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Abstract: Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with
complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to
utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize
their proteinaceous-dominated toxins to capture prey and defend against predators, in addition to
several other ecological functions, including intraspecific interactions. At present there are no studies
describing the venom for any species within cerianthids. Given their unique development, ecology,
and distinct phylogenetic-placement within Cnidaria, our objective is to evaluate the venom-like gene
diversity of four species of cerianthids from newly collected transcriptomic data. We identified 525
venom-like genes between all four species. The venom-gene profile for each species was dominated by
enzymatic protein and peptide families, which is consistent with previous findings in other cnidarian
venoms. However, we found few toxins that are typical of sea anemones and corals, and furthermore,
three of the four species express toxin-like genes closely related to potent pore-forming toxins in box
jellyfish. Our study is the first to provide a survey of the putative venom composition of cerianthids
and contributes to our general understanding of the diversity of cnidarian toxins.

Keywords: Anthozoa; tube anemone; transcriptome; toxins; venom-like; Pachycerianthus cf. maua;
Pachycerianthus borealis; Isarachnanthus nocturnus; Ceriantheomorphe brasiliensis

1. Introduction

The phylum Cnidaria (sea anemones, corals, jellyfish, box jellies, hydroids/hydromedusae,
etc.) is the earliest diverging venomous lineage (~600 million years) [1,2]. Cnidaria deliver their
proteinaceous-dominant venom through organelles called nematocysts (a type of cnidae), housed
in cells called nematocytes [3,4]. Venom from discharged nematocysts is used in prey capture and
defense against predation, but cnidarians also use venom for a variety of other behaviors, such as
intraspecific competition [5–7] and maternal care [8] (see review by [9]). This ecological diversity
is complemented by the functional diversity of cnidarian venoms, which can include neurotoxic,
cytotoxic, and enzymatic (e.g., phospholipase and metalloprotease) proteins and peptides, in addition
to non-peptidic components [10,11]. For humans, stings from certain species can cause intense localized
pain, scarring, induced anaphylaxis, and in the worst cases, cardiac and respiratory failure leading to
death [12–15]. The venom of medically relevant species, such as the Portuguese Man-o-War (Physalia
physalis) [16–18] and several species of box jellyfish ([19–22], reviewed in [23]), or easy to collect
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species, such as sea anemones [24,25], have been explored more extensively at a biochemical and
pharmacological level [26]. However, these species represent a small fraction of the species diversity
within the group, and only recently has the exploration of the venom composition for a wider number
of cnidarians increased in an effort to characterize the evolution and ecological function of toxins
within the group [27].

There is also a growing interest in cnidarian venoms as a potential resource for drug discovery,
particularly the neurotoxin-rich venoms of sea anemones [28–30]. One of the best studied therapeutic
proteins derived from a cnidarian toxin is an analogue of a potassium Kv1.3 channel blocker isolated
from the sun sea anemone (Stichodactyla helianthus) called ShK [31], which completed Phase 1b trials
for autoimmune diseases [32,33]. Because ShK-scaffolds are abundant in sea anemone venom peptides,
characterizing the venoms from sea anemones (and cnidarians in general) could yield additional
candidates for novel therapeutic compounds [30,34,35]. Kunitz-domain containing serine inhibitors,
also found in sea anemone venoms, can also be used as potential therapeutic resources [25,36]. These
cnidarian-derived neuropeptide inhibitors have potential applications as analgesics, antiepileptics,
and other neuroprotective drugs [37].

While there has been a recent increase in transcriptomic and proteotranscriptomic analyses of
cnidarian venoms (e.g., [7,8,22,38–54]), the phylum as a whole, which contains over 13,000 species,
remains highly understudied. Cnidaria is split into three taxonomic groups: Anthozoa (sea anemones,
corals, zoanthids, etc.), Medusozoa (jellyfish, box jellies, hydroids, siphonophores), and Endocnidozoa
(Polypodium + myxozoans) [55,56]. Of the 7142 animal toxins and venoms listed in Tox-Prot, a curated
animal venom annotation database, only 273 are derived from cnidarians (as of May 2020, [57]), with a
vast majority (>96%) from anthozoans. Within that limited number there is even greater taxonomic
bias; almost 90% of anthozoan toxins are from the Actinioidea superfamily of sea anemones [27,30],
meaning less than 50 taxa out of 1100 known sea anemone species contribute to the database of
annotated cnidarian toxins [54]. This taxon bias limits researchers’ ability to discover novel therapeutic
peptides and scaffolds from sea anemones, as well as limits to search for potential drug candidates in
other anthozoan groups such as corals [58] and zoanthids [47–49].

One major hurdle to identifying the composition and comparative diversity of cnidarian toxins
is their lack of a centralized venom system that can be easily isolated for study. This packaging of
toxins into individual nematocysts scattered throughout the animal impedes the ability to isolate
crude venoms for downstream analysis, which is further exacerbated in smaller or rare species of
cnidarians. There are several protocols for isolating venom from nematocysts (e.g., [59–62]), but these
methods, as noted above, are typically restricted to larger or easy to obtain animals (e.g., corals and
sea anemones, true jellies such as Chrysaora and Cyanea), species of medical relevance (e.g., Physalia,
box jellies), or those that can be easily maintained in a lab (e.g., Hydra [63], Nematostella [64]). Next
generation sequencing technologies provide a solution to this problem, and have greatly increased
the ability of researchers to screen the diversity of putative venom-like genes for neglected or poorly
studied venomous species, including cnidarians [65].

One group of anthozoans whose venoms have yet to be explored are members of the subclass
Ceriantharia, known as cerianthids (Phylum Cnidaria: Class Anthozoa) (Figure 1). Cerianthids are
tube-dwelling anemones, so named because of their ability to create complex tubing from a specialized
group of cnidae called ptychocysts [66]. Their phylogenetic placement within Cnidaria remains
contentious, due to a combination of a lack of available sequence data and low species sampling [5,67,68].
Various studies place them as sister group to Hexacorallia, sister group to Octocorallia [69], or sister
group to Hexacorallia + Octocorallia (i.e., sister to all other anthozoans) [70,71]. Although cerianthids
are clearly members of Anthozoa, they have several features that are more similar to Medusozoa.
For instance, cerianthids possess linear mitochondrial genomes, as in medusozoans, while all other
anthozoans have circular mitochondrial genomes [71–73]. Also, unlike other anthozoans, cerianthids
display a long-lived pelagic larval stage that superficially resembles a medusa [74]. It is unclear how
this unique life history or their early diverging phylogenetic relationship to either, or both, of the
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major groups of anthozoans may be reflected in the venom composition of this group relative to other
anthozoan venoms (or cnidarians more generally).
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Figure 1. Ceriantharia species used in the current study. (A) Pachycerianthus cf. maua; (B) Isarachnanthus
nocturnus; (C) Ceriantheomorphe brasiliensis and (D) Pachycerianthus borealis. Photos by Fisheries and
Oceans Canada (Claude Nozères)).

The aim of this project is to explore newly sequenced transcriptomes for four adult
cerianthid species (Ceriantheomorphe brasiliensis, Isarachnanthus nocturnus, Pachycerianthus borealis,
and Pachycerianthus cf. maua) and determine putative venom-like gene candidates across each using a
customized annotation pipeline. This study is the first formal analysis of venom composition within
this subclass Ceriantharia, and a targeted comparison of the venom gene profiles between cerianthids
and other cnidarian species.

2. Results

2.1. Results for Sequencing and De-Novo Transcriptome Assembly of Four Cerianthid Species

The number of paired end reads generated by Illumina HiSeq run ranged from 27,865,720 to
36,520,791 across all taxa. The Trinity [75] assembly ranged from 92,757 to 158,663 unique assembled
transcripts with an N50 range from 1101–1282. Overall completeness evaluated in BUSCO ranged
from 88.1% to 97.9% complete (Table 1).

Table 1. Sequencing and assembly parameters for various cerianthid transcriptomes.

Species Reads (PE) Transcripts Genes N50 BUSCO %

C. brasiliensis 34,877,883 131,550 110,524 1276 95.4%
I. nocturnus 31,028,274 92,757 78,821 1170 89.2%
P. borealis 36,520,791 158,633 120,542 1282 97.9%
P. maua. 27,865,720 179,576 145,788 1101 88.1%
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2.2. Diversity and Phylogenetic Analysis of Putative Toxin-Like Gene Profiles for Cerianthids Species

Using the de-novo assemblies, we identified a diverse set of venom-like putative protein coding
transcripts and peptides across the four cerianthids: 169, 69, 182, and 105 for C. brasiliensis, I. nocturnus,
P. borealis, and P. maua, respectively. All toxins were categorized into families/scaffolds based on their
highest Tox-Prot (i.e., UniProtKB/Swiss-Prot) BLAST hit [57], and categorized by biological function:
Neurotoxin, hemostatic and hemorrhagic toxins, membrane-active toxins, mixed function enzymes,
protease inhibitors, allergen and innate immunity, and venom auxiliary proteins (modified from [49]).
A summary of annotated contigs for each species is shown in Figure 2, Table 2. Below we provide
short descriptions of select toxin groups and families represented by the identified toxins.Mar. Drugs 2020, 18, x 4 of 24 
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Figure 2. Number of venom-like genes identified for four cerianthid species. Inner circle: Biological
function and overall percentage of each over the total venom-like gene profile in each species. Outer
circle: Venom-like genes families within each biological function category and overall percentage of
that family within each category. ABH = AB hydrolase superfamily; ACHE = Acetylcholinesterase;
ACTINO = Actinoporin-like;
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Cono = Conopeptide P-like superfamily; DERM = Dermatopontin; FLMO = lavin monoamine
oxidase; GCT = Glutaminyl−peptide cyclotransferase; GH56 = Glycoside hydrolase 56; GPA =

Glycoprotein hormones subunit alpha; HIS = Histidine acid phosphatase; JFT = Jellyfish Toxin; Kunitz
= Venom Kunitz−type; Kv1 = Sea anemone type 1 potassium channel toxin; M12A = Peptidase
M12; MCO = Multicopper oxidase; M12B = Venom metalloproteinase (M12B); M13 = Peptidase
M13; Neuro32 = Neurotoxin 32 Family; PII31 = Protease inhibitor I31; PHOS = Nucleotide
pyrophosphatase/phosphodiesterase; PLA2 = Phospholipase A2; PLB = Phospholipase B-like; PLD =

Arthropod phospholipase D; PERO = Peroxiredoxin; Snaclec = snake C-type lectin; SNTX = SNTX/VTX
toxin; S1,S10 = Peptidase S1,S10; Venom Lectin = True venom lectin; TLEC = Techylectin−like;
TFT = Snake three−finger toxin; VEGF = Venom vascular endothelial growth factor; V302 = Venom
protein 302; WAP = Snake waprin; 5-NUCL = 5′−nucleotidase.

Table 2. Toxin families identified for each cerianthid species.

Toxin Family ID Pfam Domain Cebr Isn Pasb Pasm

Neurotoxin (%) - 7.1 17.4 11.0 13.3
332-1 propeptide toxin ShK 0 0 1 0

Cysteine-rich venom protein CAP 2 1 10 2
ShK-domain ShK 6 10 3 8

Three-finger toxin / 1 1 0 1
Turripeptide Kazal_1 3 0 5 2

U-actitoxin-Avd9a ShK 0 0 0 1
U33-theraphotoxin-Cg1b / 0 0 1 0

Hemostatic and Hemorrhagic
Toxin (%) - 37.3 30.4 41.2 33.3

Beta-fibrinogenase mucrofibrase-3 Trysin 0 0 0 1
Blarina Toxin Trysin 3 0 1 0

C-type lectin lectoxin Lectin_C 6 2 3 1
Coagualtion factor X Trypin 1 2 2 0
Coagulation factor V F5_F8_type_C 2 1 6 3

Coagulation factor X-activating
enzyme heavy chain Pep_M12B_propep/Reprolysin 1 0 1 0

Galactose-specific lectin Lectin_C 4 0 9 3
Ryncolin Fibrinogen_C 8 3 8 6
Snaclec Lectin_C 2 1 3 0

Snake venom 5′-nucleotidase 5_nucleotid_C 1 0 1 0
Snake venom serine proteinase Trypsin 0 0 0 1

Snake venom VEGF PDGF 0 1 1 0
Thrombin-like enzyme Trypsin 1 0 3 0

Thyrostimulin DAN 1 0 0 0
Veficolin-1 Collagen 14 2 9 5

Venom peptide isomerase heavy
chain Trypsin 2 0 1 0

Venom prothrombin activator (F5/F8
type C) F5_F8_type_C 6 3 15 4

Venom prothrombin activator
(Trypsin) Trypsin 9 5 8 7

Zinc metalloproteinase-disintegrin Pep_M12B_propep/Reprolysin 2 1 4 4

Membrane-Active (%) - 3.6 0 4.4 5.7
DELTA-thalatoxin-Avl2a MAPF 0 0 1 1

Jellyfish Toxin / 1 0 2 1
Millepora cytotoxin DERM 0 0 2 0

Stonutoxin/Neoverrucotoxin / 5 0 2 2
Waprin WAP 0 0 1 2
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Table 2. Cont.

Toxin Family ID Pfam Domain Cebr Isn Pasb Pasm

Mixed function enzyme (%) - 20.7 21.7 12.6 16.2
Acetylcholinesterase COesterase 5 2 3 3

Gilatoxin Trypsin 0 1 0 0
L-amino-acid oxidase Amino_oxidase 6 1 4 3

Peroxiredoxin AhpC-TSA 0 0 1 1
Phospholipase-A2/Conodpine Phospholip_A2 5 6 2 5

Phospholipase-B Phospholip_B 1 1 1 0
Phospholipase-D / 4 0 1 0

Putative endothelial lipase Lipase 5 1 3 2
Putative lysosomal acid

lipase/cholesteryl ester hydrolase Abhydro_lipase/Abhydrolase_1 4 3 3 3

Trehalase Trehalase 0 0 1 0
Venom phosphodiesterase Phosphodiest 5 0 4 0

Protease Inhibitor (%) - 2.4 4.3 2.7 2.9
Kunitz-type serine protease inhibitor Knuitz_BPTI 3 3 4 1

U-actitoxin-Avd3m Knuitz_BPTI 0 0 0 1
U24-ctenitoxin-Pn1a Thyroglobin_1 1 0 1 1

Allergen and Innate Immunity (%) - 12.7 2.2 13.2 5.4
CRISP/Allergen/PR-1 CAP 1 0 1 0

Venom allergen CAP 14 2 12 3
Venom phosphatase His_Phos_2 1 1 1 0

Venom protease Trysin 1 0 3 3
Venom serine carboxypeptidase Peptidase_S10 0 0 1 0

Venom serine protease Trysin 6 1 6 3
Techylectin-like Fibrinogen_C 1 0 0 1

Auxiliary Protein (%) - 14.8 20.2 14.8 19.0
Astacin-like metalloprotease toxin Astacin 6 5 8 9

Cystatin Cystatin 0 0 0 1
Glutaminyl-peptide cyclotransferase Peptidase_M28 1 1 1 1

Hyaluronidase Glyco_hydro_56 4 0 0 0
Nematocyst expressed protein Astacin 6 3 11 6

Neprilysin Peptidase_M13_N 1 1 3 0
Reticulocalbin EF-hand_7 5 3 3 2

Venom protein 302 IGFBP 2 1 1 1

TOTAL - 169 69 182 105

Unknown - 25 5 24 11

2.2.1. Neurotoxins

ShK-domain containing proteins and peptides are some of the most diverse toxins within the
transcriptomes of the four species, which includes 15 cysteine-rich venom proteins, 27 ShK-domain
containing toxins as identified from Pfam [76,77] (Supplemental Figures S2 and S3), and a single sea
anemone type 1 potassium channel toxin in P. maua. Interestingly, a single transcript in P. borealis that
contains a ShK-domain had the closest match to propeptide 332-1 toxin from Malo kingi, a box jellyfish
with a potent sting known to cause Irukandji syndrome [78]. Though the functions are highly variable
and depend on the combination of present domains [30,79], ShK-domain toxins can cause paralysis due
to potassium channel inhibition as well as induce hemolytic effects [80,81]. As noted above, these ShK
toxins may also confer structural and/or functional properties of interest for pharmacological research.

Turripeptides are ion channel blockers described from turrid gastropods, relatives of cone snails,
but they have also been predicted or isolated from three species of zoanthid [47–49], a box jellyfish [22],
a true jellyfish [82], and a stalked jellyfish [83], as well as bloodworms and marine annelids [81].
These toxin peptides contain a kazal domain with a conserved cysteine framework (C-C-C-C-C-C),
and modulate ion channels, resulting in paralysis [84,85]. Four transcripts from cerianthids were
shown to have similar cysteine patterns architecture, but have longer predicted protein sequences
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than the typical turripeptide sequences of <100 amino acids and four additional conserved cysteines
upstream from the kazal domain (Figure 3). Three sequences, one each from C. brasiliensis, I. nocturnus,
and P. maua, closely matched to three-finger toxins (TFTs), snake toxins that display a wide diversity
of functions such as neurotoxicity, acetylcholinesterase inhibition, cytototoxicity (e.g., cardiotoxins),
platelet aggregation inhibition, coagulation factor inhibition, heparin binding, and K+ channel,
and integral-receptor ligands [86]. A recent proteomic study found that the orange cup coral Tubastrea
coccinea contains a putative TFT toxin [83], in addition to a predicted TFT in P. varibilis [47]. The TFT
toxins in cerianthids and P. varibilis cluster as sister to bucandin, a TFT isolated from Malayan krait
(Bungarus candidus) [87]. However, the bootstrap support throughout the gene tree is generally low
(<70%) (Supplemental Figure S4).
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Figure 3. Multiple sequence alignment of candidate turripeptide-like sequences for cerianthid toxins
and representatives from conoideans created using L-INS-I algorithm via MAFFT [88], viewed using
Jalview [89] with Clustal color scheme. Kazal domain (in black box) and conserved cysteine patterning
shown (bridging) are highlighted. The yellow box indicates the predicted signal peptide sequences as
indicated by SignalP [90]. The stars and corresponding smaller black boxes indicate the four cysteine
residues that are present in the cerianthid sequences preceding the kazal domain.

2.2.2. Hemostatic and Hemorrhagic Toxins

Hemostatic and hemorrhagic toxins are the most diverse type of toxins in all four cerianthid species
(Figure 2). They generally interfere with hemostasis through various pathways, either individually
or synergistically with other toxins. This group includes a variety of C-type lectin-containing toxins
(C-type lectin lectoxin, galactose specific lectin, and snake c-type lectin (snaclec)), and are associated
with blood coagulation, inflammation, myotoxicity, and homeostasis interference [91,92]. They have
been reported in a variety of animal venoms, including, crustaceans, blood feeding insects, caterpillars,
leeches, bloodworms, snakes, and stonefish [91], as well as cnidarian species [38,43,44,47,49]. We found
34 total toxins between the four species that match to a C-type lectin domain.

One of the most numerous groups of venom-like genes within this class are putative veficolin-like
toxins (total 30), which are, comparatively, highly abundant in P. borealis (nine sequences) and C.
brasiliensis (14 sequences). This toxin was described from the Komodo dragon (Varanus komodoensis),
and is suggested to interfere with blood coagulation and/or platelet aggregation based on the similarity
to ryncolin toxins [93]. Ryncolin toxins are represented in all cerianthid assemblies in relatively high
abundance with 25 total sequences, originally described from the dog-faced water snake (Cerberus
rynchops). Six sequences from the transcriptome of the zoanthid Palythoa caribaeorum (categorized
in our study under allergen and innate immunity) [48] and three peptides from the proteome of the
scyphozoan Nemopilema nomurai (as Stomolophus meleagris) [38] also belong in this group, suggesting
ryncolin-like toxins may be present across cnidarians.

We also found numerous venom prothrombin activators in two different groups: Factor 5/8
C-domain and trypsin domain. These types of toxins are well known from snake venoms, and cause
hemostatic impairment by proteolytic cleavage of prothrombin to thrombin [94]. Putative transcripts
have been found in relatively high abundance in the mat anemone Zoanthus natalensis [49] as well
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as in the transcriptomes of P. caribaeorum [48] and sea anemone Anthopleura dowii [53]. They have
also been found in a transcriptomic analysis of the sea anemone Stichodactyla haddoni venom, but no
peptides were detected using mass spectrometry [46], suggesting that additional proteomic experiments
will be needed to confirm the presence of these prothrombin activators (and other toxin groups) in
cerianthid venoms.

2.2.3. Membrane-Active Toxins, Protease Inhibitors

Jellyfish toxins (or CaTX/CrTX) are one of the most potent toxin families from cnidarians, initially
isolated from several species of box jellyfish possessing stings that are dangerous to humans [20]. Two
members within this family, CfTX-1 and CfTX-2 from the Australian box jellyfish (Chironex fleckeri),
are highly cardiotoxic, and their stings are associated with cardiac failure [41]. Four sequence from
cerianthids, two from P. borealis and one each from C. brasiliensis and P. maua, appear to belong in this
family based on strong phylogenetic evidence, although the transcript from P. maua clustered with
toxins from the hydroid Hydra vulgaris [95], which have yet to be functionally analyzed (Figure 4).
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Figure 4. Phylogenetic gene tree of jellyfish toxin (or CaTX/CrTX) sequences. The jellyfish toxin gene
tree was constructed using RAxML with the VT + G model [96]. Bootstrap support based on 500 rapid
bootstrap replicates, and all support values are shown. Putative genes outlined in purple are from
cerianthids sequences. Sequences in gray are bacterial pore-forming toxins that have closest structural
homology to this toxin family [14] and were used to root the tree.

Originally derived from sea anemones, actinoporins are conserved 20kDa pore-forming toxins
that exhibit cytolytic and hemolytic effects [97]. Actinoporin-like sequences have also been isolated
from both molluscs [98] and chordates [99], and shown to be toxic to a wide variety of vertebrate and
invertebrate species [100,101]. Two actinoporin sequences similar to DELTA-thalatoxin-Avl2a were
found in P. borealis and P. maua, though both were phylogenetically closer to actinoporin-like sequences
found in venomous gastropods and a putative actinoporin from P. varibilis [47]. However, this may be
a consequence of long branch attraction within the phylogeny (Figure 5).
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Figure 5. Phylogenetic gene tree of actinoporin and actinoporin-like sequences. The actinoporin gene
tree was constructed using RAxML with the WAG + G model [96]. Bootstrap support based on 500
rapid bootstrap replicates, and all support values are shown. Putative genes outlined in purple are
from cerianthids sequences. Sequences in gray are non-venomous representatives, and other colors
outlined in the key are venom-like genes from other animal classes. Phylogeny modified from von [81].
Tree is rooted with actinoporin-like sequence from a moss (Physcomitrella patens subsp. patens).

SNTX-like transcripts include stonutoxin and neoverrucotoxin, non-enzymatic proteins found
in a diversity of scorpaeniform fish and monotreme mammals [102,103]. In fish, these toxins cause
lethal hemolysis and disrupt circulatory and neuromuscular systems [104,105]. P. borealis, C. brasiliensis,
and P. maua express 9 SNTX-like transcripts, all of which phylogenetically cluster together in a group
with two SNTX-like genes from non-venomous fish that is sister to a clade of SNTX genes from highly
toxic stonefish (Figure 6).
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from green sea turtle (Chelonia mydas).

Waprins are membrane-active toxins derived from snakes that act as antimicrobial proteins,
which are used by venomous animals as a defense against microbial infections of their venom
glands [106,107]. One sequence of a waprin-like toxin from P. borealis and two from P. maua were
identified in the cerianthids.

2.2.4. Mixed Function Enzymes

Phospholipases hydrolyze phospholipids to fatty acids and lysophospholipids, which in venoms
induced hemolysis [108,109], as well as tissue necrosis, inflammation, blood coagulation inhibition,
and neuromuscular transmission blockage [91,109]. These lipases are found in many animal venoms,
including cephalopods, insects, spiders, scorpions, and reptiles [91]. Phospholipase A2 (PLA2) is a
common and often abundant enzyme in cnidarians venom that aids in prey capture and digestion,
and appears to have antimicrobial activity [110]. PLA2 are the most diverse of the enzymatic toxins
detected in cerianthids, with 18 total sequences. Of these, 16 phylogenetically form a cluster that
includes a putative PLA2 from P. variabilis [47] and conodipine-M alpha chain toxin, which was derived
from the Magician’s cone snail (Conus magus) and inhibits the binding of isradipine to L-type calcium
channels [111] (Figure 7). The other two genes from C. brasiliensis and I. nocturnus cluster with a PLA2
from the broadclub cuttlefish (Sepia latimanus). We additionally found three phospholipase-B toxins
within P. borealis, C. brasiliensis, and I. nocturnus and five phospholipase-D toxins, four in C. brasiliensis
and a single transcript in P. borealis. Phospholipase-D in particular is thought to contribute to the
dermonecrotic effects of brown spider venoms [112].



Mar. Drugs 2020, 18, 413 11 of 24
Mar. Drugs 2020, 18, x 11 of 24 

 

 

Figure 7. Phylogenetic gene tree of phospholipase A2 family sequences. The PLA2 gene tree was 
constructed using RAxML with the WAG + G model [95]. Bootstrap support based on 500 rapid 
bootstrap replicates, and all support values are shown. Putative genes outlined in purple are from 
cerianthids sequences. Sequences in gray and starred are non-venomous representatives, and other 
colors are from other animal classes. Phylogeny modified from [81]. 

2.2.5. Protease Inhibitors 

Kunitz-domain peptides both block ion channels and inhibit proteases, which can cause blood 
coagulation, fibrinolysis, and inflammation [113]. In sea anemones, kunitz-containing peptides are 
typically classified as type II potassium channel toxins, which cause paralysis by blocking potassium 
channels [25]. All four species have at least one kunitz-type serine protease inhibitor (total 11 across 
all four species), and P. maua specifically has a transcript that matches the sea anemone kunitz-
containing toxin U-actitoxin-Avd3m, which, based on sequence similarity to other known toxins, may 
display hemolytic activity as well as potassium channel inhibition. 

Three cerianthids, P. borealis, C. brasiliensis, and P. maua each contain a single transcript that 
corresponds to a ctenitoxin. Ctenitoxins are thyroglobulin type-1 protease inhibitors originally 
derived from the Brazilian spider (Phoneutria nigriventer), which inhibits cysteine proteases, aspartic 
proteases and metalloproteases [114]. 

2.2.6. Allergen and Innate Immunity 

Several components from cnidarian stings have been known to cause immunological responses 
[14,115]. One common domain of these toxins is the CAP domain, which includes cysteine-rich 
secretory proteins (CRISPs), antigen 5 (Ag5), and pathogenesis-related 1 (Pr-1) proteins [116]. These 
are found in many venomous taxa such as cephalopods, bloodworms, fireworms, scorpions, spiders, 
and reptiles [81,91,117], and are commonly found in cnidarians [22,43]. Function appears to vary by 
taxonomic group; in snakes, CAP proteins act as ion channel blockers and inhibit smooth muscle 

Figure 7. Phylogenetic gene tree of phospholipase A2 family sequences. The PLA2 gene tree was
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colors are from other animal classes. Phylogeny modified from [81].

2.2.5. Protease Inhibitors

Kunitz-domain peptides both block ion channels and inhibit proteases, which can cause blood
coagulation, fibrinolysis, and inflammation [113]. In sea anemones, kunitz-containing peptides are
typically classified as type II potassium channel toxins, which cause paralysis by blocking potassium
channels [25]. All four species have at least one kunitz-type serine protease inhibitor (total 11 across all
four species), and P. maua specifically has a transcript that matches the sea anemone kunitz-containing
toxin U-actitoxin-Avd3m, which, based on sequence similarity to other known toxins, may display
hemolytic activity as well as potassium channel inhibition.

Three cerianthids, P. borealis, C. brasiliensis, and P. maua each contain a single transcript that
corresponds to a ctenitoxin. Ctenitoxins are thyroglobulin type-1 protease inhibitors originally derived
from the Brazilian spider (Phoneutria nigriventer), which inhibits cysteine proteases, aspartic proteases
and metalloproteases [114].

2.2.6. Allergen and Innate Immunity

Several components from cnidarian stings have been known to cause immunological
responses [14,115]. One common domain of these toxins is the CAP domain, which includes
cysteine-rich secretory proteins (CRISPs), antigen 5 (Ag5), and pathogenesis-related 1 (Pr-1)
proteins [116]. These are found in many venomous taxa such as cephalopods, bloodworms, fireworms,
scorpions, spiders, and reptiles [81,91,117], and are commonly found in cnidarians [22,43]. Function
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appears to vary by taxonomic group; in snakes, CAP proteins act as ion channel blockers and inhibit
smooth muscle contraction [118], in cone snails as proteolytic compounds [119], and in hymenopterans
as allergens [120]. The majority of CAP-domain cerianthid transcripts belong to a group called venom
allergen proteins (total 31), though this is mainly driven by the number of genes present in P. borealis
(12 sequences) and C. brasiliensis (14 sequences). Both species also have an additional CAP-domain
(CRISP/Allergen/Pr-1) toxin. Multiple venom allergen proteins were also reported in the venom of the
Pacific sea nettle (Chrysaora fuscescens) [43].

2.2.7. Venom Auxiliary Proteins

Venom auxiliary proteins are secreted in the venom gland to facilitate proper processing and
stabilization. They can also work synergistically with other venom components to facilitate the spread
of toxins after envenomation. One example is venom protein 302, originally derived from the scorpion
Lychas mucronatus [121]. Each cerianthid has a putative single venom protein 302 match, two in the case
of C. brasiliensis, but (weak) phylogenetic signals suggests that the cerianthid proteins are more closely
related to an insulin-like growth factor-binding (IGLFP) protein from hexacorallian S. pistillata [122]
(Supplemental Figure S9). Two venom protein 302 proteins were also identified in P. variabilis [47],
and these zoanthid toxins formed a clade that is a sister group to non-venomous IGLFP-domain
containing proteins in our study (Supplemental Figure S9). Venom 302-like peptides have been
identified in Z. natalensis [49] and the proteomes of N. nomurai [38] and the cubozoan C. fleckeri [22].

Auxiliary proteins with proteolytic activity can also facilitate diffusion of neurotoxins by breaking
down the extracellular matrix, as well as display cytolytic, gelatinolytic, caseinolytic, and fibrinolytic
functions in cnidarians [123]. The most diverse auxiliary proteins in the four cerianthid transcriptomes
match to astacin-like metalloproteases (M12A) with a total of 52 sequences between the four cerianthids.
This includes transcripts with a close match to nematocyst expressed protein 6 (NEP-6), an astacin
family metalloprotease previously reported from the starlet sea anemone Nematostella vectensis [124].

Additional metalloproteases, including neprilysin-like toxins (peptidase_M13_N domain), also
found in the venom of Cyanea capillata [41], and glutaminyl-peptide cyclotransferases (peptidase_M28
domain) were also expressed within each species. Metalloprotease M12B containing domain proteases
(zinc metalloproteinase-disintegrin and coagulation factor X-activating enzyme heavy chain) are also
found in all four cerianthid species (13 total), but are categorized as hemostatic and hemorrhagic
toxins (Section 2.2.2), since, in snake venoms, these toxins disrupt capillary activity [125]. M12B
metalloproteases have also been found in the venoms of N. nomurai [38] and the hydrozoan Olindias
sambaquiensis [126].

3. Discussion

In this study we assembled de-novo transcriptomes of four members of Ceriantharia: C. brasiliensis,
I. nocturnus, P. borealis, and P. maua, with BUSCO scores between 88.1–97.9% completeness (Table 1).
From these transcriptomes, we identified a total of 525 venom-like genes between all four species
using our customized bioinformatic pipeline, which are sorted into 135 clusters (124 orthologous
clusters and 12 single-copy gene clusters) (Supplemental Figure S11). The venom-like gene profiles
of the four cerianthids are similar in composition and generalized biological function, though the
annotated number of toxin-like genes within each species is highly variable (69–182). Our four
cerianthid toxin profiles are similar to previous transcriptome-based venom profiles for cnidarians,
including the prevalence of ShK-domain containing toxins (e.g., [22,38,46,54]). While each species has
a diversity of toxins within each of the seven functional categories, all toxin profiles were dominated by
hemostatic and hemorrhagic toxins (30.4–40.3%), mixed function enzymes (12.4–21.7%) and auxiliary
venom proteins/peptides (14.5–20.3%) followed by neurotoxins (7.2–17.4%), allergen and innate
immunity toxins (2.2–12.9%), protease inhibitors (2.4–4.3%), and membrane-active toxins (0–5.7%).
It should be noted that many of these toxins may have alternative or additional molecular functions,
and the presented categorization only represents broad patterns based on previous studies on animal
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venoms. There was also a significant proportion of “unknown” toxins from each species within each
transcriptome assembly (Table 2, Figure 2). Given that this is the first survey of putative toxins in this
subclass within an already understudied group, it is unclear if these unknowns are potentially novel
venom-like transcripts or artifacts of assembly and annotation.

Some of the most common families we identified are typically found in anthozoan venoms,
including PLA2, metalloproteases, serine proteases, and kunitz-domain protease inhibitors [11,43,51].
Several of the less common venom-gene families identified in cerianthids have also been identified
in the transcriptomes of colonial zoanthids [47–49], another understudied group of anthozoans,
including turripeptides, three-finger toxins, and venom protein 302 toxins (Figure 4; Supplemental
Figures S4 and S9), as well as snake venom VEGF toxins. However, the phylogenetic evidence for
the majority of these candidate toxins is weak due to clustering with non-venomous taxa and/or low
bootstrap scores. As mentioned above, several of these toxin groups have been identified in other
cnidarian groups, including turripeptides [22,82,83] and venom protein 302 [22,38]. It is unclear if the
similarities of these less common toxin families between zoanthid and cerianthid toxins are due to
shared biology/evolutionary history or an artifact of the relatively limited dataset for cnidarians.

While membrane-active or pore-forming toxins are common in most cnidarian venoms [127],
we had not expected to capture putative toxins in the jellyfish toxin family (also called CaTX/CrTX toxin
family) in three of the four cerianthids species, given that these toxins are primarily found in medically
relevant cubozoan venoms (Figure 6). In an ecological context, these highly potent toxins likely allow
box jellyfish to capture fish [128,129]; while the diet of cerianthids remains fairly ambiguous, it is
unlikely they capture fish as prey. Toxins from this family have previously been identified in other
anthozoan species through genomic and transcriptomic studies [40,51,130], but to the best of our
knowledge, these toxins have never been detected through proteomic methods in anthozoans [40].
Given that these toxins are present in multiple cerianthids (including two paralogs within P. borealis),
these are good candidates for proteomic analysis and potentially functional characterization.

Because cerianthids group within the class Anthozoa, it is interesting that several toxins groups
commonly reported in anthozoans were absent from all four cerianthid species. For example,
we expected to find a diverse set of low molecular weight neurotoxins, such as sea anemone
sodium (Na+) channel toxins, potassium (K+) channel toxins, small cysteine-rich peptides (SCRiPs),
sodium-selection acid-sensing ion channel (ASICs) inhibitors, and nonselective cation channel (TRPV1)
inhibitors [11,25,30,131]. However, the four cerianthids transcriptomes contained relatively low
numbers of neurotoxins in general, and only a single transcript from P. maua closely matched a sea
anemone type I K+ channel toxin (Table 1). Additionally, actinoporin-like sequences are often found
in sea anemones and other organisms [97,127], but only two actinoporin-like sequences were found
in P. borealis and P. maua, despite often being found in sea anemones. We also found no evidence of
small cysteine-rich peptides (SCRiPS), neurotoxins with eight conserved cysteine residues that cause
paralysis in zebrafish (Danio rerio) [132], which were initially reported in the corals Orbicella faveolata (as
Montastraea faveolata), Montipora capitata, and Acropora millepora [133]. The vast majority of candidate
toxins containing ShK domains did not have a close match to any toxin in the Tox-Prot database, but
in 22 sequences we could confidently determine the six cysteine residue patterns characteristic of
ShK domains (Supplemental Figure S3). The exponential increase in ShK domain peptides found
in anthozoans prompted a recent sequence-function study of the superfamily [134], and cerianthid
ShK-domain toxins may represent additional structural scaffolds with novel function for further study.

In general, our findings contrast with the previously observed pattern that anthozoan venoms
are typically neurotoxin-rich while medusozoan venoms are dominantly enzymatic. The venoms of
anthozoans and medusozoans have been broadly reported to be distinct, with hydrozoans, scyphozoan,
and cubozoan venoms being dominated by larger cytolytic proteins and anthozoans by low molecular
weight neuropeptides [26,40,83]. However, this pattern is based on highly biased taxonomic data,
as mentioned above [27]. Even though a greater diversity of enzymatic-like genes is present within
the four cerianthid transcriptomes, it is possible the level of protein expression could shift towards a
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smaller subset of toxins dominating the venom composition, and therefore overall venom function.
For example, it has been shown in S. haddoni that even when more enzymatic toxin-like sequences
are present in the transcriptome, the expression of neurotoxins is greater overall in milked venom
(i.e., the proteomic level) [46]. Thus, future quantitative gene expression and proteomic studies are
needed to provide a more holistic understanding of both single toxin and whole venom function in
these species.

Because the phylogenetic placement of subclass Ceriantharia remains unclear, it is difficult to
interpret the evolutionary context of their venom profile within Anthozoa. For instance, if Ceriantharia
is sister to the Hexacorallia, that suggests that the expansion of neuropeptide toxins occurred after the
divergence of Ceriantharia, possibly through extensive gene duplications [52,130,135]. Neurotoxins
in sea anemones are important because they are sessile animals, and may be critical to deterring
predators [136]. Because cerianthids can fully contract into their tubes, they have a distinct means
of protecting themselves from predators in contrast to sea anemones which cannot fully retract
their bodies, which may ease the selective pressure to diversify or maintain defensive toxins. If
Ceriantharia is instead sister to Hexacorallia + Octcorallia, families such as the jellyfish toxins may
have been present in the last common ancestor and subsequently lost in the other anthozoan lineages.
Additionally, as noted above, cerianthids often have a long-lasting pelagic larval stage. There is a
general consensus that the composition and function of toxins reflects the ecological utility of that
venom [137], thus, the increased time in the pelagic environment in the larval stage likely exposes
cerianthids to different sets of potential predators and prey, resulting in different selection pressures
driving venom composition and function. We can only speculate on the role of these various venom
components and overall venom function in the ecological interactions of these animals until additional
molecular studies are completed [27,138].

One interesting outcome is the difference in the number of venom-like putative protein coding
transcripts found in I. nocturnus compared to the other three species (69 compared to 169, 182, 105).
As this species is the only representative of the family Arachnactidae, this may be evidence of
evolutionary difference compared to the family Cerianthidae, which is corroborated by morphology
and traditionally accepted [73]. At the ecological level, the species I. nocturnus, as its name indicates,
is nocturnal and thus increases its activity at night. This may indicate different needs in relation to
predation and prey capture compared to species active during the day. For instance, species of the
family Arachnactidae show considerable concentrations of green fluorescent protein [139], which can
be an important mechanism of prey capture at night [140]. This may relax the selective pressures, or
potentially the available metabolic energy, to sustain a large, complex toxin arsenal, and therefore
result in the lower number of venom-like genes identified in our study.

While our findings suggest several interesting patterns about presence and absence of certain
cerianthid venom components, there are some limitations to exploring the venom profiles of
understudied species. Previous studies have shown that cnidarian transcriptomes often yield a
larger diversity of putative toxin sequences than a combined transcriptome-proteome approach
(e.g., [46,53,54,130]). This difference may be reflective of the state of the animal when collected; animals
that have recently fired their stinging cells will likely express more venom-like genes as venom is being
synthesized for developing nematocysts [46]. Consequently, animals that have not discharged their
stinging cells recently may have a lower than expected expression of toxin-like sequences. There are also
often issues using de-novo assemblies for venom gene discovery, including high false discovery rate or
inability to annotate novel venom genes [141,142]. For instance, even though no membrane-active
toxins were detected in I. nocturnus, it is unlikely that there are truly no toxins with this function,
especially given their ubiquity in cnidarians [143]. Our study also focused on candidate transcripts
that contained full ORFs (stop and start codon), which likely decreased the diversity of toxin-like gene
candidates. The set of venom-like genes we present here are viewed as an initial step into exploring
the diversity of the toxin peptides and proteins within a poorly studied cnidarian group.
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We present the first sequence-based analysis of venom-like genes within the Subclass Ceriantharia.
The four species of cerianthids expressed over 500 novel toxin-like genes that are functionally and
structurally diverse. While the overall functional profiles are similar to other transcriptomic studies
of cnidarians, many common toxin families are not present in our study. This could have notable
implications both for the evolution of venom genes within anthozoans as well as ecological utility of
candidate toxins within this specific anthozoan lineage. Furthermore, the additional set of ShK-domain
containing toxins, as well as kunitz-domain containing toxins, shows that cerianthid toxins provide
potential candidates for therapeutic study. We hope that these new data will be utilized to further
explore the diversity and function of these venom proteins and peptides.

4. Materials and Methods

4.1. Tissue Collection, RNA Extraction, Next-Gen Sequencing, and Transcriptome Assembly

Four species were used in the current study. The species C. brasiliensis and I. nocturnus were
obtained by hand in São Sebastião, São Paulo, Brazil while SCUBA diving. The P. borealis specimen was
purchased through Gulf of Maine Inc. (Pembroke, ME, USA). The P. cf. maua specimen was purchased
from an aquarium supplier and currently on exhibit at Discovery Place Science (Charlotte, NC, USA).
For each species, several (10+) tentacles were collected from each organism after acclimating them to
aquariums for 48 h or longer. Tissues were flash frozen in liquid nitrogen or stored in RNA later in
−80 ◦C. Total RNA was extracted using the RNAqueous Total RNA Isolation Kit from Thermo Fisher
Scientific (Waltham, MA, USA). RNA was assessed using a NanoDrop 2000 spectrophotometer (Thermo
Fisher). High throughput Sequencing was done on an Illumina HiSeq at the DHMRI (Kannapolis, NC,
USA). Total RNA was quantitated using the Quant-iT RiboGreen RNA Assay Kit (Thermo Fisher) and
RNA integrity assessed using an Agilent Bioanalyzer (Santa Clara, CA USA). RNA sequencing libraries
were generated using the Illumina TruSeq RNA Library Prep RNA Kit following the manufacturer’s
protocol and quantitated using qPCR and fragments visualized using an Agilent Bioanalyzer. Libraries
were combined in equimolar amounts onto one flow cell for a 125 bp paired end sequencing run
on the Illumina HiSeq2500. Overall quality of the sequencing run evaluated using FastQC [144].
Transcriptome assembly was done using the de novo assembly program Trinity v2.2 [74]. Transcriptome
completeness was determined using the program BUSCO v3 [145].

4.2. Bioinformatic Analysis and Venom Annotation

For the custom annotation pipeline (Supplemental Figure S1), protein-coding regions were
predicted from assembled transcriptomes using TransDecoder v5.5.0, minimum set to 50 (https:
//transdecoder.github.io) [146]. Using blastp from NCBI BLAST + v.2.8.1 [147,148] with an e-value
cutoff of 0.001, all transcripts were searched against (1) proteins and toxins from the Tox-prot animal
venom annotation database ([57], downloaded March 2019), and (2) all cnidarian toxins and proteins
from the Protein database on NCBI (“Cnidaria AND ((Toxin) OR (Venom)),” downloaded March 2019).
Additionally, predicted protein-coding regions were searched using hmmsearch with an e-value cutoff

of 0.001 from HMMER 3.1b2 [149,150] against hidden markov model (HMM) profiles from alignments
of 20 venom protein classes. HMM were modified from those used in a transcriptomic study on
the venom of bloodworms [81] by supplementing several cnidarian specific toxins within respective
venom protein families. Additionally, four cnidarian-specific pore-forming venom families were
added to the hmmsearch based on annotations from VenomZone (venomzone.expasy.org, accessed
March 2018): Actinoporin sea anemone subfamily, jellyfish toxin family, cnidaria small cysteine-rich
protein (SCRiP) family and MACPF-domain toxins. The results from all three searches above (ToxProt,
cnidaria specific-NCBI, and hmmsearch) were combined, and only complete coding sequences used
for downstream analysis. Venoms are secreted proteins and peptides, thus signal peptides were
predicted using the SignalP v5.0 server (https://services.healthtech.dtu.dk/service.php?SignalP-5.0) [90].
Redundant sequences from predicted proteins with a signal peptide were clustered using CD-HIT

https://transdecoder.github.io
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v.4.6.8 with a cutoff of 0.95 [151,152], and only the top hit from each cluster were used in further
analysis. A reciprocal search using blastp was used against the resulting dataset (signal peptide present,
redundant sequences removed) with an e-value cutoff of 1e-5 against Tox-Prot animal venom database
and the NCBI non-redundant protein sequences (nr) database (downloaded March 2019), as well as a
hmmsearch search with an evalue cutoff of 1e-5 against Pfam (downloaded March 2019) [77].

The results were manually curated to confirm that blastp annotations from ToxProt matched
the detected venom domain from Pfam [76,77]. In addition, several toxins were not identified from
ToxProt that were from NCBI database (e.g., three-finger toxin W-IV-like (NCBI Reference Sequence:
XP_015758456.1), 332-1 secreted propeptoide (GenBank: AKU77030.1). Candidates were considered
“unknown” and not used for further analysis if there was no match to a protein from Tox-Prot,
the best match from NCBI was an uncharacterized or predicated protein, and no toxin domain was
detected. The final list of candidate toxins was classified into protein families, molecular function
(based on annotation from UniProtKB/Swiss-Prot) [153], and putative biological function. The results
were visualized using the PieDonut via the webr package v.0.1.2 (https://cardiomoon.github.io/webr/)
in R v3.6.2 [154] within Rstudio v1.0.153 [155] and final figures constructed in Inkscape v1.0beta2
(inkscape.org).

4.3. Phylogenetic Analysis of Select Gene Families

For select toxin families, gene trees were constructed using a representative set of venomous
and non-venomous proteins for each protein family, modified from phylogenetic analyses in von
Reumont et al. (2014) [81] and Huang et al. (2016) [47]. Candidate cerianthids toxins and were
aligned using the L-INS-I algorithm in MAFFT v7.312 [88]. Maximum likelihood phylogenies were
constructed using RAxML v8.2.12 [96] under the best model as predicted by ProtTest3 [156] and branch
support calculated using 500 rapid bootstrap replicates (−x). Trees were visualized using FigTree v1.4.4
(https://github.com/rambaut/figtree) and final figures constructed in Inkscape v1.0beta2 (inkscape.org).

4.4. Availability of Supporting Data

All candidate toxins used in this analysis have been deposited on Genbank under accessions
MT747443–MT747634. Raw reads used to construct the transcriptomes used in this analysis have
been deposited under the SRA bioproject PRJNA633022, specifically SRR11802642 (C. brasiliensis),
SRR11802641 (I. nocturnus), SRR11802643 (P. borealis), and SRR11802640 (P. maua) accessions.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/8/413/s1,
Figure S1: Bioinformatic pipeline for the annotation of venom-like genes for four cerianthid transcriptomes, Figures
S2–S10: Phylogenetic relationships between several toxin gene families and putative cerianthid sequences, Figure
S11: Orthologous gene clusters of the putative venom-like genes for all four cerianthids, Table S1: Annotation
table for putative venom-like genes for four cerianthid species (Excel).
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