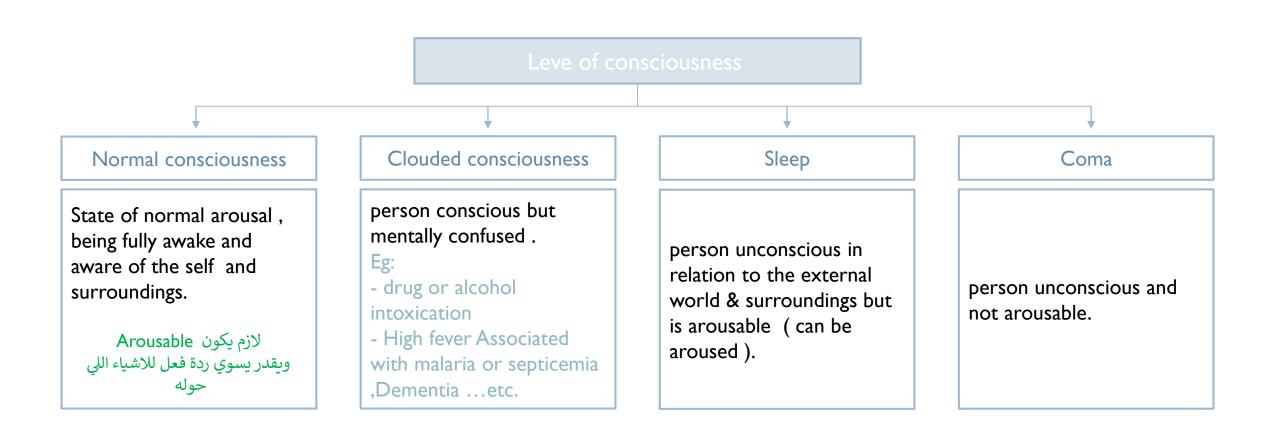


- Text.
- Important
- Formulas
- Numbers
- Doctor notes
- Extra notes and explanation

Lecture No.18

« إِنَّ معي ربي سيهدين »

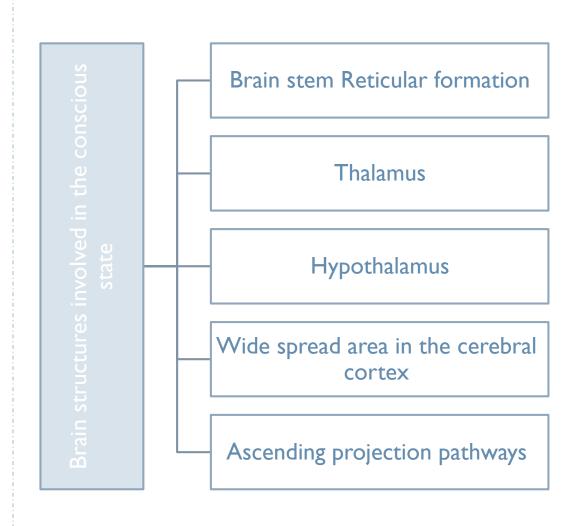
Physiology of consciousness


Objectives:

- 1- Define consciousness and explain the different states of consciousness.
- 2- Explain what is meant by the "Reticular Activating System" (RAS).
- 3- Define the location and function of the Bulboreticular Facilitatory Area.
- **4-** Describe how the interaction between the Bulboreticular Facilitatory Area ,Thalamus and Cerebral Cortex subserves & sustains consciousness
- **5-** Explain how a medical person can differentiate between a conscious and unconscious person by means of outward behavior as and physical signs .
- **6-** Describe the role of EEG and evoked potentials in differentiating between a conscious person , a sleeping person , a comatose patient and brain dead patient

What is Consciousness?

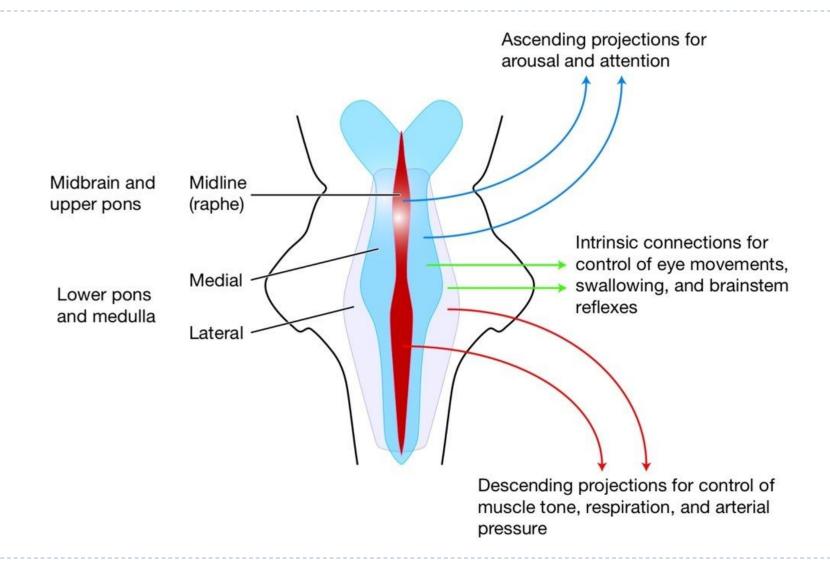
- It has been defined by psychologists as our awareness of ourselves and our environment.
- Is the brain state in which a person is being aware of the self and surroundings.
- It is a product of electrical activity of the brain.
- flat EEG = unconscious.


Level of consciousness

Brain structures involved in the conscious state

Reticular formation:

- Set of interconnected nuclei that are located throughout the brainstem (Pons, Midbrain, Upper medulla), and the thalamus.
- Role in: behavioral arousal and consciousness (sleep\ awake cycle).
- Connect the brainstem to the cerebral cortex.
- ▶ It consist of 3 parts:
 - Lateral Reticular Formation.
 - 2. Paramedian Reticular Formation.
 - 3. Raphe nuclei (Median RF).



Con. Reticular formation

Brown color refer to (ONLY IN MALES' SLIDES)

2. Paramedian Reticular Formation	3. Raphe nuclei (Median RF)		
Has large cells.	In the midline of the reticular formation.		
Receives signals from lateral reticular formation.Contains:	 Contain serotonergic projections to the brain and spinal cord. 		
 Nucleus ceruleus contains noradrenergic neurones and Dopaminergic (DA) neurones, that projects onto cortex of 	Serotonin: inhibitory, Essential role in		
cerebral hemispheres.	normal sleep.		
dopaminergic neurones that project directly onto the cortex.			
 Cholinergic neurones secreted by gigantocellular neurones project onto the thalamus. 			
 Noradrenaline: excitatory, play role in rapid eye movement sleep REM. cholinergic: excitatory. Dopamine:(secreted by substantia nigra cells) 			
	 Has large cells. Receives signals from lateral reticular formation. Contains: Nucleus ceruleus contains noradrenergic neurones and Dopaminergic (DA) neurones, that projects onto cortex of cerebral hemispheres. Ventral tegmental nucleus contains dopaminergic neurones that project directly onto the cortex. Cholinergic neurones secreted by gigantocellular neurones project onto the thalamus. Noradrenaline: excitatory, play role in rapid eye movement sleep REM. cholinergic: excitatory. 		

Con.

Function of reticular formation:

I. Somatic motor control (reticulospinal tracts).

تعطي معلومات للمسل عشان تنقبض بطريقة صحيحة ويكون الشخص in good position

2. Cardiovascular control.

Thruogh cardiac and vasomotor centers of the medulla oblongata.

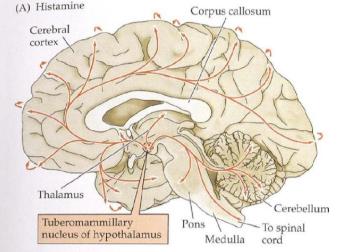
3. Pain modulation:

- Pain signals from the lower body, RF, cerebral cortex.
- Rf is origin of the descending analgesic pathways.
- Act in the spinal cord to block the transmission of some pain signals to the brain.

ONLY IN MALES' SLIDES

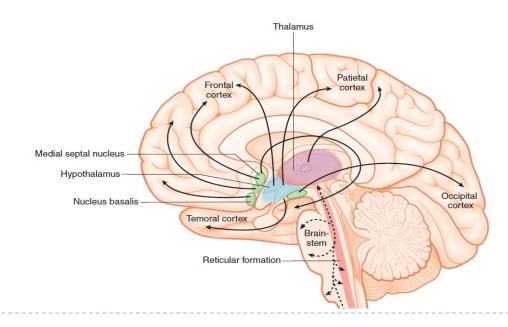
4. Sleep and consciousness:

- The reticular formation has projections to the thalamus and cerebral cortex.
- It plays a central role in states of consciousness like alertness and sleep.
- Injury to the reticular formation can result in irreversible coma.
- Reticular formation is called "cerebral cortex switch"

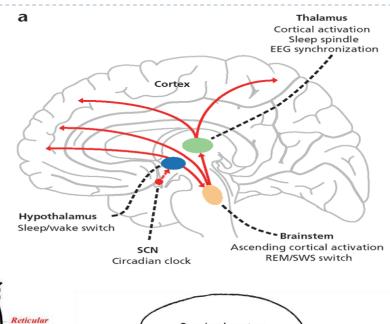

5. Habituation:

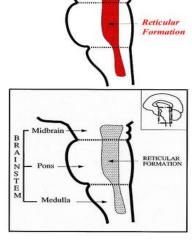
- This is a process in which the brain learns to ignore repetitive, meaningless stimuli while remaining sensitive to others.
- A good example of this is when a person can sleep through loud traffic in a large city, but is awakened promptly due to the sound of an alarm

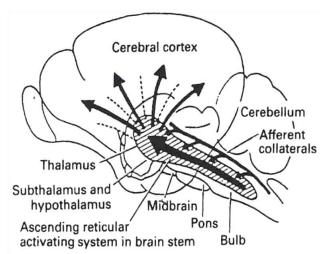
Thalamus


- Located in the mid-part of the diencephalon.
- Cholinergic projections from the thalamus are responsible for:
 - Activation of the cerebral cortex.
 - Regulation of flow of information through other thalamic nuclei to the cortex via projections into

reticular nuclei.

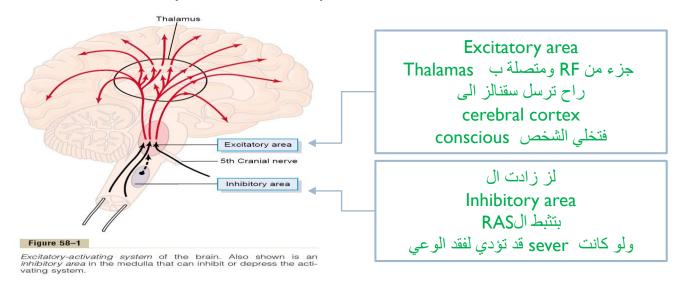

Hypothalamus

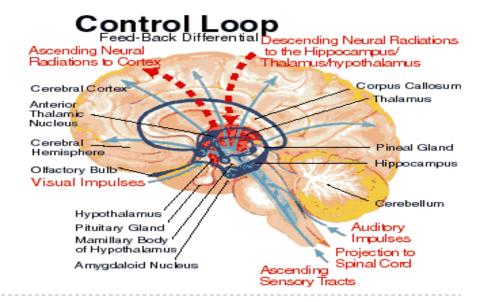

- Tuberomammillary nucleus in the hypothalamus projects to the cortex and is involved in maintaining the awake state.
- The only part that excite the cortex by histaminergic neurons.



Anatomical components of RAS (reticular activation system)

- The RAS is composed of several neuronal circuits connecting the brainstem to the cortex .
- Originate in the upper brainstem reticular core and project through synaptic relays in the thalamic nuclei to the cerebral cortex.
- As a result, individuals with bilateral lesions of thalamic intralaminar nuclei are lethargic or drowsy.
- Pons (uppers & middle) and midbrain are essential for wakefulness.
- Lesion in the mid-pons => unconsciousness.



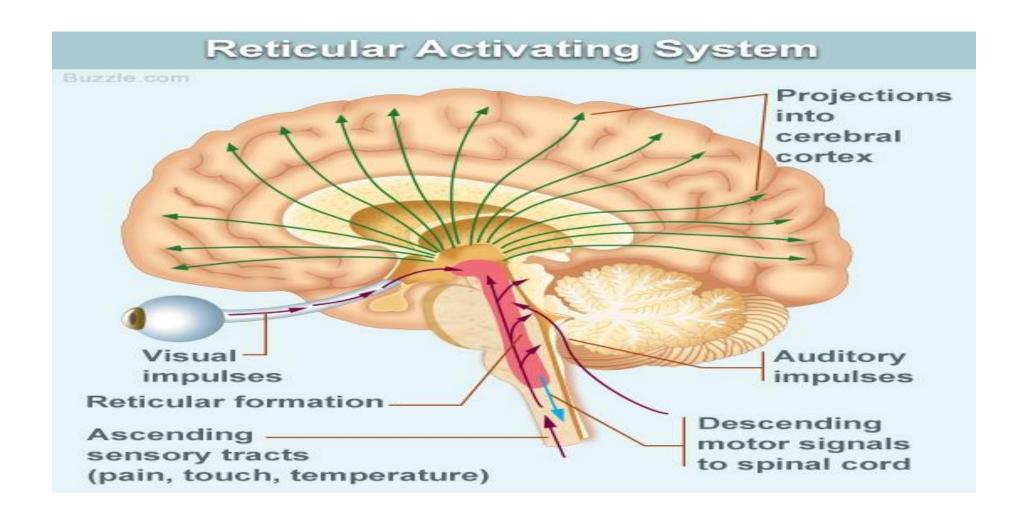


Con.

- Bulboreticular Facilitory (Excitatory) = Reticular Excitatory Area of the Brain Stem.
- Reactivate by Positive feedback from cerebral cortex.
- Excitatory area (bulboreticular facilitatory) sends excitatory signals into Thalamus.thalamus excites almost all areas of the cortex.
- ► The Bulboreticular Facilitory (Excitatory) Area + Thalamus = Reticular Activating System (RAS).
- ▶ The RAS is the system which keeps our cortex awake and conscious.

Function of RAS:

I. Regulating sleep-wake transitions:


- If inhibitory area activity increase > reduce the activity of RAS > less afferent signal to the CC >sleep (only in female).
- RAS suppress ascending afferent activity to the CCsleep (only in male).

2. Attention:

- RAS mediate transitions from relaxed wakefulness to of high attention.
- There is increased regional blood flow in the midbrain reticular formation (MRF) and thalamic intralaminar nuclei during tasks requiring increased alertness and attention (only in male).

3. RAS and learning:

- The RAS is the center of balance for the other systems involved in learning, self-control or inhibition, and motivation.
- When functioning normally, it Provides the neural connections for processing and learning of information, and the ability to pay attention to the correct task.
- Selective attention (to the correct task).

13

RAS dysfunction

If RAS is depressed		If the RAS is too excited		
•	An under-aroused cortex.	•	Over aroused cortex.	
•	Difficulty in learning.	•	Hyper-vigilance (sensory sensitivity).	
•	Poor memory.	•	Touching everything.	
•	Little self-control.	•	Talking too much.	
•	lack of consciousness or even coma.	•	Restless.	
		•	Hyperactive.	

(تقييم وعي المريض) Indices of Level of Consciousness

Appearance & behavior:

- Posture (sitting, standing) ,open eyes, facial expression.
- Responds to stimuli (including the examiner's questions about name, orientation in time & place
- Other general qs like who is the president?

Vital signs:

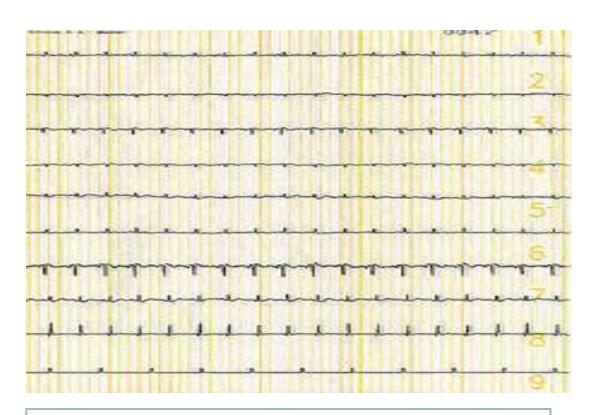
Pulse, BP, respiration, pupils, reflexes, particularly brainstem reflexes, etc.

▶ EEG:

▶ Each of these states (wakefulness, sleep, coma and death) has specific EEG patterns .

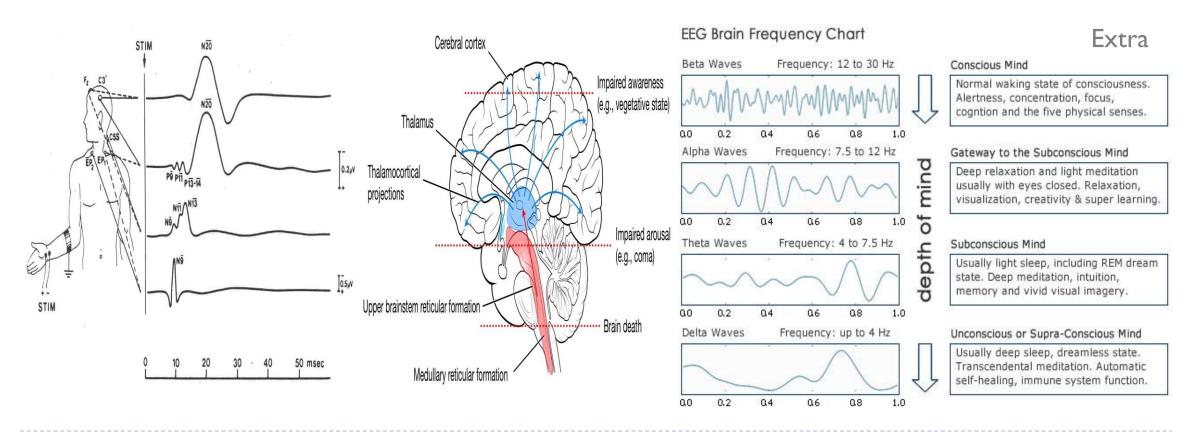
Evoked potentials:

- Evoked potentials are of two types: Auditory and Visual.
 - In cases of brain death.


Electroencephalogram

Alpha waves	Beta waves	Theta waves	Delta waves		
Recorded from the parietal &occipital	Frontal lobes	Temporal and occipital	From the cerebral cortex	Alpha WWW/WWW/WW/W	
regions				Beta VMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM	
Awake and relaxed+ eyes closed	Produced by visual stimuli and mental activity	-normal (newborn) -in adults indicates severe emotional stress	-in normal sleep (Adults) and in an awake infant -In an awake adult indicates brain damage.	Theta "Mw////////////////////////////////////	
10 to 12 cycles/second.	13 to 25 cycles per second	5 to 8 cycles/second	I to 5 cycles/second	1 sec	

Brain death confirmatory testing with EEG


Normal EEG (at normal magnification)

Brain Death (Flat EEG, at very high magnification)

Brain death confirmatory testing with somatosensory evoked potentials

Stimulation of a sense organ can evoke a cortical response that can be recorded by scalp electrode over the primary receiving cortical area for that particular sense.

Thank you!

اعمل لترسم بسمة، اعمل لتمسح دمعة، اعمل و أنت تعلم أن الله لا يضيع أجر من أحسن عملا.

The Physiology 436 Team:

Females Members: Males Members:

Abdullatif Alabdullatif Ashwaq Almajed

Rawan Alqahtani

Shrooq alsomali

References:

- Females and Males slides.
- Guyton and Hall Textbook of Medical Physiology (Thirteenth Edition.)

Team Leaders:

Lulwah Alshiha

Laila Mathkour

Mohammad Alayed

Contact us:

