experiments, one can cannulate the aorta, pulmonary artery, or great veins entering the heart and measure the cardiac output using a flowmeter. An electromagnetic or ultrasonic flowmeter can also be placed on the aorta or pulmonary artery to measure cardiac output. In humans, except in rare instances, cardiac output is measured by indirect methods that do not require surgery. Two of the methods that have been used for experimental studies are the *oxygen Fick method* and the *indicator dilution method*.

Arterial blood pressure:


Definition	is the force exerted by blood against a vessel wall.
In normal	Arterial blood pressure is not constant, it raises during ventricular systole & falls during ventricular diastole. 120/80.
Greatest drop in pressure	Arterioles
Systolic BP	The peak (highest) blood pressure, it is measured during ventricular systole, it is 120 mmHg in a young person at rest.
Diastolic BP	The minimum blood pressure, it is measured at the end of ventricular Diastole, it is 80 mmHg in a young person at rest.
Pulse pressure	It is the difference between systolic BP and diastolic BP. Pulse pressure = systolic BP - diastolic BP
Mean BP	Mean BP = diastolic pressure + 1/3 (systolic pressure – diastolic pressure), depends on 2 factors: { Mean BP= C.O. x total peripheral resistance }
Hemodynamics	It is the branch of physiology concerned with The physical principles governing : Pressure, Flow, Resistance, Volume, and Compliance
Resistance Vessels	Arterioles & small arteries
Compliance	Venous system has a large compliance & acts as a blood reservoir (high volume & low pressure)

Types of blood f	flow	1- Laminar (Stream-lined) flow	2-Turbulent flow
-		Smooth flow at a steady rate. The central	High flow rate Blood flow in all directions (Mixing),
		portion of blood stays in the center of the	leading to increase in resistance (by narrowing in
		vessel \rightarrow Less friction.	vessel wall) \rightarrow slow the flow rate.
			Fluid passes a constriction, sharp turn, rough
			surface.

Types of blood flow	1- Laminar (Stream-lined) flow	2-Turbulent flow
-	Smooth flow at a steady rate. The central	High flow rate Blood flow in all directions (Mixing),
	portion of blood stays in the center of the	leading to increase in resistance (by narrowing in
	vessel \rightarrow Less friction.	vessel wall) \rightarrow slow the flow rate.
		Fluid passes a constriction, sharp turn, rough
		surface.

Elastic rebound	During systole:	During diastole :
maintains blood flow in	arterial BP and the volume of blood will ↑ so the	the arterial BP falls and the Volume
arteries when	artery walls expand to handled the extra amount of	of blood will \downarrow so the arteries wall
ventricle	blood pumped by the ventricles.	will recoil to their original
diastole.		dimensions

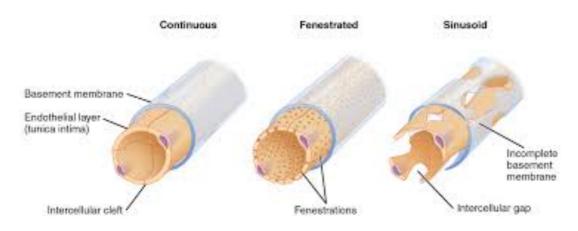
Blood flow = CO	Viscosity	Resistance	Compliance		TPR
Amount of blood moving through a vessel in a given time period. $Q = \frac{\Delta P}{R}$	$V = \frac{Q}{A}$ When Cross sectional area increase: Uniameter of vessel viscosity of blood flow	tendency of vascular system to oppose flow. Poiseuille's Law = $R = \frac{8\eta L}{\pi r^4}$ $Q = \frac{\Delta P \pi r^4}{8\eta L}$ Resistance \Uparrow Radius \Downarrow Radius \Uparrow blood flow \Uparrow	the volume of blood that the vessel can hold at a given pressure. $C = \frac{V}{P}$	Systemic Circulation: $TPR = \frac{AP - RAP}{Flow}$ AP=Aortic pressure RAP= right atrial pressure	Pulmonary Circulation: $Pul. R = \frac{Pul. Art. P - LAP}{flow}$ Pul.art.p= pulmonary artery pressure LAP= left atrial pressure

	Circulatory shock types								
Divi ded into	Low output shock ↓CO				High	ı to normal output sl	nock ∦PR		
У	Cardiogenic	Hypovolemic		Obstructiv	e	Distributive Neural		butive Vasoger	
Due to	-Failure of myocardial pump -loss of > 40% LV function	(loss of 15- 25% \ 1-2L). ↓ venous return	Reduced by vascular obstruction		- Generalized peripheral vasodilation - Loss or drop in vasomotor (vascular) tone / spinal cord injury	Anaphylactic Histamine triggers peripheral vasodilation and increase capillary permeability	septic Bacterial endotoxin	Psychogenic Decrease HR & vessels dilate	
Causes:	- <u>Myocardial</u> <u>infarction</u> -Cardiomyopathy - <u>Cardiac tamponade</u> - Acute valvular dysfunction -Sepsis	-loss of blood -loss of fluid -loss of plasma	ıdrome (usually	carditis → <u>cardiac</u>		 Acute spinal cord injury Deep general anesthesia depresses the vasomotor center Spinal anesthesia blocks the sympathetic nervous system Brain damage 	-allergic reaction - IgE- mediated hypersensitivity	peripheral vasodilata tion and endothelia l injury	stress, pain, or fright
symptoms	Congestion of lungs & viscera (Chest X- ray): -Interstitial pulmonary edema. -Alveolar edema. -Cardiomegaly	-hypotension -Tachycardia -Tachypnea <u>-Cold, pale</u> <u>skin.</u> -Oliguria -restlessness	Obstruction of venous return: Vena Cava syndrome (usually neoplasms)	Compression of the heart: hemorrhagic pericarditis tamponade.	Obstruction of the outflow of the heart: Aortic dissection, Massive pulmonary embolism., pneumothorax	 Behaves like hypovolemic shock Blood volume remains normal CO is severely reduced as blood is pooled in peripheral veins 	-	<u>flushed &</u> <u>warm due</u> <u>to</u> <u>Hyperdyn</u> amic state.	- Simple fainting (syncope) - Brain becomes hypoperfuse d - Loss of consciousnes s
others	High mortality rate	-	Obstruction of v neoplasms)	Compression of tamponade.	Obstruction of the outflow Aortic dissection, Massive embolism, pneumothorax	-	-	Hyperdyn amic state	-

Pathophysiology of shock:

↓ capillary perfusion -> Inadequate tissue oxygen -> anaerobic metabolism -> Metabolic acidosis -> Release of free radicals & oxidative stress -> Tissue damage -> Apoptosis.

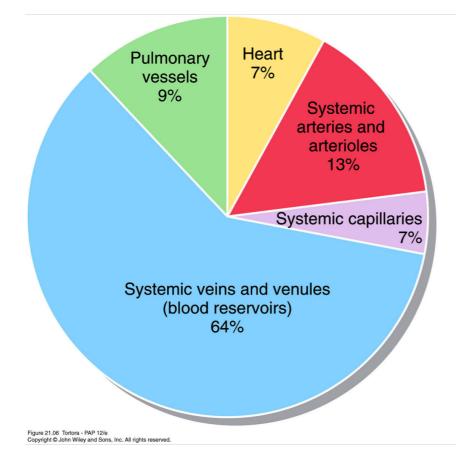
Stages of shock:

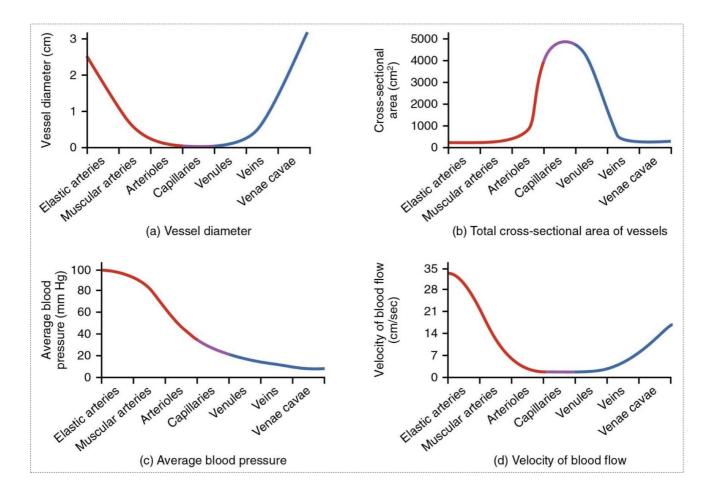

Reversible	Progressive	Irreversible
- Changes can be reversed	- Defense mechanisms	- Complete failure of
by compensatory	begin to fall	compensatory
mechanism	 Multi-organ failure 	mechanisms
(neurohormonal	- Loss of more than 30% of	 Heart deteriorates until
activation) or by treatment	blood volume	it can no longer pump
 Defense mechanisms are 	 The deterioration of the 	blood
successful in maintaining	CVS	 can lead to death
perfusion	1- Leads to myocardial	Possible Mechanism in
- Non-progressive	ischemia, and a	development irreversible
1- \downarrow BP-> \uparrow sympathetic	decrease in cardiac	Shock:
2- \uparrow sympathetic:	output → More	1- Shock Stimulus
skin vasoconstriction,	decrease in Blood	2- Lysosome Activation,
vasoconstriction to the	pressure below 60	Release Proteases
kidney, Release of	2- Decrease in blood	3- Splitting of Plasma
epinephrine and nor-	volume \rightarrow decrease in	Proteins
epinephrine, increase	blood velocity \rightarrow	4- Vasoactive Peptides,
heart rate and force of	increase Viscosity.	Amines, etc.
contraction	Platelets aggregate \rightarrow	5- Hypotension, Fluid Loss
3- Hypoxia	Clot formation \rightarrow	6-
Vasoconstriction to the	Obstruction	
kidney:	3- caused by lysosome	
↓ urine output	rupture and decrease	
↑ renin secretion	activity of	
 ↑Angiotensin II	mitochondria →	
vasoconstrictor	decrease active	
↑ aldosterone	transport and general metabolism	
↑ Na reabsorption and H2O	4- Leads to acidosis	
retention	4- Leaus to actuosis	

	Regulation of blood pressure		
Rapidly acting control mechanism short	Long term regulation	Intermediate Mechanisms Regulating Arterial Blood Pressure	
acts within. seconds / minutes. Concerned by regulating Cardiac output & Peripheral resistance. Reflex mechanisms that act through autonomic nervous system: Centers in medulla oblongata: • Vasomotor Center (VMC) Sympathetic nervous system. • Cardiac Inhibitory Center (CIC) Parasympathetic nervous system	 Hormonally mediated. Takes few hours to begin showing significant response. [slow response (Long-term). Concerned in regulating blood volume. 	Intermediate Mechanisms Regulating Arterial Blood Pressure: 1. Renin-angiotensin vasoconstrictor mechanism. 2. Stress- relaxation of the vasculature. 3. Fluid Shift mechanism. During this time, the nervous mechanisms usually become less and less effective. The mechanisms are activated within 30 minute to several hours.	
Baroreceptors	1- Renin-Angiotensin- Aldosterone System.	1. The Renin- Angiotensin System	
Chemoreceptors reflex.	2- Vasopressin [Anti-diuretic hormone (ADH)] Mechanism	2. Fluid Shift Mechanism	
Short Term Reflex for Maintaining Normal ABP Atrial stretch Line Abp Atrial stretch Line Abp Abp Abp Abp Abp Abp Abp Abp Abp Abp	3- Atrial Natriuretic Peptide Mechanism (Low-pressure volume receptors.)	3. stress relaxation mechanism	
Thermo-receptors.	4- EPO (erythropoietin.)		
Pulmonary receptors.			

HIGH BP	LOW BP
1- ↓ Antidiuretic hormone (ADH)	1- ↑ Antidiuretic hormone (ADH) secretion.
secretion.	2- ↑ Aldosterone hormone secretion
2- ↓ Angiotensin II hormone secretion	3- ↑ Angiotensin II hormone secretion .
3- ↓ Aldosterone hormone secretion	4- ↑ Erythropoietin hormone secretion \rightarrow ↑
4- \downarrow Erythropoietin hormone secretion.	RBCS,take few days.
5- ↑ Atrial natriuretic peptides (ANP)	5- ↓ Natriuretic peptides (ANP) hormone secretion
hormone secretion.	

Capillary circulation:

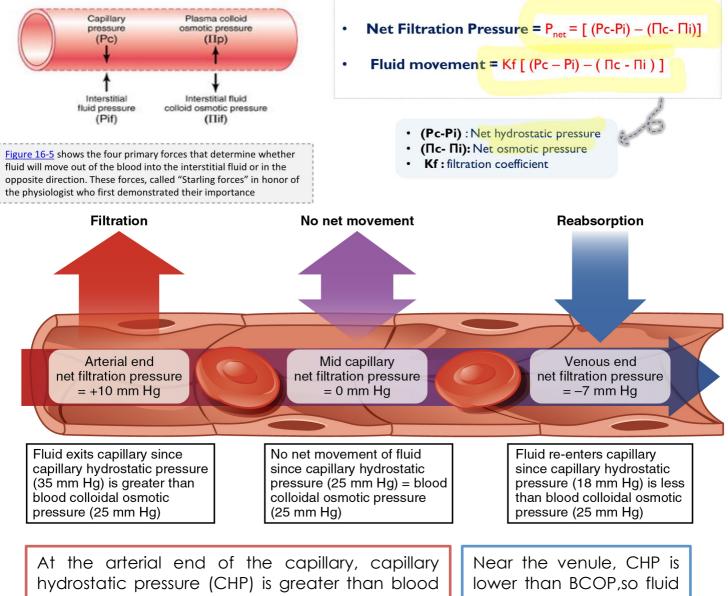

Functions	Serve the requirements of the tissues
Circulation divided into	aorta "elastic recoil", arteries "muscular+ low resistance vessels , arterioles "resistance vessels" , capillaries "exchange blood vessels" and venules &veins "capacitance vessels".
Characteristic of capillaries	Most permeable- the larges cross Sectional area.
Types of capillaries	classified by diameter \ permeability : 1- Continuous : Do not have fenestrae. 2- Fenestrated: Have pores. 3- Sinusoidal: Large diameter with large fenestrae. "the most permeable"
The important processes that move Materials across capillary walls :	1-Diffusion 2-Filtration 3-Reabsorption


BLOOD VESSEL COMPARISON:

	Mean diameter	Wali thickness	Endothelium Elastic Uissue Smooth musche Fibrous tissue	
Artery		1.0 mm		
Arteriole	30.0 μm	6.0 µm	_	
Capillary	8.0 µm	0.5 μm		
Venule	20.0 µm	1.0 µm		
Vein	5.0 mm	0.5 mm		

DISTRIBUTION OF BLOOD WITHIN THECIRCULATORY SYSTEM AT REST:

Relationships among Vessel Diameter, Cross Sectional Area, Blood Pressure, and Blood Velocity:



Starling Forces

There are Four Forces that determine Fluid Movement Across the Capillary Membranes:

- I. Pc (Capillary Pressure) \rightarrow Tends to move fluid out of the capillary.
- 2. Pi (Interstitial Fluid Pressure) \rightarrow Tends to move fluid into the capillary.
- 3. Ic (Plasma Colloid Osmotic Pressure) \rightarrow Tends to cause Osmosis of fluid into capillary.
- 4. \prod (Interstitial fluid colloid osmotic pressure) \rightarrow Tends to cause osmosis of fluid out of the capillary.

colloid osmotic pressure (BCOP), so fluid moves out of the capillary (filtration). "occurs More than reabsorption"

moves into the capillary (Reabsorption).

What is edema?	Is an excessive amount of fluid in the interstitial Spaces .
Signs	Pitting edema of the feet , Elephantiasis (Lymphaticfilariasis)
Causes	 1-Increased hydrostatic blood pressure. 2-Decreased blood osmotic pressure. 3- Increased interstitial hydrostatic pressure (lymphatic capillary blockage). 4-Leaking capillary wall.

Location of lymphatic vessels:

Lymphatic vessels present between capillaries.

Function (Aim):

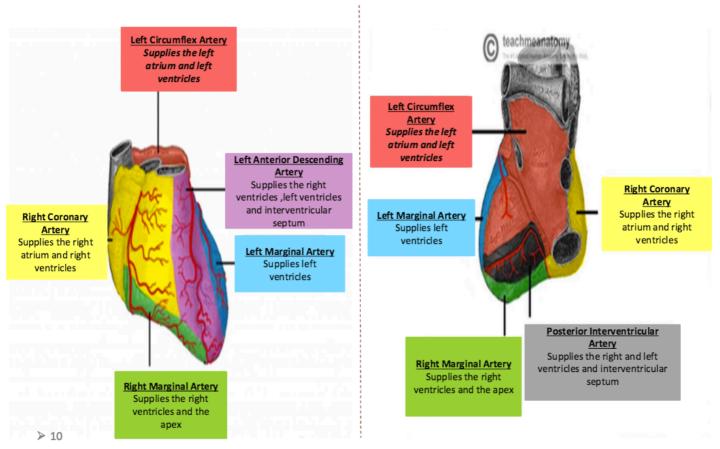
I - Lymphatic system is responsible for bringing the interstitial fluid to vascular compartment.

- 2- Drain excess interstitial (tissue) fluid back to the blood in order to maintain original blood volume.
- 3- Transports absorbed fat from small intestine to the blood.
- 4- Helps provide immunological defenses against pathogens.

Value:

Normal 24 hours lymph flow is \rightarrow 2- 4 L

Mechanism:


Lymphatic capillaries lie in interstitial fluid close to vascular capillaries ,these capillaries merge into large lymphatic vessels & eventually into largest vessel, thoracic duct which empties into large veins .

coronary circulation:

	Left coronary artery (LCA)	Right coronary artery (RCA)
Size	larger	smaller
origin*	Left posterior aortic sinus	Anterior aortic sinus
Termination	By anastomosing with the right coronary artery	By anastomosing with the left coronary artery
Branches	 Left Anterior Descending (LAD) (= Anterior interventricular) Marginal artery Circumflex artery (CX) 	 Posterior Descending Branch (= posterior interventricular) Marginal artery

Areas of Distribution of Coronary Arteries

Coronary dominance depends on which artery (or arteries) gives rise to the posterior descending artery (PDA) :

Right dominance(80-85% of cases) or left dominance or co-dominance.

Coronary Blood Flow	225-250 mL/min (5% of cardiac output.)	
(CBF) at rest	Heart extracts 60-70% of O2	
Phasic changes in	During Systole: Coronary arteries are compressed, so Blood flow to the left	
CBF during systole &	ventricle is reduced.	
diastole	During Diastole: Blood flows to the	
	subendocardial portion of the left ventricle occurs only during diastole, and is	
	not there during systole.	
Factors Affecting	* Chemical factor:	
Coronary Blood Flow	Lack of oxygen.	
	Increased local concentration of Co2.	
	Increased local concentration of H+ ion.	
	Increased local concentration of k + ion.	
	Increased local concentration of Lactate ,Prostaglandin ,Adenosine, Adenine	
	nucleotides. * Neural factors: Sympathetic stimulation,	
	Parasympathetic stimulation.	

Short summary of rules:

- $EF = \frac{SV(EDV ESV)}{EDV} \times 100$
- SV = EDV ESV
- EDV = ESV + SV
- <u>Rate=</u> divide **300** by the number of boxes between each QRS
- $EF = \frac{SV}{EDV}$
- $Q = \frac{\Delta P}{R}$
- $V = \frac{Q}{A}$
- $R = \frac{8\eta L}{\pi r^4}$
- $Q = \frac{\Delta P \pi r^4}{8 \eta L}$
- $C = \frac{V}{P}$
- $TPR = \frac{AP RAP}{Flow}$
- $Pul.R = \frac{Pul.Art.P-LAP}{flow}$
- Net Filtration Pressure = P_{net} = [(Pc-Pi) (Πc- Πi)]
- Fluid movemen<mark>t = Kf [(Рс Рі) (Пс Пі)]</mark>