LECTURE (17)

If there is any mistake please feel free to contact us:

Anatomyteam32@gmail.com

Done by:Raghad Al misfer

Reviewed by:AlWaleed Alotaibi

Both - Black
Male Notes - BLUE
Female Notes - GREEN
Explanation and additional notes - ORANGE
Very Important note - Red

Objectives:

At the end of the lecture, the student should be able to:

- List the parts of the cerebral hemisphere (cortex, medulla, basal nuclei, lateral ventricle).
- Describe the subdivision of a cerebral hemisphere into lobes.
- List the important sulci and gyri of each lobe.
- Describe different types of fibers in cerebral medulla (association, projection and commissural) and give example of each type.

MIND MAP

Cerebrum

Largest part of the forebrain.
$>$ Divided into two halves, the cerebral hemipheres, which are separated by a deep median longitudinal fissure which lodges the falx cerebri.
$>$ In the depth of the fissure, the hemispheres are connected by a bundle of fibers called the corpus callosum.

Note :

median longitudinal fissure---->>you can describe it as deep sulcus

Surfaces

Note :

Tentoriumcerebelli : it is adura matter layer setting horizontally between cerebrum and cerebellum .

Where you cut corpus callosum ----> medial surface
Outer surface ----->superolateral surface
Above the cerebellum ------> Inferior (tentorial)

Structure of Cerebrum

Includes:
Cerebral cortex: Superficial layer of grey matter
\square White matter (WM): Deeper to the cortex, containing axons to and from the cells of the cortex

Basal ganglia: Number of nuclear masses buried within the white matter

Lateral ventricle: The cavity of hemisphere

Note:
(caudate, putamen, globus pallidus) collectively known as the basal ganglia

Lobes of Cerebrum

The superficial layer of grey matter is highly convoluted to form a complex pattern of ridges (gyri) and grooves (sulci). This arrangement maximizes the surface area of the cerebral cortex (about 70% is hidden within the depths of sulci).

- Three sulci, consistent in position, named central, lateral (sylvian) \& parieto-occipital, divide each hemisphere into FOUR lobes: Frontal, Parietal, Temporal \& Occipital (named after overlying bones) by
- Functionally each hemisphere contains a 'limbic lobe' on the medial surface.

NOTE :

- Many of sulcui and gyri do not arrange in fix position (vary from person to person, from one hemisphere to other hemisphere)
- But Some of sulcui and gyri have fix position :
- central, lateral (sylvian) \&parieto-occipital
- parieto-occipital sulcui prominent in medial surface
- limbic lobe : beside these lobes around central
- diencephalon stracture
limbic lobe is responsible for:
Establishing emotional states ○
Linking conscious intellectual functions with ○
the unconscious autonomic functions
Facilitating memory storage.

Function of Each Lobe

Frontal lobe:
Precentral gyrus.
$>$ Superior \& inferior frontal sulci divide the lobe into superior, middle \& inferior frontal gyri.
\square Parietal lobe:
Postcentral gyrus.
Intraparietal sulcus dividing the lobe into superior \& inferior parietal lobules.
Precentral Postcentral

Superior , middle \& inferior frontal gyri

Note:

frontal lobe :Sfs and ifs running antero - posteriorly
parietal lobe : intra-parietal sulcus :deep line in the centre

 inferior temporal gyri

Temporal lobe:
> Superior \& inferior temporal sulci giving rise to superior, middle \& inferior temporal gyri.
Insula: the gyri in the depth of lateral fissure, covered by parts of frontal, parietal \& temporal lobes called the opercula (removed in lower picture.).

Note :
Superior \& inferior temporal sulci -----> parallel lines across temporal lobe
what different lobes form the lateral sulcus?-----> upper lip formed by frontal , lower lip formed by parietal inferior lip formed by superior temporal gyrus.
if you hold the brain, and pole apart of temporal from frontal and parietal, you will find groupe of grey matter called insula
operculum :it means a certain stracture that hide another stracture.
so, part of frontal lobe is operculum

Medial Surface

$>$ Sulci: Parietooccipital, Calcarine, Cingulate
$>$ Gyri: Cingulate, Parahippocampal

Note:

Cingulated sulcus :across frontal lobe enter into parietal lobe

Cigulategyrus: below cingulate sulcus ,Cigulategyrus part of limbic system

Calcarinsulcus : from the root of parieto-occipital sulcus to tip of occipital lobe

Parahippocampalgyrus: located in temporal lobe and it is part of limbic system

Brodmann's Map

- Brodmann produced a numbered, cytological map of cerebral cortex based upon its regional histological characteristics
- Subdivisions with similar cellular and laminar structure are called 'areas'
- Brodmann's numbering of these cortical locations has become one of the standard ways to identify brain areas.

Lobe	Function area
Frontal	Primary motor cortex:Located in precentralgyrus (Brodmann area 4). Premotor cortex: Located in the region immediately anterior to the precentralgyrus (Brodmann's area 6). Prefrontal cortex: Extensive region of the frontal lobe anterior to premotor area. Broca's (motor speech) area: Located in the inferior frontal gyrus of the dominant hemisphere, usually left (Brodmann's area 44 \& 45). Frontal eye field: Located in the middle frontal gyrus immediately in front of motor cortex (Brodmann's area 8).
Parietal	Primary somatosensory cortex: located in postcentralgyrus (Brodmann's area 1, 2, 3). Parietal association cortex: located posterior to primary somatosensory cortex.
Temporal	Primary auditory cortex: located in the superior surface of the superiok temporal gyrus (Brodmann's area 41, 42) Auditory association cortex: located immediately around the primary auditory cortex (also includes Wernick's area) Parahippocampalgyrus:located in the inferomedial part of tempork lobe. Deep to this gyrus lies the hippocampus and the amygdala, which are parts of limbic
Occipital	Primary visual cortex: located on the medial surface of the hemisphere, the gyri surrounding the calcarine sulcus (Brodmann's area 17). Visual association cortex: located around the primary visual cortex

Note :

Most sensitive area of the body has large area of cortex
organ do motor activity have large area of brain
The body represent up to down

Language Area

Organized around the lateral fissure.

Broca's area: concerned with expressive aspects of language.
Wernick's area: responsible for comprehension of the spoken words.
$>$ Nearby regions of temporal lobe and parietal lobe (angular gyrus \& supramarginal gyrus of the inferior parietal lobule) are important in naming, reading, writing, and calculation.

Note :
Wernick's area -----> has two function in the auditory and speech

Hemispheric Dominance

The localization of speech centers \& mathematical ability is the criterion for defining the dominant cerebral hemisphere.
$>\ln 96 \%$ of normal right-handed individuals and 70% of normal left-handed individuals, the left hemisphere contains the language centers. These are left hemisphere dominant.
Cerebral dominance becomes established during the first few years after birth.

Hemispheres communicate via the corpus callosum

Note :
Broca's area mainly in the left hemisphere for both right
handed people and left handed people

Depending on their origin \& termination, these nerve fibers are classified into three types:

Projection fibers: Consisting of

- Afferent fibers conveying impulses to the cerebral cortex.
- Efferent fibers conveying impulses away from the cortex.

Association Fibers

Long association fibers connect more distant parts and include:

Short association fibers
connect adjacent gyri,

1. Uncinate fasciculus: connects frontal to temporal lobe
2. Superior longitudinal fasciculus: connects the frontal, occipital, parietal, and temporal lobe the fiber which curve to enter the temporal lobe is arcuate fasciculus
3. Arcuate
fasciculus connect gyri in frontal to temporal lobes
4. Inferior longitudinal fasciculus: connects
occipital to temporal pole
5. Cingulum: connects frontal \& parietal lobes to the parahippocampal gyrus and adjacent temporal gyri

Commissural Fibers

Connect the

 corresponding regions of the two hemispheres.
Include:

1. Corpus callosum.
2. Anterior
commissure.
3. Posterior
commissure.
4. Hippocampal commissure
 (commissure of fornix).

NOTE:

Anterior commissure------> small fiber, below anterior part of corpus callosum

Posterior commissure-----> just above superior colliculus
Hippocampal commissure (commissure of fornix).------> deeper within parahippocampalgyrus (when you open parahippocampalgyrus you will find tow swelling (hippocampi), connect whith each other by Hippocampal commissure

Corpus Callosum

$>$ Connects the corresponding regions of the two hemispheres except the temporal lobes, that are connected by anterior commissure
$>$ It is shorter craniocaudally than is the hemisphere
$>$ The callosal fibers linking the frontal poles curve forward forming anterior forceps (forceps minor)
$>$ The callosal fibers linking the occipital poles curve backward forming posterior forceps (forceps major)

Note :

Antero-posterior lenghth of corpus scallosum shorter than Antero-posterior lenghth of hemisphere because of that :

The fiber that connect the anterior pole of frontal lobes, will pass backward reach anterior part of corpus callosum then go to opposite side and reach anterior pole of corpus callosum
The anterior end of corpus callosum ---- form forceps

The fibber that connect the tow occipital lobe run forward reach corpus callosum then to opposite hemisphere go backward to reach corresponding area in occipital lobe
The posterior end of corpus callosum ---- form forceps

Parts of Corpus Callosum

Note :
Genu --- --> anterior curve
Lower part , connect to anterior commissure ----> rostrum

Extend anteriorlly ------> body
Splenium----> posterior round stracture
Anterior
commissure:
connects the
inferior and
middle
temporal gyri \&
the olfactory
regions of the
two
hemispheres

Note :
To have bilateral papillary reflex (reflex in tow eye), you have to have intact Posterior Commissure because the impulse pass through it .

Right hippocampus project to right mamillary body of hypothalamus
Left hippocampus project to left mamillary body of hypothalamus
Hippocampal Commissure: not go to mamillary body

Projection Fibers

Consist of Afferent \& Efferent of the cerebral cortex.

- Deeper to the cortex, these fibers are arranged radially as the corona radiata.
$>$ Then the fibers converge downward, form internal capsule, between thalamus and basal ganglia.
Continue in the crus cerebri of the midbrain, basilar part of pons, \& pyramid of medulla oblongata.

Internal Capsule

- Bundle of projection fibers, passes through the interval between the thalamus and the basal ganglia
- Has 5 parts:

1. Anterior limb: contain Thalamocortical \& Frontopontine fibers
2. Genu: contain corticobulbar fibers
3. Posterior limb: contain Corticospinal, Corticobulbar \& Thalamocortical fibers
4. Retrolenticular part: contain Geniculocalcarine fibers
5. Sublenticular part (not shown): contain geniculo-temporal fibers

Note :

Anterior limb locater between caudate nucleus (part of basal ganglia) and luntiform nucleus (part or basal ganglia)

Genu - going to motor nuclei of cranial nerve
Posterior limb located between the thalamus and luntiform nucleus

Retro: means behind ------>Retrolenticular part : located behind luntiform nucleus come from (optic nerve)

Sublenticular part (not shown): auditorynerve

Summary of Crossman book

- The precentral gyrus is the primary motor region of the cerebral cortex and is located within the frontal lobe, immediately in front of the central sulcus. Anterior to this lie the premotor and supplementary motor cortices and, in the left hemisphere, Boca's (motor speech) area. The prefrontal cortex is concerned with complex cognitive functions.
- The postcentral gyrus is the primary somatosensory region of the cerebral cortex and lies within the parietal lobe, immediately posterior to the central sulcus. It receives afferents from the ventral posterior nucleus of the thalamus, which is the site of termination of the spinothalamic tracts, trigeminothalamic tract and the medial lemniscus. Behind this region lies the sensory association cortex, which is responsible for the interpretation of general sensory information.
- The temporal lobe lies beneath the lateral fissure. On the superior surface of the superior temporal gyrus, the transverse temporal (Heschl's convolutions) mark the location of the primary auditory cortex, which receives input from the medial geniculate nucleus of the thalamus. Adjacent lies the auditory association cortex, which is responsible for the interpretation of auditory information and which, in the left hemisphere, constitute Wernicke's area.
- The occipital lobe makes up the posterior part of the hemisphere. On the medial surface, the calcrine sulcus indicates the location of the primary visual cortex, which receives afferents from the lateral geniculate nucleus of the thalamus. The rest of the occipital lobe is the visual association cortex, which is responsible for the interpretation of visual information.

Quiz ;

1- Which part of internal capsule contain Corticospinal and Corticobulbar fibers?

A- Posterior limb.
B- Genu .
C- Sublenticular part.
D- Retrolenticular part.
2- Which one of the following commissure Important in the bilateral pupillary reflex:

A-Corpus callosum.
B-Anterior commissure.
C-Hippocampal commissure
D-Posterior commissure

3- one of the following part is important in naming, reading, writing, and calculation:
A- Broca's area
B- Wernick's area

C- supramarginal gyrus
D- Brodmann's area 17

4- Primary somatosensory cortex located in :
A-Brodmann's area 17
B- Brodmann's area 1, 2, 3
C- Brodmann's area 4
D- Brodmann's area 8

5-Which one of the following not in frontal

 lobe:A- Brodmann's area 8
B- Brodmann's area 4
C- Brodmann's area 44
D- Brodmann's area 41

6- Brodmann produced a numbered,

 cytological map of cerebral cortex based
upon:

A- Suci and gyri
B- anatomical characteristics
C- regional histological characteristics
D- non of them
7- one of the following is function of temporal lope?

A- memory
B- visual processing
C- mood
D- motivation
8- Caudate, Putamen and Globus pallidus are nuclear masses known as:

A- basal ganglia
B- Insula
C- cerebral nuclei
D- non of them

9- Aggression is one of the

funcation of :

A- temporal lope
B- occipital lope
C- frontal lope
D- parietal lope
10-Smell is one of the function of :
A- temporal and frontal lopes
B- occipital lope only
C- parietal lope only
D- parietal and frontal lopes
11- Which lope not participate to cover Insula:

A- frontal lopes
B- parietal lopes
C- temporal lobe
D- Occipital lope

12- Primary auditory cortex located in :

A-Brodmann's area 17
B- Brodmann's area 1, 2, 3
C- Brodmann's area 45, 46
D- Brodmann's area 41, 42

13-Which one of the following is true abut Association Fibers are :

A- Connect the corresponding regions of the two hemispheres.

B- arranged radially as the corona radiata
C- has short association fibers only.
D- Unite different parts of the same hemisphere

Questions	Answers
1	A
2	D
3	C
4	B
5	D
6	C
7	A
8	A
9	C
10	A
11	D
12	D
13	D

GOOD LUCK

Anatomy Team Leaders:
FahadAIShayhandEman AL-Bediea.

