
Logic-Based Natural Language Processing

Michael Kohlhase

Professur für Wissensrepräsentation und -verarbeitung
Informatik, FAU Erlangen-Nürnberg

Michael.Kohlhase@FAU.de

2024-01-20

Michael Kohlhase: LBS 0 2024-01-20

Michael.Kohlhase@FAU.de

Elevator Pitch for LBS

▶ Mission: In this course we will
▶ explore how to model the meaning of natural language via transformation into

logical systems
▶ use logical inference there to unravel the missing pieces; the information that is not

linguistically realized, but is conveyed anyways.

▶ Warning: This course is only for you if you like logic, you are going to get lots
of it and we are going to build our own logics, usually a new one every week or
fortnight.

▶ Approach: We will do so in a hands-on fashion using the GLIF system,
formalizing NL grammars, semantics construction, and inference systems in
meta-grammatical/logical systems: GF and MMT.

▶ Mixing Theory and Practice: Half of the lectures will be classroom-style
teaching of theory and half will be joint formalization.

Michael Kohlhase: LBS 1 2024-01-20

Elevator Pitch for LBS

▶ Mission: In this course we will
▶ explore how to model the meaning of natural language via transformation into

logical systems
▶ use logical inference there to unravel the missing pieces; the information that is not

linguistically realized, but is conveyed anyways.
▶ Warning: This course is only for you if you like logic, you are going to get lots

of it and we are going to build our own logics, usually a new one every week or
fortnight.

▶ Approach: We will do so in a hands-on fashion using the GLIF system,
formalizing NL grammars, semantics construction, and inference systems in
meta-grammatical/logical systems: GF and MMT.

▶ Mixing Theory and Practice: Half of the lectures will be classroom-style
teaching of theory and half will be joint formalization.

Michael Kohlhase: LBS 1 2024-01-20

Elevator Pitch for LBS

▶ Mission: In this course we will
▶ explore how to model the meaning of natural language via transformation into

logical systems
▶ use logical inference there to unravel the missing pieces; the information that is not

linguistically realized, but is conveyed anyways.
▶ Warning: This course is only for you if you like logic, you are going to get lots

of it and we are going to build our own logics, usually a new one every week or
fortnight.

▶ Approach: We will do so in a hands-on fashion using the GLIF system,
formalizing NL grammars, semantics construction, and inference systems in
meta-grammatical/logical systems: GF and MMT.

▶ Mixing Theory and Practice: Half of the lectures will be classroom-style
teaching of theory and half will be joint formalization.

Michael Kohlhase: LBS 1 2024-01-20

Elevator Pitch for LBS

▶ Mission: In this course we will
▶ explore how to model the meaning of natural language via transformation into

logical systems
▶ use logical inference there to unravel the missing pieces; the information that is not

linguistically realized, but is conveyed anyways.
▶ Warning: This course is only for you if you like logic, you are going to get lots

of it and we are going to build our own logics, usually a new one every week or
fortnight.

▶ Approach: We will do so in a hands-on fashion using the GLIF system,
formalizing NL grammars, semantics construction, and inference systems in
meta-grammatical/logical systems: GF and MMT.

▶ Mixing Theory and Practice: Half of the lectures will be classroom-style
teaching of theory and half will be joint formalization.

Michael Kohlhase: LBS 1 2024-01-20

Chapter 1
Administrativa

Michael Kohlhase: LBS 1 2024-01-20

Prerequisites

▶ I will presuppose: the mandatory CS courses from Semester 1-4, in particular:
(or equivalent)
▶ Course “Grundlagen der Logik in der Informatik” (GLOIN)
▶ Course “Algorithms and data structures”

▶ The following will help: (we recap if necessary)
▶ AI-1 (symbolic AI)
▶ Ontologies in the semantic web (INF8)

▶ Key Ingredients: Motivation, interest, curiosity, hard work(LBS is non-trivial)
▶ You can do this course if you want! (and we will help you)

Michael Kohlhase: LBS 2 2024-01-20

LBS Lab (Dogfooding our own Techniques)

▶ General Plan: We use the thursday slot to get our hands dirty with actual
GLIF representations.

▶ Responsible: Frederik Schaefer (jan.frederik.schaefer@fau.de) Room:
11.137.

▶ Goal: Reinforce what was taught on tuesdays and have some fun.
▶ Homeworks will be small individual modeling/formalization problems (but take

time to solve)
Group submission if and only if explicitly permitted.

▶ Admin: To keep things running smoothly
▶ Homeworks will be posted on course forum. (discussed in the lab)
▶ Submission via StudOn (details ; course forum)

▶ Homework Discipline:
▶ start early! (many assignments need more than one evening’s work)
▶ Don’t start by sitting at a blank screen!
▶ Humans will be trying to understand the text/code/math when grading it.

Michael Kohlhase: LBS 3 2024-01-20

jan.frederik.schaefer@fau.de

Grades

▶ Academic Assessment: so far: two parts (Portfolio Assessment)
▶ (20-30 min oral) or 90 min written exam at the end of the semester (50%)
▶ results of the LBS lab (50%)

This might not work with 50+ students, need to see how the course develops!
▶ If you have a suggestions, I will probably be happy with that as well.

Michael Kohlhase: LBS 4 2024-01-20

Textbook, Handouts and Information, Forums, Videos

▶ (No) Textbook: Course notes at http://kwarc.info/teaching/LBS
▶ I mostly prepare them as we go along (semantically preloaded ; research resource)
▶ Please e-mail me any errors/shortcomings you notice. (improve for group)

▶ For GLIF: Frederik’s Master’s Thesis [Sch20]
▶ Classical Semantics/Pragmatics: (in the FAU Library)
▶ Primary reference for LBS: [CKG09] (in the FAU Library)
▶ also: [HHS07; Bir13; Rie10; ZS13; Sta14; Sae03; Por04; Kea11; Jac83; Cru11;

Ari10]
▶ Computational Semantics: [BB05; EU10]
▶ StudOn Forum: https://www.studon.fau.de/crs4625835.html for
▶ announcements, homeworks (my view on the forum)
▶ questions, discussion among your fellow students (your forum too, use it!)

▶ Course Videos: at https://fau.tv/course/3647

Michael Kohlhase: LBS 5 2024-01-20

http://kwarc.info/teaching/LBS
https://www.studon.fau.de/crs4625835.html
https://fau.tv/course/3647

Do I need to attend the lectures

▶ Attendance is not mandatory for the LBS lecture (official version)
▶ There are two ways of learning: (both are OK, your mileage may vary)
▶ Approach B: Read a book/papers (here: course notes)
▶ Approach I: come to the lectures, be involved, interrupt me whenever you have a

question.

The only advantage of I over B is that books/papers do not answer questions
▶ Approach S: come to the lectures and sleep does not work!
▶ The closer you get to research, the more we need to discuss!

Michael Kohlhase: LBS 6 2024-01-20

Experiment: Learning Support with KWARC Technologies

▶ My research area: Deep representation formats for (mathematical) knowledge
▶ One Application: Learning support systems (represent knowledge to transport

it)
▶ Experiment: Start with this course (Drink my own medicine)

1. Re-represent the slide materials in OMDoc (Open Mathematical Documents)
2. Feed it into the ALeA system (http://courses.voll-ki.fau.de)
3. Try it on you all (to get feedback from you)

▶ Research tasks
▶ help me complete the material on the slides (what is missing/would help?)
▶ I need to remember “what I say”, examples on the board. (take notes)

▶ Benefits for you (so why should you help?)
▶ you will be mentioned in the acknowledgements (for all that is worth)
▶ you will help build better course materials (think of next-year’s students)

Michael Kohlhase: LBS 7 2024-01-20

http://courses.voll-ki.fau.de

VoLL-KI Portal at https://courses.voll-ki.fau.de

▶ Portal for ALeA Courses: https://courses.voll-ki.fau.de

▶ AI-1 in ALeA: https://courses.voll-ki.fau.de/course-home/ai-1
▶ All details for the course.
▶ recorded syllabus (keep track of material covered in course)
▶ syllabus of the last semester (for over/preview)

▶ ALeA Status: The ALeA system is deployed at FAU for over 1000 students
taking six courses
▶ (some) students use the system actively (our logs tell us)
▶ reviews are mostly positive/enthusiastic (error reports pour in)

Michael Kohlhase: LBS 8 2024-01-20

https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de
https://courses.voll-ki.fau.de/course-home/ai-1

Chapter 2
An Introduction to Natural Language Semantics

Michael Kohlhase: LBS 8 2024-01-20

Fascination of (Natural) Language

▶ Definition 0.1. A natural language is any form of spoken or signed means
communication that has evolved naturally in humans through use and repetition
without conscious planning or premeditation.

▶ In other words: the language you use all day long, e.g. English, German, . . .
▶ Why Should we care about natural language?:
▶ Even more so than thinking, language is a skill that only humans have.
▶ It is a miracle that we can express complex thoughts in a sentence in a matter of

seconds.
▶ It is no less miraculous that a child can learn tens of thousands of words and a

complex grammar in a matter of a few years.

Michael Kohlhase: LBS 9 2024-01-20

2.1 Natural Language and its Meaning

Michael Kohlhase: LBS 9 2024-01-20

What is Natural Language Semantics? A Difficult Question!
▶ Question: What is “Natural Language Semantics”?

▶ Definition 1.1 (Generic Answer). Semantics is the study of reference,
meaning, or truth.

▶ Definition 1.2. A sign is anything that communicates a meaning that is not the
sign itself to the interpreter of the sign. The meaning can be intentional, as
when a word is uttered with a specific meaning, or unintentional, as when a
symptom is taken as a sign of a particular medical condition
Meaning is a relationship between signs and the objects they intend, express, or
signify.

▶ Definition 1.3. Reference is a relationship between objects in which one object
(the name) designates, or acts as a means by which to refer to – i.e. to connect
to or link to – another object (the referent).

▶ Definition 1.4. Truth is the property of being in accord with reality in a/the
mind-independent world. An object ascribed truth is called true, iff it is, and
false, if it is not.

▶ Definition 1.5. For natural language semantics, the signs are usually utterances
and names are usually phrases.

▶ That is all very abstract and general, can we make this more concrete?
▶ Different (academic) disciplines find different concretizations.

Michael Kohlhase: LBS 10 2024-01-20

What is Natural Language Semantics? A Difficult Question!
▶ Question: What is “Natural Language Semantics”?
▶ Definition 1.6 (Generic Answer). Semantics is the study of reference,

meaning, or truth.

▶ Definition 1.7. A sign is anything that communicates a meaning that is not the
sign itself to the interpreter of the sign. The meaning can be intentional, as
when a word is uttered with a specific meaning, or unintentional, as when a
symptom is taken as a sign of a particular medical condition
Meaning is a relationship between signs and the objects they intend, express, or
signify.

▶ Definition 1.8. Reference is a relationship between objects in which one object
(the name) designates, or acts as a means by which to refer to – i.e. to connect
to or link to – another object (the referent).

▶ Definition 1.9. Truth is the property of being in accord with reality in a/the
mind-independent world. An object ascribed truth is called true, iff it is, and
false, if it is not.

▶ Definition 1.10. For natural language semantics, the signs are usually
utterances and names are usually phrases.

▶ That is all very abstract and general, can we make this more concrete?
▶ Different (academic) disciplines find different concretizations.

Michael Kohlhase: LBS 10 2024-01-20

What is Natural Language Semantics? A Difficult Question!
▶ Question: What is “Natural Language Semantics”?
▶ Definition 1.11 (Generic Answer). Semantics is the study of reference,

meaning, or truth.
▶ Definition 1.12. A sign is anything that communicates a meaning that is not

the sign itself to the interpreter of the sign. The meaning can be intentional, as
when a word is uttered with a specific meaning, or unintentional, as when a
symptom is taken as a sign of a particular medical condition
Meaning is a relationship between signs and the objects they intend, express, or
signify.

▶ Definition 1.13. Reference is a relationship between objects in which one object
(the name) designates, or acts as a means by which to refer to – i.e. to connect
to or link to – another object (the referent).

▶ Definition 1.14. Truth is the property of being in accord with reality in a/the
mind-independent world. An object ascribed truth is called true, iff it is, and
false, if it is not.

▶ Definition 1.15. For natural language semantics, the signs are usually
utterances and names are usually phrases.

▶ That is all very abstract and general, can we make this more concrete?
▶ Different (academic) disciplines find different concretizations.

Michael Kohlhase: LBS 10 2024-01-20

What is Natural Language Semantics? A Difficult Question!
▶ Question: What is “Natural Language Semantics”?
▶ Definition 1.16 (Generic Answer). Semantics is the study of reference,

meaning, or truth.
▶ Definition 1.17. A sign is anything that communicates a meaning that is not

the sign itself to the interpreter of the sign. The meaning can be intentional, as
when a word is uttered with a specific meaning, or unintentional, as when a
symptom is taken as a sign of a particular medical condition
Meaning is a relationship between signs and the objects they intend, express, or
signify.

▶ Definition 1.18. Reference is a relationship between objects in which one object
(the name) designates, or acts as a means by which to refer to – i.e. to connect
to or link to – another object (the referent).

▶ Definition 1.19. Truth is the property of being in accord with reality in a/the
mind-independent world. An object ascribed truth is called true, iff it is, and
false, if it is not.

▶ Definition 1.20. For natural language semantics, the signs are usually
utterances and names are usually phrases.

▶ That is all very abstract and general, can we make this more concrete?
▶ Different (academic) disciplines find different concretizations.

Michael Kohlhase: LBS 10 2024-01-20

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of

semantics (of natural language) in different ways.

▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; Syllogisms.
▶ Frege/Russell ; sense vs. referent. (Michael Kohlhase vs. Odysseus)

▶ Linguistics/Language Philosophy: We need semantics e.g. in translation
Der Geist ist willig aber das Fleisch ist schwach! vs.
Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)

▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental
models)

▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).

▶ Logic@AI/CS tries to define meaning and compute with them. (applied
semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

Michael Kohlhase: LBS 11 2024-01-20

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of

semantics (of natural language) in different ways.
▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; Syllogisms.
▶ Frege/Russell ; sense vs. referent. (Michael Kohlhase vs. Odysseus)

▶ Linguistics/Language Philosophy: We need semantics e.g. in translation
Der Geist ist willig aber das Fleisch ist schwach! vs.
Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)

▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental
models)

▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).

▶ Logic@AI/CS tries to define meaning and compute with them. (applied
semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

Michael Kohlhase: LBS 11 2024-01-20

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of

semantics (of natural language) in different ways.
▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; Syllogisms.
▶ Frege/Russell ; sense vs. referent. (Michael Kohlhase vs. Odysseus)

▶ Linguistics/Language Philosophy: We need semantics e.g. in translation
Der Geist ist willig aber das Fleisch ist schwach! vs.
Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)

▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental
models)

▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).

▶ Logic@AI/CS tries to define meaning and compute with them. (applied
semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

Michael Kohlhase: LBS 11 2024-01-20

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of

semantics (of natural language) in different ways.
▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; Syllogisms.
▶ Frege/Russell ; sense vs. referent. (Michael Kohlhase vs. Odysseus)

▶ Linguistics/Language Philosophy: We need semantics e.g. in translation
Der Geist ist willig aber das Fleisch ist schwach! vs.
Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)

▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental
models)

▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).

▶ Logic@AI/CS tries to define meaning and compute with them. (applied
semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

Michael Kohlhase: LBS 11 2024-01-20

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of

semantics (of natural language) in different ways.
▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; Syllogisms.
▶ Frege/Russell ; sense vs. referent. (Michael Kohlhase vs. Odysseus)

▶ Linguistics/Language Philosophy: We need semantics e.g. in translation
Der Geist ist willig aber das Fleisch ist schwach! vs.
Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)

▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental
models)

▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).

▶ Logic@AI/CS tries to define meaning and compute with them. (applied
semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

Michael Kohlhase: LBS 11 2024-01-20

What is (NL) Semantics? Answers from various Disciplines!
▶ Observation: Different (academic) disciplines specialize the notion of

semantics (of natural language) in different ways.
▶ Philosophy: has a long history of trying to answer it, e.g.
▶ Platon ; cave allegory, Aristotle ; Syllogisms.
▶ Frege/Russell ; sense vs. referent. (Michael Kohlhase vs. Odysseus)

▶ Linguistics/Language Philosophy: We need semantics e.g. in translation
Der Geist ist willig aber das Fleisch ist schwach! vs.
Der Schnaps ist gut, aber der Braten ist verkocht! (meaning counts)

▶ Psychology/Cognition: Semantics =̂ “what is in our brains” (; mental
models)

▶ Mathematics has driven much of modern logic in the quest for foundations.
▶ Logic as “foundation of mathematics” solved as far as possible
▶ In daily practice syntax and semantics are not differentiated (much).

▶ Logic@AI/CS tries to define meaning and compute with them. (applied
semantics)
▶ makes syntax explicit in a formal language (formulae, sentences)
▶ defines truth/validity by mapping sentences into “world” (interpretation)
▶ gives rules of truth-preserving reasoning (inference)

Michael Kohlhase: LBS 11 2024-01-20

Meaning of Natural Language; e.g. Machine Translation

▶ Idea: Machine Translation is very simple! (we have good lexica)
▶ Example 1.21. Peter liebt Maria. ; Peter loves Mary.
▶ this only works for simple examples!
▶ Example 1.22. Wirf der Kuh das Heu über den Zaun. ̸;Throw the cow the

hay over the fence. (differing grammar; Google Translate)
▶ Example 1.23. Grammar is not the only problem
▶ Der Geist ist willig, aber das Fleisch ist schwach!
▶ Der Schnaps ist gut, aber der Braten ist verkocht!

▶ Observation 1.24. We have to understand the meaning for high-quality
translation!

Michael Kohlhase: LBS 12 2024-01-20

https://goo.gl/4Wgqw5

Language and Information
▶ Observation: Humans use words (sentences, texts) in natural languages to

represent and communicate information.
▶ But: What really counts is not the words themselves, but the meaning

information they carry.

▶ Example 1.25 (Word Meaning).

Newspaper ;

▶ For questions/answers, it would be very useful to find out what words
(sentences/texts) mean.

▶ Definition 1.26. Interpretation of natural language utterances: three problems
schema abstraction ambiguity composition

language
utterance

semantic
intepretation

Michael Kohlhase: LBS 13 2024-01-20

Language and Information
▶ Observation: Humans use words (sentences, texts) in natural languages to

represent and communicate information.
▶ But: What really counts is not the words themselves, but the meaning

information they carry.
▶ Example 1.27 (Word Meaning).

Newspaper ;

▶ For questions/answers, it would be very useful to find out what words
(sentences/texts) mean.

▶ Definition 1.28. Interpretation of natural language utterances: three problems
schema abstraction ambiguity composition

language
utterance

semantic
intepretation

Michael Kohlhase: LBS 13 2024-01-20

Language and Information
▶ Observation: Humans use words (sentences, texts) in natural languages to

represent and communicate information.
▶ But: What really counts is not the words themselves, but the meaning

information they carry.
▶ Example 1.29 (Word Meaning).

Newspaper ;

▶ For questions/answers, it would be very useful to find out what words
(sentences/texts) mean.

▶ Definition 1.30. Interpretation of natural language utterances: three problems
schema abstraction ambiguity composition

language
utterance

semantic
intepretation

Michael Kohlhase: LBS 13 2024-01-20

Language and Information (Examples)

▶ Example 1.31 (Abstraction).

Car and automobile have the same meaning

▶ Example 1.32 (Ambiguity).

A bank can be a financial institution or a geographical feature

▶ Example 1.33 (Composition).

Every student sleeps ; ∀x .student(x) ⇒ sleep(x)

Michael Kohlhase: LBS 14 2024-01-20

Language and Information (Examples)

▶ Example 1.34 (Abstraction).

Car and automobile have the same meaning

▶ Example 1.35 (Ambiguity).

A bank can be a financial institution or a geographical feature

▶ Example 1.36 (Composition).

Every student sleeps ; ∀x .student(x) ⇒ sleep(x)

Michael Kohlhase: LBS 14 2024-01-20

Language and Information (Examples)

▶ Example 1.37 (Abstraction).

Car and automobile have the same meaning

▶ Example 1.38 (Ambiguity).

A bank can be a financial institution or a geographical feature

▶ Example 1.39 (Composition).

Every student sleeps ; ∀x .student(x) ⇒ sleep(x)

Michael Kohlhase: LBS 14 2024-01-20

Context Contributes to the Meaning of NL Utterances

▶ Observation: Not all information conveyed is linguistically realized in an
utterance.

▶ Example 1.40. The lecture begins at 11:00 am. What lecture? Today?
▶ Definition 1.41. We call a piece i of information linguistically realized in an

utterance U, iff, we can trace i to a fragment of U.
▶ Definition 1.42 (Possible Mechanism). Inferring the missing pieces from the

context and world knowledge:

Utterance Meaning
relevant

information
of utterance

Grammar

Lexicon

Inference

World knowledge

We call this process pragmatic analysis.

Michael Kohlhase: LBS 15 2024-01-20

Context Contributes to the Meaning of NL Utterances

▶ Example 1.43. It starts at eleven. What starts?
▶ Before we can resolve the time, we need to resolve the anaphor it.
▶ Possible Mechanism: More Inference!

Utterance
semantic
potential

utterance-
specific
meaning

relevant
information
of utterance

Grammar

Lexicon

Inference

World/Context Knowledge

; Pragmatic analysis is quite complex! (prime topic of LBS)

Michael Kohlhase: LBS 16 2024-01-20

Semantics is not a Cure-It-All!

How many animals of each species did Moses take onto the ark?

Michael Kohlhase: LBS 17 2024-01-20

Semantics is not a Cure-It-All!

How many animals of each species did Moses take onto the ark?

▶ Actually, it was Noah (But you understood the question anyways)

Michael Kohlhase: LBS 17 2024-01-20

But Semantics works in some cases

▶ The only thing that currently really helps is a restricted domain:
▶ I. e. a restricted vocabulary and world model.

▶ Demo:
DBPedia http://dbpedia.org/snorql/
Query: Soccer players, who are born in a country with more than 10 million
inhabitants, who played as goalkeeper for a club that has a stadium with more
than 30.000 seats and the club country is different from the birth country

Michael Kohlhase: LBS 18 2024-01-20

http://dbpedia.org/snorql/

But Semantics works in some cases

▶ The only thing that currently really helps is a restricted domain:
▶ I. e. a restricted vocabulary and world model.

▶ Demo:
DBPedia http://dbpedia.org/snorql/
Query: Soccer players, who are born in a country with more than 10 million
inhabitants, who played as goalkeeper for a club that has a stadium with more
than 30.000 seats and the club country is different from the birth country

Michael Kohlhase: LBS 18 2024-01-20

http://dbpedia.org/snorql/

But Semantics works in some cases
▶ Answer:

(is computed by DBPedia from a SPARQL query)

Michael Kohlhase: LBS 19 2024-01-20

https://goo.gl/2i3ng1

2.2 Natural Language Understanding as
Engineering

Michael Kohlhase: LBS 19 2024-01-20

Language Technology

▶ Language Assistance:
▶ written language: Spell/grammar/style-checking,
▶ spoken language: dictation systems and screen readers,
▶ multilingual text: machine-supported text and dialog translation, eLearning.

▶ Information management:
▶ search and classification of documents, (e.g. Google/Bing)
▶ information extraction, question answering. (e.g. http://ask.com)

▶ Dialog Systems/Interfaces:
▶ information systems: at airport, tele-banking, e-commerce, call centers,
▶ dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)

▶ Observation: The earlier technologies largely rely on pattern matching, the
latter ones need to compute the meaning of the input utterances, e.g. for
database lookups in information systems.

Michael Kohlhase: LBS 20 2024-01-20

http://ask.com

Language Technology

▶ Language Assistance:
▶ written language: Spell/grammar/style-checking,
▶ spoken language: dictation systems and screen readers,
▶ multilingual text: machine-supported text and dialog translation, eLearning.

▶ Information management:
▶ search and classification of documents, (e.g. Google/Bing)
▶ information extraction, question answering. (e.g. http://ask.com)

▶ Dialog Systems/Interfaces:
▶ information systems: at airport, tele-banking, e-commerce, call centers,
▶ dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)

▶ Observation: The earlier technologies largely rely on pattern matching, the
latter ones need to compute the meaning of the input utterances, e.g. for
database lookups in information systems.

Michael Kohlhase: LBS 20 2024-01-20

http://ask.com

Language Technology

▶ Language Assistance:
▶ written language: Spell/grammar/style-checking,
▶ spoken language: dictation systems and screen readers,
▶ multilingual text: machine-supported text and dialog translation, eLearning.

▶ Information management:
▶ search and classification of documents, (e.g. Google/Bing)
▶ information extraction, question answering. (e.g. http://ask.com)

▶ Dialog Systems/Interfaces:
▶ information systems: at airport, tele-banking, e-commerce, call centers,
▶ dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)

▶ Observation: The earlier technologies largely rely on pattern matching, the
latter ones need to compute the meaning of the input utterances, e.g. for
database lookups in information systems.

Michael Kohlhase: LBS 20 2024-01-20

http://ask.com

Language Technology

▶ Language Assistance:
▶ written language: Spell/grammar/style-checking,
▶ spoken language: dictation systems and screen readers,
▶ multilingual text: machine-supported text and dialog translation, eLearning.

▶ Information management:
▶ search and classification of documents, (e.g. Google/Bing)
▶ information extraction, question answering. (e.g. http://ask.com)

▶ Dialog Systems/Interfaces:
▶ information systems: at airport, tele-banking, e-commerce, call centers,
▶ dialog interfaces for computers, robots, cars. (e.g. Siri/Alexa)

▶ Observation: The earlier technologies largely rely on pattern matching, the
latter ones need to compute the meaning of the input utterances, e.g. for
database lookups in information systems.

Michael Kohlhase: LBS 20 2024-01-20

http://ask.com

What is Natural Language Processing?

▶ Generally: Studying of natural languages and development of systems that can
use/generate these.

▶ Definition 2.1. Natural language processing (NLP) is an engineering field at the
intersection of computer science, artificial intelligence, and linguistics which is
concerned with the interactions between computers and human (natural)
languages. Most challenges in NLP involve:
▶ Natural language understanding (NLU) that is, enabling computers to derive

meaning (representations) from human or natural language input.
▶ Natural language generation (NLG) which aims at generating natural language or

speech from meaning representation.
▶ For communication with/among humans we need both NLU and NLG.

Michael Kohlhase: LBS 21 2024-01-20

What is the State of the Art In NLU?

▶ Two avenues of attack for the problem: knowledge-based and statistical
techniques (they are complementary)

Deep Knowledge-based Not there yet
We are here cooperation?

Shallow no-one wants this Statistical Methods
applications

Analysis ↑
vs. narrow wide

Coverage →
▶ We will cover foundational methods of deep processing in the course and a

mixture of deep and shallow ones in the lab.

Michael Kohlhase: LBS 22 2024-01-20

Environmental Niches for both Approaches to NLU

▶ Definition 2.2. There are two kinds of applications/tasks in NLU:
▶ Consumer tasks: consumer grade applications have tasks that must be fully generic

and wide coverage. (e.g. machine translation like Google Translate)
▶ Producer tasks: producer grade applications must be high-precision, but can be

domain-specific (e.g. multilingual documentation, machinery-control, program
verification, medical technology)

Precision
100% Producer Tasks

50% Consumer Tasks

103±1 Concepts 106±1 Concepts Coverage
▶ Example 2.3. Producing/managing machine manuals in multiple languages

across machine variants is a critical producer task for machine tool company.
▶ A producer domain I am interested in: mathematical/technical documents.

Michael Kohlhase: LBS 23 2024-01-20

https://translate.google.com/

NLP for NLU: The Waterfall Model

▶ Definition 2.4 (The NLU Waterfall). NL understanding is often modeled as a
simple linear process: the NLU waterfall consists of five consecutive steps:

0) speech processing: acoustic signal ; word hypothesis graph
1) syntactic processing: word sequence ; phrase structure
2) semantics construction: phrase structure ; (quasi-)logical form
3) semantic/pragmatic analysis:

(quasi-)logical form ; knowledge representation
4) problem solving: using the generated knowledge (application-specific)
▶ Definition 2.5. We call any formalization of an utterance as a logical formula a

logical form. A quasi-logical form (QLF) is a representation which can be turned
into a logical form by further computation.

▶ In this course: steps 1), 2) and 3).

Michael Kohlhase: LBS 24 2024-01-20

2.3 Looking at Natural Language

Michael Kohlhase: LBS 24 2024-01-20

Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.1. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)

▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. (̸|= diamond)

Michael Kohlhase: LBS 25 2024-01-20

Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.2. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)

▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. (̸|= diamond)

Michael Kohlhase: LBS 25 2024-01-20

Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.3. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)

▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. (̸|= diamond)

Michael Kohlhase: LBS 25 2024-01-20

Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.4. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)

▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. (̸|= diamond)

Michael Kohlhase: LBS 25 2024-01-20

Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.5. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)

▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. (̸|= diamond)

Michael Kohlhase: LBS 25 2024-01-20

Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.6. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)

▶ Mary believes that this is a diamond. (̸|= diamond)

Michael Kohlhase: LBS 25 2024-01-20

Fun with Diamonds (are they real?) [Dav67b]

▶ Example 3.7. We study the truth conditions of adjectival complexes:
▶ This is a diamond. (|= diamond)
▶ This is a blue diamond. (|= diamond , |= blue)
▶ This is a big diamond. (|= diamond , ̸|= big)
▶ This is a fake diamond. (|= ¬diamond)
▶ This is a fake blue diamond. (|= blue?, |= diamond?)
▶ Mary knows that this is a diamond. (|= diamond)
▶ Mary believes that this is a diamond. (̸|= diamond)

Michael Kohlhase: LBS 25 2024-01-20

Ambiguity: The dark side of Meaning

▶ Definition 3.8. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.

▶ Example 3.9. All of the following sentences are ambiguous:
▶ John went to the bank. (river or financial?)

▶ You should have seen the bull we got from the pope. (three readings!)
▶ I saw her duck. (animal or action?)
▶ John chased the gangster in the red sports car. (three-way too!)

Michael Kohlhase: LBS 26 2024-01-20

Ambiguity: The dark side of Meaning

▶ Definition 3.10. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.

▶ Example 3.11. All of the following sentences are ambiguous:
▶ John went to the bank. (river or financial?)
▶ You should have seen the bull we got from the pope. (three readings!)

▶ I saw her duck. (animal or action?)
▶ John chased the gangster in the red sports car. (three-way too!)

Michael Kohlhase: LBS 26 2024-01-20

Ambiguity: The dark side of Meaning

▶ Definition 3.12. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.

▶ Example 3.13. All of the following sentences are ambiguous:
▶ John went to the bank. (river or financial?)
▶ You should have seen the bull we got from the pope. (three readings!)
▶ I saw her duck. (animal or action?)

▶ John chased the gangster in the red sports car. (three-way too!)

Michael Kohlhase: LBS 26 2024-01-20

Ambiguity: The dark side of Meaning

▶ Definition 3.14. We call an utterance ambiguous, iff it has multiple meanings,
which we call readings.

▶ Example 3.15. All of the following sentences are ambiguous:
▶ John went to the bank. (river or financial?)
▶ You should have seen the bull we got from the pope. (three readings!)
▶ I saw her duck. (animal or action?)
▶ John chased the gangster in the red sports car. (three-way too!)

Michael Kohlhase: LBS 26 2024-01-20

Quantifiers, Scope and Context

▶ Example 3.16. Every man loves a woman. (Keira Knightley or his mother!)

▶ Example 3.17. Every car has a radio. (only one reading!)
▶ Example 3.18. Some student in every course sleeps in every class at least some

of the time. (how many readings?)
▶ Example 3.19. The president of the US is having an affair with an intern. (2002

or 2000?)
▶ Example 3.20. Everyone is here. (who is everyone?)

Michael Kohlhase: LBS 27 2024-01-20

Quantifiers, Scope and Context

▶ Example 3.21. Every man loves a woman. (Keira Knightley or his mother!)
▶ Example 3.22. Every car has a radio. (only one reading!)

▶ Example 3.23. Some student in every course sleeps in every class at least some
of the time. (how many readings?)

▶ Example 3.24. The president of the US is having an affair with an intern. (2002
or 2000?)

▶ Example 3.25. Everyone is here. (who is everyone?)

Michael Kohlhase: LBS 27 2024-01-20

Quantifiers, Scope and Context

▶ Example 3.26. Every man loves a woman. (Keira Knightley or his mother!)
▶ Example 3.27. Every car has a radio. (only one reading!)
▶ Example 3.28. Some student in every course sleeps in every class at least some

of the time. (how many readings?)

▶ Example 3.29. The president of the US is having an affair with an intern. (2002
or 2000?)

▶ Example 3.30. Everyone is here. (who is everyone?)

Michael Kohlhase: LBS 27 2024-01-20

Quantifiers, Scope and Context

▶ Example 3.31. Every man loves a woman. (Keira Knightley or his mother!)
▶ Example 3.32. Every car has a radio. (only one reading!)
▶ Example 3.33. Some student in every course sleeps in every class at least some

of the time. (how many readings?)
▶ Example 3.34. The president of the US is having an affair with an intern. (2002

or 2000?)

▶ Example 3.35. Everyone is here. (who is everyone?)

Michael Kohlhase: LBS 27 2024-01-20

Quantifiers, Scope and Context

▶ Example 3.36. Every man loves a woman. (Keira Knightley or his mother!)
▶ Example 3.37. Every car has a radio. (only one reading!)
▶ Example 3.38. Some student in every course sleeps in every class at least some

of the time. (how many readings?)
▶ Example 3.39. The president of the US is having an affair with an intern. (2002

or 2000?)
▶ Example 3.40. Everyone is here. (who is everyone?)

Michael Kohlhase: LBS 27 2024-01-20

More Context: Anaphora

▶ Example 3.41 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)

▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)
▶ John likes Spiff. Peter does too. (what to does Peter do?)
▶ John loves his wife. Peter does too. (whom does Peter love?)
▶ nJohn loves golf, and Mary too. (who does what?)

▶ Definition 3.42. A word or phrase is called anaphoric (or an anaphor), if its
interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
The process of determining the antecedent or postcedent of an anaphoric phrase
is called anaphor resolution.

Michael Kohlhase: LBS 28 2024-01-20

More Context: Anaphora

▶ Example 3.43 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)
▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)

▶ John likes Spiff. Peter does too. (what to does Peter do?)
▶ John loves his wife. Peter does too. (whom does Peter love?)
▶ nJohn loves golf, and Mary too. (who does what?)

▶ Definition 3.44. A word or phrase is called anaphoric (or an anaphor), if its
interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
The process of determining the antecedent or postcedent of an anaphoric phrase
is called anaphor resolution.

Michael Kohlhase: LBS 28 2024-01-20

More Context: Anaphora

▶ Example 3.45 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)
▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)
▶ John likes Spiff. Peter does too. (what to does Peter do?)

▶ John loves his wife. Peter does too. (whom does Peter love?)
▶ nJohn loves golf, and Mary too. (who does what?)

▶ Definition 3.46. A word or phrase is called anaphoric (or an anaphor), if its
interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
The process of determining the antecedent or postcedent of an anaphoric phrase
is called anaphor resolution.

Michael Kohlhase: LBS 28 2024-01-20

More Context: Anaphora

▶ Example 3.47 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)
▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)
▶ John likes Spiff. Peter does too. (what to does Peter do?)
▶ John loves his wife. Peter does too. (whom does Peter love?)

▶ nJohn loves golf, and Mary too. (who does what?)
▶ Definition 3.48. A word or phrase is called anaphoric (or an anaphor), if its

interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
The process of determining the antecedent or postcedent of an anaphoric phrase
is called anaphor resolution.

Michael Kohlhase: LBS 28 2024-01-20

More Context: Anaphora

▶ Example 3.49 (Anaphoric References).
▶ John is a bachelor. His wife is very nice. (Uh, what?, who?)
▶ John likes his dog Spiff even though he bites him sometimes. (who bites?)
▶ John likes Spiff. Peter does too. (what to does Peter do?)
▶ John loves his wife. Peter does too. (whom does Peter love?)
▶ nJohn loves golf, and Mary too. (who does what?)

▶ Definition 3.50. A word or phrase is called anaphoric (or an anaphor), if its
interpretation depends upon another phrase in context. In a narrower sense, an
anaphor refers to an earlier phrase (its antecedent), while a cataphor to a later
one (its postcedent).
The process of determining the antecedent or postcedent of an anaphoric phrase
is called anaphor resolution.

Michael Kohlhase: LBS 28 2024-01-20

Context is Personal and keeps changing

▶ The king of America is rich. (true or false?)

▶ The king of America isn’t rich. (false or true?)
▶ If America had a king, the king of America would be rich. (true or false!)
▶ The king of Buganda is rich. (Where is Buganda?)
▶ . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.(CEO=J.S.!)

Michael Kohlhase: LBS 29 2024-01-20

Context is Personal and keeps changing

▶ The king of America is rich. (true or false?)
▶ The king of America isn’t rich. (false or true?)

▶ If America had a king, the king of America would be rich. (true or false!)
▶ The king of Buganda is rich. (Where is Buganda?)
▶ . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.(CEO=J.S.!)

Michael Kohlhase: LBS 29 2024-01-20

Context is Personal and keeps changing

▶ The king of America is rich. (true or false?)
▶ The king of America isn’t rich. (false or true?)
▶ If America had a king, the king of America would be rich. (true or false!)

▶ The king of Buganda is rich. (Where is Buganda?)
▶ . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.(CEO=J.S.!)

Michael Kohlhase: LBS 29 2024-01-20

Context is Personal and keeps changing

▶ The king of America is rich. (true or false?)
▶ The king of America isn’t rich. (false or true?)
▶ If America had a king, the king of America would be rich. (true or false!)
▶ The king of Buganda is rich. (Where is Buganda?)

▶ . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.(CEO=J.S.!)

Michael Kohlhase: LBS 29 2024-01-20

Context is Personal and keeps changing

▶ The king of America is rich. (true or false?)
▶ The king of America isn’t rich. (false or true?)
▶ If America had a king, the king of America would be rich. (true or false!)
▶ The king of Buganda is rich. (Where is Buganda?)
▶ . . . Joe Smith. . . The CEO of Westinghouse announced budget cuts.(CEO=J.S.!)

Michael Kohlhase: LBS 29 2024-01-20

2.4 A Taste of Language Philosophy

Michael Kohlhase: LBS 29 2024-01-20

What is the Meaning of Natural Language Utterances?

▶ Question: What is the meaning of the word chair?

▶ Answer: “the set of all chairs” (difficult to delineate, but more or less clear)
▶ Question: What is the meaning of the word Michael Kohlhase?
▶ Answer: The word refers to an object in the real world: the instructor of LBS.
▶ Alternatively: The singleton with that object (as for “set of chairs” above)
▶ Question: What about Michael Kohlhase sits on a chair?
▶ Towards an Answer: We have to combine the two sets, via the meaning of

“sits”.
▶ Question: What is the meaning of the word John F. Kennedy or Odysseus?
▶ Problem: There are no objects in the real worlds, so the meaning of both is ∅

and thus equal /.

Michael Kohlhase: LBS 30 2024-01-20

What is the Meaning of Natural Language Utterances?

▶ Question: What is the meaning of the word chair?
▶ Answer: “the set of all chairs” (difficult to delineate, but more or less clear)
▶ Question: What is the meaning of the word Michael Kohlhase?

▶ Answer: The word refers to an object in the real world: the instructor of LBS.
▶ Alternatively: The singleton with that object (as for “set of chairs” above)
▶ Question: What about Michael Kohlhase sits on a chair?
▶ Towards an Answer: We have to combine the two sets, via the meaning of

“sits”.
▶ Question: What is the meaning of the word John F. Kennedy or Odysseus?
▶ Problem: There are no objects in the real worlds, so the meaning of both is ∅

and thus equal /.

Michael Kohlhase: LBS 30 2024-01-20

What is the Meaning of Natural Language Utterances?

▶ Question: What is the meaning of the word chair?
▶ Answer: “the set of all chairs” (difficult to delineate, but more or less clear)
▶ Question: What is the meaning of the word Michael Kohlhase?
▶ Answer: The word refers to an object in the real world: the instructor of LBS.
▶ Alternatively: The singleton with that object (as for “set of chairs” above)
▶ Question: What about Michael Kohlhase sits on a chair?

▶ Towards an Answer: We have to combine the two sets, via the meaning of
“sits”.

▶ Question: What is the meaning of the word John F. Kennedy or Odysseus?
▶ Problem: There are no objects in the real worlds, so the meaning of both is ∅

and thus equal /.

Michael Kohlhase: LBS 30 2024-01-20

What is the Meaning of Natural Language Utterances?

▶ Question: What is the meaning of the word chair?
▶ Answer: “the set of all chairs” (difficult to delineate, but more or less clear)
▶ Question: What is the meaning of the word Michael Kohlhase?
▶ Answer: The word refers to an object in the real world: the instructor of LBS.
▶ Alternatively: The singleton with that object (as for “set of chairs” above)
▶ Question: What about Michael Kohlhase sits on a chair?
▶ Towards an Answer: We have to combine the two sets, via the meaning of

“sits”.
▶ Question: What is the meaning of the word John F. Kennedy or Odysseus?

▶ Problem: There are no objects in the real worlds, so the meaning of both is ∅
and thus equal /.

Michael Kohlhase: LBS 30 2024-01-20

What is the Meaning of Natural Language Utterances?

▶ Question: What is the meaning of the word chair?
▶ Answer: “the set of all chairs” (difficult to delineate, but more or less clear)
▶ Question: What is the meaning of the word Michael Kohlhase?
▶ Answer: The word refers to an object in the real world: the instructor of LBS.
▶ Alternatively: The singleton with that object (as for “set of chairs” above)
▶ Question: What about Michael Kohlhase sits on a chair?
▶ Towards an Answer: We have to combine the two sets, via the meaning of

“sits”.
▶ Question: What is the meaning of the word John F. Kennedy or Odysseus?
▶ Problem: There are no objects in the real worlds, so the meaning of both is ∅

and thus equal /.

Michael Kohlhase: LBS 30 2024-01-20

2.4.1 Epistemology: The Philosphy of Science

Michael Kohlhase: LBS 30 2024-01-20

Epistemology – Propositions & Observations

▶ Definition 4.1. Epistemology is the branch of philosophy concerned with
studying nature of knowledge, its justification, the rationality of belief, scientific
theories and predictions, and various related issues.

▶ Definition 4.2. A proposition is a sentence about the actual world or a class of
worlds deemed possible in a natural or formal language whose meaning can be
expressed as being true or false in a specific world.

▶ Definition 4.3. A belief is a proposition φ that an agent a holds true about a
class of worlds. This is a characterizing feature of the agent.

▶ Definition 4.4 (Belief - The JTB Account). Knowledge is justified, true
belief.

▶ Problem: How can an agent justify a belief to obtain knowledge.
▶ Definition 4.5. Given a world w , the observed value (or just value, i.e. true or

false) of a proposition (in w) can be determined by observations, that is an
agent, the observer, either observes (experiences) that φ is true in w or conducts
a deliberate, systematic experiment that determines φ to be true in w .

Michael Kohlhase: LBS 31 2024-01-20

Epistemology – Reproducibility & Phenomena
▶ Problem: Observations are sometimes unreliable, e.g. observer o perceives φ

to be true, while it is false or vice versa.
▶ Idea: Repeat the observations to raise the probability of getting them right.
▶ Definition 4.6. An observation φ is said to be reproducible, iff φ can observed

by different observers in different situations.
▶ Definition 4.7. A phenomenon φ is a proposition that is reproducibly

observable to be true in a class of worlds.
▶ Problem: We would like to verify a phenomenon φ, i.e. observe φ in all worlds,

But relevant world classes are too large to make this practically feasible.
▶ Definition 4.8. A world w is a counterexample to a proposition φ, if φ is

observably false in w .
▶ Intuition: The absence of counterexamples is the best we can hope for in

general for accepting phenomena.
▶ Intuition: The phenomena constitute the “world model” of an agent.
▶ Problem: It is impossible/inefficient (for an agent) to know all phenomena.
▶ Idea: An agent could retain only a small subset of known propositions, from

this all phenomena can be derived.

Michael Kohlhase: LBS 32 2024-01-20

Epistemology – Explanations & Hypotheses

▶ Definition 4.9. A proposition ψ follows from a proposition φ, iff ψ is true in any
world where φ is.

▶ Definition 4.10. An explanation of a phenomenon φ is a set Φ of propositions,
such that φ follows from Φ.

▶ Example 4.11. {φ} is a (rather useless) explanation for φ.
▶ Intuition: We prefer explanations Φ that explain more than just φ.
▶ Observation: This often coincides with explanations that are in some sense

“simpler” or “more elementary” than φ. (; Occam’s razor)
▶ Definition 4.12. A proposition is called falsifiable, iff counterexamples are

theoretically possible and the observation of a reproducible series of
counterexample is practically feasible.

▶ Definition 4.13. A hypothesis is a proposed explanation of a phenomenon that
is falsifiable.

Michael Kohlhase: LBS 33 2024-01-20

Epistemology – Scientific Theories

▶ Knowledge Strategy: Collect hypotheses about the world, drop those with
counterexamples and those that can be explained themselves.

▶ Definition 4.14. A hypothesis φ can be tested in world/situation w by
observing the value of φ in w . If the value is true, then we say that the
observation o supports φ or is evidence for φ. If it is false then o falsifies φ.

▶ Definition 4.15. A (scientific) theory for a set Φ of phenomena is a set Θ of
hypotheses that
▶ has been tested extensively and rigorously without finding counterexamples, and
▶ is minimal in the sense that no subset of Θ explains Φ.

▶ Definition 4.16. We call any proposition φ that follows from a theory Φ a
prediction of Φ.

▶ Note: To falsify a theory Φ, it is sufficient to falsify any prediction. Any
observation of a prediction φ of Φ supports Φ.

Michael Kohlhase: LBS 34 2024-01-20

2.4.2 Meaning Theories

Michael Kohlhase: LBS 34 2024-01-20

Theories of Meaning

▶ The Central Question: What is the meaning of natural language?
▶ This is difficult to answer definitely, . . .
▶ But we can form meaning theory that make predictions that we can test.
▶ Definition 4.17. A semantic meaning theory assigns semantic contents to

expressions of a language.
▶ Definition 4.18. A foundational meaning theory tries to explain why language

expressions have the meanings they have; e.g. in terms of mental states of
individuals and groups.

▶ It is important to keep these two notions apart.
▶ We will concentrate on semantic meaning theories in this course.

Michael Kohlhase: LBS 35 2024-01-20

The Meaning of Singular Terms

▶ Let’s see a semantic meaning theory in action.
▶ Definition 4.19. A singular term is a phrase that purports to denote or

designate a particular individual person, place, or other object.
▶ Example 4.20. Michael Kohlhase and Odysseus are singular terms.
▶ Definition 4.21. In [Fre92], Gottlob Frege distinguishes between sense (Sinn)

and referent (Bedeutung) of singular terms.
▶ Example 4.22. Even though Odysseus does not have a referent, it has a very

real sense. (but what is a sense?)
▶ Example 4.23. The ancient greeks knew the planets Hesperos (the evening

star) and Phosphoros (the morning star). These words have different senses, but
the – as we now know – same referent: the planet Venus.

▶ Remark: Bertrand Russell views singular terms as disguised definite
descriptions – Hesperos as “the brightest heavenly body that sometimes rises in
the evening”. Frege’s sense can often be conflated with Russell’s descriptions.
(there can be more than one definite description)

Michael Kohlhase: LBS 36 2024-01-20

Cresswell’s “Most Certain Principle” and Truth Conditions

▶ Problem: How can we test meaning theories in practice?
▶ Definition 4.24. Cresswell’s (1982) most certain principle (MCP): [Cre82]

I’m going to begin by telling you what I think is the most certain thing I think
about meaning. Perhaps it’s the only thing. It is this. If we have two sentences
A and B, and A is true and B is false, then A and B do not mean the same.

▶ Definition 4.25. The truth conditions of a sentence are the conditions of the
world under which it is true. These conditions must be such that if all obtain,
the sentence is true, and if one doesn’t obtain, the sentence is false.

▶ Observation: Meaning determines truth conditions and vice versa.
▶ In Fregean terms The sense of a sentence (a thought) determines its referent

(a truth value).

Michael Kohlhase: LBS 37 2024-01-20

a
This principle sounds trivial – and indeed it is, if you think about it – but gives rise
to the notion of truth conditions, which form the most important way of finding
out about the meaning of sentences: the determinations of truth conditions.

Michael Kohlhase: LBS 38 2024-01-20

Truth Conditions in Practice

▶ Idea: To test/determine the truth conditions of a sentence S in practice, we
tell little stories that describe situations/worlds that embed S .

▶ Example 4.26. Consider the ambiguous sentence from 3.9
John chased the gangster in the red sports car.
For each of three readings there is story =̂ truth conditions
▶ John drives the red sports car and chases the gangster
▶ John chases the gangster who drives the red sports car
▶ John chases the gangster on the back seat of a (very very big) red sports car.

All of these stories correspond to different worlds, so by the MCP there must be
at least three readings!

Michael Kohlhase: LBS 38 2024-01-20

Compositionality

▶ Definition 4.27. A meaning theory T is compositional, iff the meaning of an
expression is a function of the meanings of its parts. We say that T obeys the
compositionality principle or simply compositionality if it is.

▶ To compute the meaning of an expression, look up the meanings of the basic
expressions forming it and successively compute the meanings of larger parts
until a meaning for the whole expression is found.

▶ Example 4.28 (Compositionality at work in arithmetic). To compute the
value of (x + y)/(z · u), look up the values of x , y , z , and u, then compute
x + y and z · u, and finally compute the value of the whole expression.

▶ Many philosophers and linguists hold that compositionality is at work in ordinary
language too.

Michael Kohlhase: LBS 39 2024-01-20

Why Compositionality is Attractive

▶ Compositionality gives a nice building block for a meaning theory:
▶ Example 4.29. [Expressions [are [built [from [words [that [combine [into [[larger

[and larger]] subexpressions]]]]]]]]]
▶ Consequence: To compute the meaning of an expression, look up the

meanings of its words and successively compute the meanings of larger parts
until a meaning for the whole expression is found.

▶ Compositionality explains how people can easily understand sentences they have
never heard before, even though there are an infinite number of sentences any
given person at any given time has not heard before.

Michael Kohlhase: LBS 40 2024-01-20

Compositionality and the Congruence Principle

▶ Given reasonable assumptions compositionality entails the
▶ Definition 4.30. The congruence principle states that whenever A is part of B

and A′ means just the same as A, replacing A by A′ in B will lead to a result
that means just the same as B.

▶ Example 4.31. Consider the following (complex) sentences:
1. blah blah blah such and such blah blah
2. blah blah blah so and so blah blah

If such and such and so and so mean the same thing, then 1. and 2. mean the
same too.

▶ Conversely: if 1. and 2. do not mean the same, then such and such and so
and so do not either.

Michael Kohlhase: LBS 41 2024-01-20

A Test for Synonymity
▶ Suppose we accept the most certain principle (difference in truth conditions

implies difference in meaning) and the congruence principle (replacing words by
synonyms results in a synonymous utterance). Then we have a diagnostics for
synonymity: Replacing utterances by synonyms preserves truth conditions, or
equivalently

▶ Definition 4.32. The following is called the truth conditional synonymy test:
If replacing A by B in some sentence C does not preserve truth conditions, then
A and B are not synonymous.

▶ We can use this as a test for the question of individuation: when are the
meanings of two words the same – when are they synonymous?

▶ Example 4.33 (Unsurprising Results). The following sentences differ in truth
conditions.
1. The cat is on the mat.
2. The dog is on the mat.
Hence cat and dog are not synonymous. The converse holds for
1. John is a Greek.
2. John is a Hellene.
In this case there is no difference in truth conditions.

▶ But there might be another context that does give a difference.

Michael Kohlhase: LBS 42 2024-01-20

Contentious Cases of Synonymy Test

▶ Example 4.34 (Problem). The following sentences differ in truth values:
1. Mary believes that John is a Greek
2. Mary believes that John is a Hellene
So Greek is not synonymous to Hellene. The same holds in the classical
example:
1. The Ancients knew that Hesperus was Hesperus
2. The Ancients knew that Hesperus was Phosphorus

In these cases most language users do perceive a difference in truth conditions
while some philosophers vehemently deny that the sentences under 1. could be
true in situations where the 2. sentences are false.

▶ It is important here of course that the context of substitution is within the
scope of a verb of propositional attitude. (maybe later!)

Michael Kohlhase: LBS 43 2024-01-20

A better Synonymy Test

▶ Definition 4.35 (Synonymy). The following is called the truth conditional
synonymy test:

If replacing A by B in some sentence C does not preserve truth conditions in a
compositional part of C , then A and B are not synonymous.

Michael Kohlhase: LBS 44 2024-01-20

Testing Truth Conditions with Logic

▶ Definition 4.36. A logical language model M for a natural language L consists
of a logical system ⟨L,K, |=⟩ and a function φ from L sentences to L-formulae.

▶ Problem: How do we find out whether M models L faithfully?
▶ Idea: Test truth conditions of sentences against the predictions M makes.
▶ Problem: The truth conditions for a sentence S in L can only be formulated

and verified by humans that speak L.
▶ In Practice: Truth conditions are expressed as “stories” that specify salient

situations. Native speakers of L are asked to judge whether they make S
true/false.

▶ Observation 4.37. A logical language model M:=⟨L,L, φ⟩ can be tested:
1. Select a sentence S and a situation W that makes S true. (according to humans)
2. Translate S in to an L-formula S ′:=φ(S).
3. Express W as a set Φ of L-formulae. (Φ =̂ truth conditions)
4. M is supported if Φ |= S ′, falsified if Φ ̸|= S ′.

▶ Corollary 4.38. A logical language model constitutes a semantic meaning
theory.

Michael Kohlhase: LBS 45 2024-01-20

2.5 Computational Semantics as a Natural
Science

Michael Kohlhase: LBS 45 2024-01-20

Computational Semantics as a Natural Science

▶ In a nutshell: Formal logic studies formal languages, their relation with the
world (in particular the truth conditions). Computational logic adds the question
about the computational behavior of the relevant aspects of the formal
languages.

▶ This is almost the same as the task of natural language semantics!
▶ It is one of the key ideas that logics are good scientific models for natural

languages, since they simplify certain aspects so that they can be studied in
isolation. In particular, we can use the general scientific method of
1. observing
2. building formal theories for an aspect of reality,
3. deriving the consequences of the hypotheses about the world in the theories
4. testing the predictions made by the theory against the real-world data. If the theory

predicts the data, then this supports the theory, if not, we refine the theory, starting
the process again at 2.

Michael Kohlhase: LBS 46 2024-01-20

NL Semantics as an Intersective Discipline

Michael Kohlhase: LBS 47 2024-01-20

Chapter 3
Symbolic Systems for Semantics

Michael Kohlhase: LBS 47 2024-01-20

3.1 The Grammatical Framework (GF)

Michael Kohlhase: LBS 47 2024-01-20

3.1.1 Recap: (Context-Free) Grammars

Michael Kohlhase: LBS 47 2024-01-20

Phrase Structure Grammars (Motivation)

▶ Problem Recap: We do not have enough text data to build word sequence
language models ⇝data sparsity.

▶ Idea: Categorize words into classes and then generalize “acceptable word
sequences” into “acceptable word class sequences” ; phrase structure grammars.

▶ Advantage: We can get by with much less information.
▶ Example 1.1 (Generative Capacity). 103 structural rules over a lexicon of 105

words generate most German sentences.
▶ Vervet monkeys, antelopes etc. use isolated symbols for sentences.

; restricted set of communicable propositions, no generative capacity.
▶ Disadvantage: Grammars may over generalize or under generalize.
▶ The formal study of grammars was introduced by Noam Chomsky in 1957

[Cho65b].

Michael Kohlhase: LBS 48 2024-01-20

Phrase Structure Grammars (cont.)

▶ Example 1.2. A simple phrase structure grammar G :

S → NP Vi
NP → Article N

Article → the | a | an
N → dog | teacher | . . .
Vi → sleeps | smells | . . .

Here S , is the start symbol, NP, VP, Article, N, and Vi are nonterminals.
▶ Definition 1.3. The subset of lexical rules, i.e. those whose body consists of a

single terminal is called its lexicon and the set of body symbols the alphabet.
The nonterminals in their heads are called lexical categories.

▶ Definition 1.4. The non-lexicon production rules are called structural, and the
nonterminals in the heads are called phrasal categories.

Michael Kohlhase: LBS 49 2024-01-20

Context-Free Parsing
▶ Recall: The sentences accepted by a grammar are defined “top-down” as those

the start symbol can be rewritten into.
▶ Definition 1.5. Bottom up parsing works by replacing any substring that

matches the body of a production rule with its head.
▶ Example 1.6. Using the Wumpus grammar (below), we get the following parse

trees in bottom up parsing:

I shoot the Wumpus

▶ Bottom up parsing algorithms tend to be more efficient than top-down ones.
▶ Efficient context-free parsing algorithms run in O(n3), run at several thousand

words/second for real grammars.
▶ Theorem 1.7. Context-free parsing =̂ Boolean matrix multiplication!
▶ ; unlikely to find faster practical algorithms. (details in [Lee02])

Michael Kohlhase: LBS 50 2024-01-20

Context-Free Parsing
▶ Recall: The sentences accepted by a grammar are defined “top-down” as those

the start symbol can be rewritten into.
▶ Definition 1.8. Bottom up parsing works by replacing any substring that

matches the body of a production rule with its head.
▶ Example 1.9. Using the Wumpus grammar (below), we get the following parse

trees in bottom up parsing:

I shoot the Wumpus

Pronoun TransVerb Article Noun

▶ Bottom up parsing algorithms tend to be more efficient than top-down ones.
▶ Efficient context-free parsing algorithms run in O(n3), run at several thousand

words/second for real grammars.
▶ Theorem 1.10. Context-free parsing =̂ Boolean matrix multiplication!
▶ ; unlikely to find faster practical algorithms. (details in [Lee02])

Michael Kohlhase: LBS 50 2024-01-20

Context-Free Parsing
▶ Recall: The sentences accepted by a grammar are defined “top-down” as those

the start symbol can be rewritten into.
▶ Definition 1.11. Bottom up parsing works by replacing any substring that

matches the body of a production rule with its head.
▶ Example 1.12. Using the Wumpus grammar (below), we get the following parse

trees in bottom up parsing:

I shoot the Wumpus

Pronoun TransVerb Article Noun

NP NP

▶ Bottom up parsing algorithms tend to be more efficient than top-down ones.
▶ Efficient context-free parsing algorithms run in O(n3), run at several thousand

words/second for real grammars.
▶ Theorem 1.13. Context-free parsing =̂ Boolean matrix multiplication!
▶ ; unlikely to find faster practical algorithms. (details in [Lee02])

Michael Kohlhase: LBS 50 2024-01-20

Context-Free Parsing
▶ Recall: The sentences accepted by a grammar are defined “top-down” as those

the start symbol can be rewritten into.
▶ Definition 1.14. Bottom up parsing works by replacing any substring that

matches the body of a production rule with its head.
▶ Example 1.15. Using the Wumpus grammar (below), we get the following parse

trees in bottom up parsing:

I shoot the Wumpus

Pronoun TransVerb Article Noun

NP NP

VP

▶ Bottom up parsing algorithms tend to be more efficient than top-down ones.
▶ Efficient context-free parsing algorithms run in O(n3), run at several thousand

words/second for real grammars.
▶ Theorem 1.16. Context-free parsing =̂ Boolean matrix multiplication!
▶ ; unlikely to find faster practical algorithms. (details in [Lee02])

Michael Kohlhase: LBS 50 2024-01-20

Context-Free Parsing
▶ Recall: The sentences accepted by a grammar are defined “top-down” as those

the start symbol can be rewritten into.
▶ Definition 1.17. Bottom up parsing works by replacing any substring that

matches the body of a production rule with its head.
▶ Example 1.18. Using the Wumpus grammar (below), we get the following parse

trees in bottom up parsing:

I shoot the Wumpus

Pronoun TransVerb Article Noun

NP NP

VP

S

Traditional linear notation: Also write this as:

[S [NP[Pronoun I]][VP[TransVerb shoot][NP[Article the][Noun Wumpus]]]]

▶ Bottom up parsing algorithms tend to be more efficient than top-down ones.
▶ Efficient context-free parsing algorithms run in O(n3), run at several thousand

words/second for real grammars.
▶ Theorem 1.19. Context-free parsing =̂ Boolean matrix multiplication!
▶ ; unlikely to find faster practical algorithms. (details in [Lee02])

Michael Kohlhase: LBS 50 2024-01-20

Context-Free Parsing

▶ Recall: The sentences accepted by a grammar are defined “top-down” as those
the start symbol can be rewritten into.

▶ Definition 1.20. Bottom up parsing works by replacing any substring that
matches the body of a production rule with its head.

▶ Example 1.21. Using the Wumpus grammar (below), we get the following parse
trees in bottom up parsing:

[S [NP[Pronoun I]][VP[TransVerb shoot][NP[Article the][Noun Wumpus]]]]

▶ Bottom up parsing algorithms tend to be more efficient than top-down ones.
▶ Efficient context-free parsing algorithms run in O(n3), run at several thousand

words/second for real grammars.

▶ Theorem 1.22. Context-free parsing =̂ Boolean matrix multiplication!
▶ ; unlikely to find faster practical algorithms. (details in [Lee02])

Michael Kohlhase: LBS 50 2024-01-20

Context-Free Parsing

▶ Recall: The sentences accepted by a grammar are defined “top-down” as those
the start symbol can be rewritten into.

▶ Definition 1.23. Bottom up parsing works by replacing any substring that
matches the body of a production rule with its head.

▶ Example 1.24. Using the Wumpus grammar (below), we get the following parse
trees in bottom up parsing:

[S [NP[Pronoun I]][VP[TransVerb shoot][NP[Article the][Noun Wumpus]]]]

▶ Bottom up parsing algorithms tend to be more efficient than top-down ones.
▶ Efficient context-free parsing algorithms run in O(n3), run at several thousand

words/second for real grammars.
▶ Theorem 1.25. Context-free parsing =̂ Boolean matrix multiplication!
▶ ; unlikely to find faster practical algorithms. (details in [Lee02])

Michael Kohlhase: LBS 50 2024-01-20

Grammaticality Judgments
▶ Problem: The formal language L(G) accepted by a grammar G may differ

from the natural language Ln it supposedly models.
▶ Definition 1.26. We say that a grammar G over-generates, iff it accepts strings

outside of Ln (false positives) and under-generates, iff there are Ln strings (false
negatives) that L(G) does not accept.

▶ Adjusting L(G) to agree with Ln is an inductive learning problem!
▶ * the gold grab the wumpus
▶ * I smell the wumpus the gold
▶ I give the wumpus the gold
▶ * I donate the wumpus the gold

▶ Intersubjective agreement somewhat reliable, independent of semantics!
▶ Real grammars (100–5000 rules) are insufficient even for “proper” English.

Michael Kohlhase: LBS 51 2024-01-20

3.1.2 A first GF Grammar

Michael Kohlhase: LBS 51 2024-01-20

The Grammatical Framework (GF)

▶ Definition 1.27. Grammatical Framework (GF [Ran04; Ran11]) is a modular
formal framework and functional programming language for writing multilingual
grammars of natural languages.

▶ Definition 1.28. GF comes with the GF Resource Grammar Library, a reusable
library for dealing with the morphology and syntax of a growing number of
natural languages. (currently > 30)

▶ Definition 1.29. A GF grammar consists of
▶ an abstract grammar that specifies well-formed abstract syntax trees (AST),
▶ a collection of concrete grammars for natural languages that specify how ASTs can

be linearized into (natural language) strings.
▶ Definition 1.30. Parsing is the dual to linearization, it transforms NL utterances

into abstract syntax trees.
▶ Definition 1.31. The Grammatical Framwork comes with an implementation;

the GF system that implements parsing, linearization, and by combination
machine translation. (download/install from [GF])

Michael Kohlhase: LBS 52 2024-01-20

Hello World Example for GF (Syntactic)
▶ Example 1.32 (A Hello World Grammar).

abstract zero = {
flags startcat=O;
cat
S ; NP ; V2 ;

fun
spo : V2 -> NP -> NP -> S ;
John, Mary : NP ;
Love : V2 ;

}

concrete zeroEng of zero = {
lincat
S, NP, V2 = Str ;

lin
spo vp s o

= s ++ vp ++ o;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;

}

▶ Make a French grammar with John="Jean"; Mary="Marie"; Love="aime";

▶ Parse a sentence in GF: parse "John loves Mary" ; Love John Mary

▶ Linearize in GF: linearize Love John Mary ; John loves Mary
▶ translate in GF:

parse -lang=Eng "John Loves Mary" | linearize -lang=Fre
▶ generate random sentences to test:

generate_random -number=10 | linearize -lang=Fre ;
Jean aime Marie

Michael Kohlhase: LBS 53 2024-01-20

Hello World Example for GF (Syntactic)
▶ Example 1.33 (A Hello World Grammar).

abstract zero = {
flags startcat=O;
cat
S ; NP ; V2 ;

fun
spo : V2 -> NP -> NP -> S ;
John, Mary : NP ;
Love : V2 ;

}

concrete zeroEng of zero = {
lincat
S, NP, V2 = Str ;

lin
spo vp s o

= s ++ vp ++ o;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;

}

▶ Make a French grammar with John="Jean"; Mary="Marie"; Love="aime";
▶ Parse a sentence in GF: parse "John loves Mary" ; Love John Mary

▶ Linearize in GF: linearize Love John Mary ; John loves Mary
▶ translate in GF:

parse -lang=Eng "John Loves Mary" | linearize -lang=Fre
▶ generate random sentences to test:

generate_random -number=10 | linearize -lang=Fre ;
Jean aime Marie

Michael Kohlhase: LBS 53 2024-01-20

Hello World Example for GF (Syntactic)
▶ Example 1.34 (A Hello World Grammar).

abstract zero = {
flags startcat=O;
cat
S ; NP ; V2 ;

fun
spo : V2 -> NP -> NP -> S ;
John, Mary : NP ;
Love : V2 ;

}

concrete zeroEng of zero = {
lincat
S, NP, V2 = Str ;

lin
spo vp s o

= s ++ vp ++ o;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;

}

▶ Make a French grammar with John="Jean"; Mary="Marie"; Love="aime";
▶ Parse a sentence in GF: parse "John loves Mary" ; Love John Mary
▶ Linearize in GF: linearize Love John Mary ; John loves Mary
▶ translate in GF:

parse -lang=Eng "John Loves Mary" | linearize -lang=Fre
▶ generate random sentences to test:

generate_random -number=10 | linearize -lang=Fre ;
Jean aime Marie

Michael Kohlhase: LBS 53 2024-01-20

Translation to Logic

▶ Idea: Use logic as a “natural language” (to translate into)
▶ Example 1.35 (Hello Prolog). Linearize to Prolog terms:

concrete zeroPro of zero = {
lincat
S , NP , V2 = Str;

lin
spo = \vt,subj,obj -> vt ++ "(" ++ subj ++ "," ++ obj ++ ").";
John = "john";
Mary = "mary";
Love = "loves";

}

▶ Linearization in GF: linearize Love John Mary ;
loves (john , mary)

▶ Note: loves (john , mary) is not a quasi-logical forms, but a Prolog
term that can be read into an Prolog interpreter for pragmatic analysis.

Michael Kohlhase: LBS 54 2024-01-20

Syntactic and Semantic Grammars

▶ Recall our interpretation pipeline

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

▶ Definition 1.36. We call a grammar syntactic, iff the categories and
constructors are motivated by the syntactic structure of the utterance, and
semantic, iff they are motivated by the structure of the domain to be modeled.

▶ Grammar zero from 1.32 is syntactic.

▶ We will look at semantic versions next.

Michael Kohlhase: LBS 55 2024-01-20

Syntactic and Semantic Grammars

▶ Recall our interpretation pipeline

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

▶ Definition 1.37. We call a grammar syntactic, iff the categories and
constructors are motivated by the syntactic structure of the utterance, and
semantic, iff they are motivated by the structure of the domain to be modeled.

▶ Grammar zero from 1.32 is syntactic.
▶ We will look at semantic versions next.

Michael Kohlhase: LBS 55 2024-01-20

Hello World Example for GF (semantic)

▶ A semantic Hello World Grammar

abstract one = {
flags startcat = O;
cat
I; -- Individuals
O; -- Statements

fun
John, Mary : I;
Love : I -> I -> O;

}

concrete oneEng of one = {
lincat
I = Str ;
O = Str ;

lin
John = "John";
Mary = "Mary";
Love s o = s ++ "loves" ++ o;

}

▶ Instead of the “syntactic categories” S (sentence), NP (noun phrase), and V2
(transitive verb), we now have the semantic categories I (individual) and O
(proposition).

Michael Kohlhase: LBS 56 2024-01-20

3.1.3 Inflection and Case in GF

Michael Kohlhase: LBS 56 2024-01-20

Towards Complex Linearizations (Setup/English)

▶ Extending our hello world grammar(the trivial bit) We add the determiner the as
an operator that turns a noun (N) into a noun phrase (NP)

abstract two = {
flags startcat=O;
cat
S ; NP ; V2 ; N;

fun
spo : V2 -> NP -> NP -> S ;
John, Mary : NP ;
Love : V2 ;
dog, mouse : N;
the : N -> NP ;

}

concrete twoEN of two = {
lincat
S, NP, V2, N = Str ;

lin
spo vp s o

= s ++ vp ++ o;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;
dog = "dog" ;
mouse = "mouse" ;
the x = "the" ++ x;

}

▶ Idea: A noun phrase is a phrase that can be used wherever a proper name can
be used.

Michael Kohlhase: LBS 57 2024-01-20

Towards Complex Linearizations (German)

▶ We try the same for German

abstract two = {
flags startcat=O;
cat
S ; NP ; V2 ; N;

fun
spo : V2 -> NP -> NP -> S ;
John, Mary : NP ;
Love : V2 ;
dog, mouse : N;
the : N -> NP ;

}

concrete twoDE0 of two = {
lincat S, NP, V2, N = Str ;
lin
spo vp s o = s ++ vp ++ o;
John = "Johann" ;
Mary = "Maria" ;
Love = "liebt" ;
dog = "Hund" ;
mouse = "Maus" ;
the x = "der" ++ x;

}

▶ Let us test-drive this; as expected we obtain
two> l -lang=DE0 spo Love John (the dog)
Johann liebt der Hund

▶ Problem: Johann liebt der Hund is not grammatical in German
; We need to take (grammatical) gender into account to obtain the correct
form den of the determiner.

Michael Kohlhase: LBS 58 2024-01-20

Adding Gender

▶ To add gender, we add a parameter and extend the type N to a record

concrete twoDE1 of two = {
param
Gender = masc | fem | neut;

lincat
S, V2, NP = Str ;
N = {s : Str; gender : Gender};

lin
spo vp s o = s ++ vp ++ o;
John = "Johann" ;
Mary = "Maria" ;
Love = "liebt" ;
dog = {s = "Hund"; gender = masc} ;
mouse = {s = "Maus" ; gender = fem} ;
the x = case x.gender of {masc => "der" ++ x.s;

fem => "die" ++ x.s;
neut => "das" ++ x.s} ;

}

Michael Kohlhase: LBS 59 2024-01-20

Adding Gender

▶ Let us test-drive this; as expected we obtain
two> l -lang=DE1 spo Love (the mouse) Mary
Die Maus liebt Maria.
two> l -lang=DE1 spo Love Mary (the dog)
Maria liebt der Hund.

▶ We need to take into account case in German too.

Michael Kohlhase: LBS 60 2024-01-20

Adding Case

▶ To add case, we add a parameter, reinterpret type NP as a case-dependent table
of forms.

concrete twoDE2 of two = {
param
Gender = masc | fem | neut;
Case = nom | acc;

lincat
S, V2 = {s: Str} ;
N = {s : Str; gender : Gender};
NP = {s : Case => Str};

Michael Kohlhase: LBS 61 2024-01-20

Adding Case

▶

lin
spo vp subj obj = {s = subj.s!nom ++ vp.s ++ obj.s!acc};
John = {s = table {nom => "Johann"; acc => "Johann"}};
Mary = {s = table {nom => "Maria"; acc => "Maria"}};
Love = {s = "liebt"} ;
dog = {s = "Hund"; gender = masc} ;
mouse = {s = "Maus" ; gender = fem} ;
the x = {s = table

{ nom => case x.gender of {masc => "der" ++ x.s;
fem => "die" ++ x.s;
neut => "das" ++ x.s};

acc => case x.gender of {masc => "den" ++ x.s;
fem => "die" ++ x.s;
neut => "das" ++ x.s}}};}

▶ Let us test-drive this; as expected we obtain
two> l -lang=DE2 spo Love Mary (the dog)
Maria liebt den Hund.

Michael Kohlhase: LBS 62 2024-01-20

Adding Operations (reusable components)

▶ We add operations (functions with λ =̂) to get the final form.

concrete twoDE of two = {
param

Gender = masc | fem | neut;
Case = nom | acc;

oper
Noun : Type = {s : Str; gender : Gender};

mkPN : Str −> NP = \x −> lin NP {s = table {nom => x; acc => x}};
mkV2 : Str −> V2 = \x −> lin V2 {s = x};
mkN : Str −> Gender −> Noun = \x,g −> {s = x; gender = g};
mkXXX : Str −> Str −> Str −> Noun −> Str =

\ma,fe,ne,noun −> case noun.gender of {masc => ma ++ noun.s;
fem => fe ++ noun.s;
neut => ne ++ noun.s};

Michael Kohlhase: LBS 63 2024-01-20

Adding Operations (reusable components)

▶

lincat
S, V2 = {s : Str};
N = Noun;
NP = {s: Case => Str};

lin
spo vp subj obj = {s = subj.s!nom ++ vp.s ++ obj.s!acc};
John = mkPN "Johannes";
Mary = mkPN "Maria";
Love = mkV2 "liebt";
dog = mkN "Hund" masc;
mouse = mkN "Maus" fem;
the n = {s = table { nom => mkXXX "der" "die" "das" n;

acc => mkXXX "den" "die" "das" n}
};

}

Michael Kohlhase: LBS 64 2024-01-20

3.1.4 Engineering Resource Grammars in GF

Michael Kohlhase: LBS 64 2024-01-20

Modular Grammars (Abstract)

▶ We split the grammar into modules (resource + application grammar)
Monolithic Modular

abstract two = {
flags startcat=O;
cat

S ; NP ; V2 ; N;
fun

spo : V2 −> NP −> NP −> S ;
John, Mary : NP ;
Love : V2 ;
dog, mouse : N;
the : N −> NP ;

}

abstract twoCat = {
cat S ; NP ; V2 ; N;}

abstract twoGrammar = twoCat ∗∗ {
fun

spo : V2 −> NP −> NP −> S ;
the : N −> NP ; }

abstract twoLex = twoCat ∗∗ {
fun

John, Mary : NP ;
Love : V2 ;
dog, mouse : N;}

abstract twoRG = twoGrammar,twoLex;
∗∗ {flags startcat=O;}

▶ Functionality is the same, but we can reuse the components

Michael Kohlhase: LBS 65 2024-01-20

Modular Grammars (Concrete English)
▶ We split the grammar into modules (resource + application grammar)

Monolithic Modular

concrete twoEN of two = {
lincat

S, NP, V2, N = Str ;
lin

spo vp s o = s ++ vp ++ o;
John = "John" ;
Mary = "Mary" ;
Love = "loves" ;
dog = "dog" ;
mouse = "mouse" ;
the x = "the" ++ x;

}

resource twoParadigmsEN =
twoCatEN ∗∗ {oper

mkPN : Str −> StringType
= \x −> {s = x};

mkV2 : Str −> StringType
= \x −> {s = x};

mkN : Str −> StringType
= \x −> {s = x};}

concrete twoCatEN of twoCat = {
oper StringType : Type = {s : Str};
lincat

S, NP, N, V2 = StringType ;}
concrete twoGrammarEN of twoGrammar =

twoCatEN ∗∗ {
lin

spo vp s o
= {s= s.s ++ vp.s ++ o.s};

the x = {s = "the" ++ x.s};}
concrete twoLexEN of twoLex =

twoCatEN ∗∗ open twoParadigmsEN in {
lin

John = mkPN "John" ;
Mary = mkPN "Mary" ;
Love = mkV2 "loves" ;
dog = mkN "dog" ;
mouse = mkN "mouse" ;}

concrete twoRGEN of twoRG =
twoGrammarEN,twoLexEN;

Michael Kohlhase: LBS 66 2024-01-20

Modular Grammars (Concrete German)

▶ We split the grammar into modules (resource + application grammar)
concrete twoCatDE of twoCat = {

param
Gender = masc | fem | neut;
Case = nom | acc;

oper
Noun : Type = {s : Str; gender : Gender};
NounPhrase : Type = {s: Case => Str};

lincat
S, V2 = {s : Str};
N = Noun;
NP = NounPhrase;}

resource twoParadigmsDE = twoCatDE ∗∗ {
oper

mkPN : Str −> NounPhrase = \x −> {s = table {nom => x; acc => x}};
mkV2 : Str −> V2 = \x −> lin V2 {s = x};
mkN : Str −> Gender −> Noun = \x,g −> {s = x; gender = g};
mkXXX : Str −> Str −> Str −> Noun −> Str =

\ma,fe,ne,noun −> case noun.gender of {masc => ma ++ noun.s;
fem => fe ++ noun.s;
neut => ne ++ noun.s};}

Michael Kohlhase: LBS 67 2024-01-20

Modular Grammars (Concrete German)

▶ concrete twoGrammarDE of twoGrammar =
twoCatDE ** open twoParadigmsDE in {
lin
spo vp subj obj = {s = subj.s!nom ++ vp.s ++ obj.s!acc};
the n = {s = table { nom => mkXXX "der" "die" "das" n;

acc => mkXXX "den" "die" "das" n}};}

concrete twoLexDE of twoLex = twoCatDE ** open twoParadigmsDE in {
lin
John = mkPN "Johannes";
Mary = mkPN "Maria";
Love = mkV2 "liebt";
dog = mkN "Hund" masc;
mouse = mkN "Maus" fem;}

concrete twoRGDE of twoRG = twoGrammarDE,twoLexDE;

Michael Kohlhase: LBS 68 2024-01-20

A Semantic Grammar

▶ We use logic-inspired categories instead of the syntactic ones
Syntactic Semantic

abstract two = {
flags startcat=O;
cat

S ; NP ; V2 ; N;
fun

spo : V2 −> NP −> NP −> S ;
John, Mary : NP ;
Love : V2 ;
dog, mouse : N;
the : N −> NP ;

}

abstract three = {
flags startcat=O;
cat

I; O; P1; P2;
fun

spo : P2 −> I −> I −> O ;
John, Mary : I ;
Love : P2 ;
dog, mouse : P1;
the : P1 −> I;

}

Michael Kohlhase: LBS 69 2024-01-20

A Semantic Grammar (Modular Development)
▶ We use logic-inspired categories instead of the syntactic ones

Syntactic Semantic

concrete twoCatEN of twoCat = {
oper StringType : Type = {s : Str};
lincat

S, NP, N, V2 = StringType ;}
concrete twoGrammarEN of twoGrammar =

twoCatEN ∗∗ {
lin

spo vp s o = {s= s.s ++ vp.s ++ o.s};
the x = {s = "the" ++ x.s};}

concrete twoLexEN of twoLex =
twoCatEN ∗∗ open twoParadigmsEN in {
lin

John = mkPN "John" ;
Mary = mkPN "Mary" ;
Love = mkV2 "loves" ;
dog = mkN "dog" ;
mouse = mkN "mouse" ;}

concrete twoRGEN of twoRG =
twoGrammarEN,twoLexEN;

concrete threeEN of three =
twoLexEN,twoGrammarEN ∗∗
open twoParadigmsEN in {
lincat

I = NP;
O = S;
P1 = N;
P2 = V2;

}
concrete threeDE of three =

twoLexDE,twoGrammarDE ∗∗
open twoParadigmsDE in {
lincat

I = NP;
O = S;
P1 = N;
P2 = V2;

}

Michael Kohlhase: LBS 70 2024-01-20

3.2 MMT: A Modular Framework for
Representing Logics and Domains

Michael Kohlhase: LBS 70 2024-01-20

3.2.1 Propositional Logic in MMT: A first
Example

Michael Kohlhase: LBS 70 2024-01-20

Implementing minimal PL0 in Mmt
▶ Recall: The language wff0(Σ0) of propositional logic (PL0) consists of

propositions built from propositional variables from V0 and connectives from Σ0.
▶ We model wff0(Σ0) in a Mmt theory (Σ0:={¬,∧} for the moment)

theory proplogMinimal : ur:?LF =

▶ theory is the Mmt keyword for modules, the module delimiter delimits them.
▶ A theory has a local name and a meta-theory (after the :)

Here it is LF (provides the logical constants →, type, λ, Π)
▶ Mmt theories contain declarations of the form

⟨⟨name⟩⟩ : ⟨⟨type⟩⟩ # ⟨⟨notation⟩⟩
▶ declarations are delimited by the declaration delimiter ,
▶ declaration components by the object delimiter .

▶ Example 2.1. A declaration for the type of propositions
prop : type # o

▶ the local name prop is the system identifier
▶ the type type declares prop to be a type (optional part)
▶ the notation definition o declares the notation for prop (can be used instead)

(optional part)

Michael Kohlhase: LBS 71 2024-01-20

Implementing minimal PL0 in Mmt (continued)
▶ Example 2.2. Declarations for the connectives ¬ and ∧

not : o → o # ¬1 prec 100
▶ the type o → o declares the constant not to be a unary function
▶ the notation definition ¬1 prec 100 establishes
▶ the function symbol ¬ for not followed by argument 1.
▶ brackets are governed by the precedence 100 (binding strength)

and : o → o → o # 1 ∧ 2 prec 90
▶ The type o → o → o declares the constant and to be a binary function (note

currying)
▶ the notation definition # 1 ∧ 2 prec 90 establishes
▶ the infix function symbol ∧ for and preceded by argument 1 and followed by 2,
▶ brackets are governed by the precedence 90 (weaker than for not)

▶ Testing precedences: the Mmt system accepts A : o test : ¬A ∧ A
And ¬A ∧ A is parsed as (¬A) ∧ A instead of ¬(A ∧ A)

▶ All together now! PL0 Syntax as a Mmt theory:
theory proplogMinimal : ur:?LF =

prop : type # o
not : o → o # ¬1 prec 100
and : o → o → o # 1 ∧ 2 prec 90

Michael Kohlhase: LBS 72 2024-01-20

Completing PL0 by Definitions

▶ Building on this, we can define additional connectives: ∨, ⇒, ⇔
theory proplog : ur:?LF =

include ?proplogMinimal
or : o → o → o # 1 ∨ 2 prec 80 = [a:o,b:o] ¬(¬ a ∧ ¬b)
implies : o → o → o # 1 ⇒ 2 prec 70 = [a:o,b:o] ¬a ∨ b

▶ include is the keyword for an inclusion declaration
here we include the theory proplogMinimal (notation: theory refs prefixed by ?)
this makes all of its declarations available locally in theory proplog.

▶ new declaration components: definientia give a constant meaning by replacement.
▶ [a:o,b:o] ¬a ∨ b is the Mmt notation for λaobo ¬a ∨ b, i.e. the function that

given two propositions a and b returns the proposition ¬a ∨ b.
▶ Note: types optional in lambdas (Mmt system infers them from context)

▶ This completes the syntax (language of formulae) of PL0.
▶ Observation: The declarations in proplog amount to a context-free grammar

of PL0.

Michael Kohlhase: LBS 73 2024-01-20

Describing Situations for Truth Conditions

▶ We want to derive the truth conditions e.g. for Peter loves Mary.
▶ Definition 2.3. A situation theory is an Mmt theory that formalizes a situation.
▶ First Attempt: We provide declarations for the individuals and their relations.

theory world1 : ur:?LF =
include ?proplog

individual : type # ι
peter : ι
mary : ι
loves : ι→ ι→ o

plm = loves peter mary // just an abbreviation

▶ Problem: We have not asserted that plm is true in world1, . . .
. . . only that the proposition plm exists.

▶ Idea: Let’s assert that plm is “provable” in theory world1.

Michael Kohlhase: LBS 74 2024-01-20

Asserting Truth by Declaring Provability in Mmt Theories

▶ Observation: We can only assert existance in a theory by declarations.
▶ Idea 1: Use declarations to declare certain types to be inhabited =̂ non-empty.
▶ Idea 2: A proposition A is “provable”, iff the “type of all proofs of A” is

inhabited.
▶ Idea 3: We can express “the type of all proofs of A” as ⊢A

if we declare a suitable type constructor in Mmt:
ded : prop → type # ⊢1

▶ All Together Now: We can assert that Peter loves Mary in theory world1
plm_axiom : ⊢plm // the type of proofs of plm is inhabited
Note that in this interpretation the constant plm_axiom is a “proof of plm”

▶ Definition 2.4. This way of representing axioms (and eventually theorems) is
called the propositions as types paradigm.

Michael Kohlhase: LBS 75 2024-01-20

Asserting Truth in Mmt theories (continued)

▶ We can make world1 happier by asserting Mary loves Peter.
mlp = loves mary peter
mlp_axiom : ⊢mlp

▶ Do Peter and Mary love each other in world1?
▶ We would have to have a proof of plm ∧ mlp, which we don’t.
▶ Observation: There should be one, given that we have proofs for plm and mlp!
▶ Observation: We need a proof constructor – a function constant that

constructs a proof of plm ∧ mlp from those.
▶ Idea: Let’s just declare one: pc : ⊢plm →⊢mlp →⊢plm ∧ mlp
▶ We can generalize this to the inference rule of conjunction introduction

conjI : {A:o,B:o} ⊢A →⊢B →⊢A∧ B
{A:o,B:o} is the Mmt notation for Π from LF. (dependent
type constructor)
Read as “for arbitrary but fixed propositions A and B. . . ” . . .

A B
A ∧ B

ND_0 ∧ I

▶ Idea: This leads to a Mmt formalization of the propositional natural deduction
calculus ND_0. (up next)

Michael Kohlhase: LBS 76 2024-01-20

Propositional Natural Deduction

▶ Observation: With the ideas discussed above we can do almost all of the
inference rules of ND_0.

▶ Let’s start small with Σ0 = {¬,∧}: here are the rules again.
▶ The start of an Mmt theory:

Michael Kohlhase: LBS 77 2024-01-20

Propositional Natural Deduction

▶ Observation: With the ideas discussed above we can do almost all of the
inference rules of ND_0.

▶ Let’s start small with Σ0 = {¬,∧}: here are the rules again.
Introduction Elimination

A B
A ∧ B

ND_0 ∧ I
A ∧ B

A
ND_0 ∧ El

A ∧ B
B

ND_0 ∧ Er

[A]1

...
C

[A]1

...
¬C

¬A
ND_0¬I 1 ¬¬A

A
ND_0¬E

▶ The start of an Mmt theory:

Michael Kohlhase: LBS 77 2024-01-20

Propositional Natural Deduction

▶ Observation: With the ideas discussed above we can do almost all of the
inference rules of ND_0.

▶ Let’s start small with Σ0 = {¬,∧}: here are the rules again.
▶ The start of an Mmt theory:

theory proplog-ND : ur:?LF =
include ?proplogMinimal
ded : prop → type # ⊢1
conjI : {A:o,B:o} ⊢A →⊢B →⊢A∧ B
conjEl : {A:o,B:o} ⊢A∧ B →⊢A
conjEr : {A:o,B:o} ⊢A∧ B →⊢B
negE : {A:o} ⊢¬¬A →⊢A

Michael Kohlhase: LBS 77 2024-01-20

Local Hypotheses in Natural Deduction

For ND_0¬I we need a new idea for the representation of
the local hypothesis A.
A subproof P with a local hypothesis [A] allows to plug in a
proof of A and complete it P to a full proof for C.
Idea: Represent this as a function from ⊢ A to ⊢ C.

[A]1

...
C

[A]1

...
¬C

¬A
▶

▶ In Mmt we have:
negI : {A:o,C:o} (⊢A →⊢C) → (⊢A →⊢¬C) →⊢¬A

ND_0¬I 1 takes proof transformers as arguments and returns a proof of ¬A.
▶ With this idea, we can do the rest of the inference rules of ND_0, e.g.

implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b)

Michael Kohlhase: LBS 78 2024-01-20

Writing Proofs in Mmt

▶ Recap: In Mmt, we can write axioms as declarations c : ⊢a using the
propositions as types paradigm: the proof type ⊢a must be inhabited, since it
has the proof c of a as an inhabitant.

▶ Observation: This can be extended to theorems, by giving denfinientia:
A declaration c : ⊢a = Φ also ensures that ⊢a is inhabited, but using
already existing material Φ.

▶ Example 2.5. Let’s try this on the well-known ND_0 proof

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

Eventually, this will be represented as
ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))

= [a, b] ([p:⊢(a∧ b)] (p andEr) (p andEl) andI) implI

Michael Kohlhase: LBS 79 2024-01-20

Writing Proofs in Mmt (step by step)

▶ Example 2.6 (Continued).

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

▶ Line 1: name and type (optional)

▶ Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}
▶ Line 6: the proof is constructed by impI with one argument (a subproof Ψ)

▶ But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!
▶ Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)
▶ Justification: The Mmt system can reconstruct implicit arguments

▶ Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line 4
Idea: the (informal) function of the co-indexing is formalized by λ-abstraction

▶ Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI
▶ Line 3/4: two subproofs constructed from p by andEl/andEr.

▶ Observation 1: The postfix notations make the Mmt proof term similar!
▶ Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Writing Proofs in Mmt (step by step)

▶ Example 2.7 (Continued).

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

▶ Line 1: name and type (optional)
▶ Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}

▶ Line 6: the proof is constructed by impI with one argument (a subproof Ψ)

▶ But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!
▶ Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)
▶ Justification: The Mmt system can reconstruct implicit arguments

▶ Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line 4
Idea: the (informal) function of the co-indexing is formalized by λ-abstraction

▶ Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI
▶ Line 3/4: two subproofs constructed from p by andEl/andEr.

▶ Observation 1: The postfix notations make the Mmt proof term similar!
▶ Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Writing Proofs in Mmt (step by step)

▶ Example 2.8 (Continued).

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

▶ Line 1: name and type (optional)
▶ Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}
▶ Line 6: the proof is constructed by impI with one argument (a subproof Ψ)

▶ But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!
▶ Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)
▶ Justification: The Mmt system can reconstruct implicit arguments

▶ Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line 4
Idea: the (informal) function of the co-indexing is formalized by λ-abstraction

▶ Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI
▶ Line 3/4: two subproofs constructed from p by andEl/andEr.

▶ Observation 1: The postfix notations make the Mmt proof term similar!
▶ Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Writing Proofs in Mmt (step by step)

▶ Example 2.9 (Continued).

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

▶ Line 1: name and type (optional)
▶ Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}
▶ Line 6: the proof is constructed by impI with one argument (a subproof Ψ)
▶ But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!

▶ Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)
▶ Justification: The Mmt system can reconstruct implicit arguments

▶ Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line 4
Idea: the (informal) function of the co-indexing is formalized by λ-abstraction

▶ Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI
▶ Line 3/4: two subproofs constructed from p by andEl/andEr.

▶ Observation 1: The postfix notations make the Mmt proof term similar!
▶ Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Writing Proofs in Mmt (step by step)

▶ Example 2.10 (Continued).

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

▶ Line 1: name and type (optional)
▶ Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}
▶ Line 6: the proof is constructed by impI with one argument (a subproof Ψ)
▶ But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!
▶ Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)

▶ Justification: The Mmt system can reconstruct implicit arguments
▶ Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line 4

Idea: the (informal) function of the co-indexing is formalized by λ-abstraction
▶ Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI
▶ Line 3/4: two subproofs constructed from p by andEl/andEr.

▶ Observation 1: The postfix notations make the Mmt proof term similar!
▶ Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Writing Proofs in Mmt (step by step)

▶ Example 2.11 (Continued).

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

▶ Line 1: name and type (optional)
▶ Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}
▶ Line 6: the proof is constructed by impI with one argument (a subproof Ψ)
▶ But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!
▶ Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)
▶ Justification: The Mmt system can reconstruct implicit arguments

▶ Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line 4
Idea: the (informal) function of the co-indexing is formalized by λ-abstraction

▶ Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI
▶ Line 3/4: two subproofs constructed from p by andEl/andEr.

▶ Observation 1: The postfix notations make the Mmt proof term similar!
▶ Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Writing Proofs in Mmt (step by step)

▶ Example 2.12 (Continued).

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

▶ Line 1: name and type (optional)
▶ Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}
▶ Line 6: the proof is constructed by impI with one argument (a subproof Ψ)
▶ But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!
▶ Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)
▶ Justification: The Mmt system can reconstruct implicit arguments

▶ Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line 4
Idea: the (informal) function of the co-indexing is formalized by λ-abstraction

▶ Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI
▶ Line 3/4: two subproofs constructed from p by andEl/andEr.

▶ Observation 1: The postfix notations make the Mmt proof term similar!
▶ Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Writing Proofs in Mmt (step by step)

▶ Example 2.13 (Continued).

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

▶ Line 1: name and type (optional)
▶ Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}
▶ Line 6: the proof is constructed by impI with one argument (a subproof Ψ)
▶ But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!
▶ Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)
▶ Justification: The Mmt system can reconstruct implicit arguments

▶ Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line 4
Idea: the (informal) function of the co-indexing is formalized by λ-abstraction

▶ Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI

▶ Line 3/4: two subproofs constructed from p by andEl/andEr.
▶ Observation 1: The postfix notations make the Mmt proof term similar!
▶ Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Writing Proofs in Mmt (step by step)

▶ Example 2.14 (Continued).

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

▶ Line 1: name and type (optional)
▶ Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}
▶ Line 6: the proof is constructed by impI with one argument (a subproof Ψ)
▶ But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!
▶ Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)
▶ Justification: The Mmt system can reconstruct implicit arguments

▶ Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line 4
Idea: the (informal) function of the co-indexing is formalized by λ-abstraction

▶ Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI
▶ Line 3/4: two subproofs constructed from p by andEl/andEr.

▶ Observation 1: The postfix notations make the Mmt proof term similar!
▶ Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Writing Proofs in Mmt (step by step)

▶ Example 2.15 (Continued).

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B ∧ A

1ac : {a,b} ⊢((a∧ b)⇒ (b∧ a))
2= [a, b] ([p:⊢(a∧ b)]
3(p andEr)
4(p andEl)
5andI)
6implI

▶ Line 1: name and type (optional)
▶ Line 2: λ-abstraction [a,b] corresponding to Π-abstraction {a,b}
▶ Line 6: the proof is constructed by impI with one argument (a subproof Ψ)
▶ But remember: implI: {a,b} (⊢a →⊢b) →⊢(a⇒ b) takes three!
▶ Idea: add special postfix notation definition # 3 impI (3 7→ Ψ)
▶ Justification: The Mmt system can reconstruct implicit arguments

▶ Lines 2-5: Subproof Ψ with local hyp. [a ∧ b]1, represented as λp-term in Line 4
Idea: the (informal) function of the co-indexing is formalized by λ-abstraction

▶ Line 5: result of Ψ constructed by andI – notation definition # 3 4 andI
▶ Line 3/4: two subproofs constructed from p by andEl/andEr.

▶ Observation 1: The postfix notations make the Mmt proof term similar!
▶ Observation 2: But writing them is very tedious and complex still.

Michael Kohlhase: LBS 80 2024-01-20

Modular Representation in Mmt
▶ Recall: We said that for PL0, it does not matter if Σ0 = {¬,∧} or Σ0 = {¬,∨}.
▶ In particular we can always inter-define ∧ and ∨ via de-Morgan.
▶ Let’s make this formal using views.
▶ Example 2.16. A modular development of the two variants of PL0

theory dednot : ur:?LF =
prop : type # o
ded : o → type # ⊢1
not : o → o # ¬1

theory notand : ur:?LF =
include ?dednot
and : o → o → o # 1 ∧ 2
andI : {a,b} ⊢a →⊢b →

⊢(a∧ b)

theory notor : ur:?LF =
include ?dednot
or : o → o → o # 1 ∨ 2
orIl : {a,b} ⊢a →

⊢(a∨ b)
orIr : {a,b} ⊢b →

⊢(a∨ b)

view and2or : ?notand -> ?notor =
and = [a,b] ¬((¬a) ∨

(¬b))
andI = Φ

view or2and : ?notor -> ?notand =
or = [a,b] ¬((¬a) ∧

(¬b))
andI = Ψ

For some suitable proof expressions Φ and Ψ.
Michael Kohlhase: LBS 81 2024-01-20

3.2.2 General Functionality of MMT

Michael Kohlhase: LBS 81 2024-01-20

Representation language (Mmt)

▶ Definition 2.17. Mmt =̂ module system for mathematical theories
▶ Formal syntax and semantics
▶ needed for mathematical interface language
▶ but how to avoid foundational commitment?

▶ Foundation-independence
▶ identify aspects of underlying language that are necessary for large scale processing
▶ formalize exactly those, be parametric in the rest
▶ observation: most large scale operations need the same aspects

▶ Module system
▶ preserve mathematical structure wherever possible
▶ formal semantics for modularity

▶ Web-scalable
▶ build on XML, OpenMath, OMDoc
▶ URI based logical identifiers for all declarations

▶ Implemented in the Mmt system.

Michael Kohlhase: LBS 82 2024-01-20

Modular Representation of Math (Mmt Example)

▶ Example 2.18 (Elementary Algebra and Arithmetics).

Magma
G , ◦ : G → G → G

Abelian

c : ⊢x◦y=y◦x

SemiGrp

assoc : ⊢(x◦y)◦z=x◦(y◦z)

Monoid
e : G
neutl : ⊢x◦e=x

neutr : ⊢e◦x=x

Group
i : =λx.ιy.x◦y=e

inv : ⊢∀x : G.∃1y : G.x◦y=e

NonGrpMon

ni : ⊢∃x : G.∀y : G.x◦y ̸=e

AbelGroup

Ring
dom : ⊢G m/◦=G a/◦
distl : ⊢x m/◦ (y a/◦ z)=(x m/◦ y) a/◦ (x m/◦ z)

distr : ⊢(y a/◦ z) m/◦ x=(y m/◦ x) a/◦ (z m/◦ x)

NatNums
N, N+, 0 : N, s : N → N+

P3,. . . ,P5

NatPlus
+: N → N → N
base : ⊢n+0=n,
step : ⊢n+s(m)=s(n+m)

NatPlusTimes
· : N → N → N
base : ⊢n·0=0,
step : ⊢n·s(m)=n·m+n

IntArith
Z, − : Z → Z
dom : ⊢Z=p/N∪n/N+

dneg : ⊢−−z=z

φ =

 G 7→ N
◦ 7→ ·
e 7→ 1

ψ =

 G 7→ N
◦ 7→ +
e 7→ 0

ψ′ =

{
i 7→ −
g 7→ f

}
ϑ =

{
m 7→ e
a 7→ c

}

p n

e :φ

f :ψ

d :ψ′

g

c :φ

ng

a

m

i : ϑ

s : {x◦y 7→y◦x}

Michael Kohlhase: LBS 83 2024-01-20

Representing Logics and Foundations as Theories

▶ Example 2.19. Logics and foundations represented as Mmt theories
LF LF+ X

FOL HOL

Monoid CGroup Ring

ZFC

f2h

add

mult

folsem

mod

▶ Definition 2.20. Meta relation between theories special case of inclusion
▶ Uniform Meaning Space: morphisms between formalizations in different

logics become possible via meta-morphisms.
▶ Remark 2.21. Semantics of logics as views into foundations, e.g., folsem.
▶ Remark 2.22. Models represented as views into foundations (e.g. ZFC)
▶ Example 2.23. mod := {G 7→ Z, ◦ 7→ +, e 7→ 0} interprets Monoid in ZFC.

Michael Kohlhase: LBS 84 2024-01-20

A MitM Theory in Mmt Surface Language

▶ Example 2.24. A theory of Groups

▶ Declaration =̂
name : type [= Def] [# notation]

▶ Axioms =̂ Declaration with type ⊢ F

▶ ModelsOf makes a record type from a theory.

▶ MitM Foundation: optimized for natural math formulation
▶ higher-order logic based on polymorphic λ-calculus
▶ judgments-as-types paradigm: ⊢ F =̂ type of proofs of F
▶ dependent types with predicate subtyping, e.g. {n}{′a ∈ mat(n, n)|symm(a)′}
▶ (dependent) record types for reflecting theories

Michael Kohlhase: LBS 85 2024-01-20

The Mmt Module System
▶ Central notion: Theory graph with theory nodes and theory morphisms as

edges.
▶ Definition 2.25. In Mmt, a theory is a sequence of constant declarations

optionally with type declarations and definitions.
▶ Mmt employs the Curry/Howard isomorphism and treats
▶ axioms/conjectures as typed symbol declarations (propositions-as-types)
▶ inference rules as function types (proof transformers)
▶ theorems as definitions (proof terms for conjectures)

▶ Definition 2.26. Mmt has two kinds of theory morphisms
▶ structures instantiate theories in a new context (also called: definitional link, import)

they import theory S into theory T (induces theory morphism S → T)
▶ views translate between existing theories (also called: postulated link, theorem link)

Views transport theorem from source to target (framing).
▶ Together, structures and views allow a very high degree of re-use
▶ Definition 2.27. We call a statement t induced in a theory T , iff there is
▶ a path of theory morphisms from a theory S to T with (joint) assignment σ,
▶ such that t = σ(s) for some statement s in S .

▶ Definition 2.28. In Mmt, all induced statements have a canonical name, the
MMT URI.

Michael Kohlhase: LBS 86 2024-01-20

3.3 ELPI a Higher-Order Logic Programming
Language

Michael Kohlhase: LBS 86 2024-01-20

ELPI

▶ Definition 3.1. λProlog, also written lambda Prolog, is a logic programming
language featuring polymorphic typing, modular programming, and
h i g h e r - o r d e r f u n c t i o nhigher-order programming.

▶ Definition 3.2. ELPI implements a variant of λProlog enriched with constraint
handling rules.

Michael Kohlhase: LBS 87 2024-01-20

ELPI by example

▶ Intuition: ELPI almost works like Prolog, if we forget the advanced features
▶ But: ELPI insists on types declarations for all objects it works with.
▶ Example 3.3 (A Member Predicate). Indeed in line 1 we see an ELPI type

declaration for the ismember predicate. As in Prolog, we use identifiers starting
with capital letters for variables. This makes ismember polymorphic in the type
T.

1 type ismember T -> list T -> prop.
2 ismember X [X|_T].
3 ismember X [_H|T] :- ismember X T.

The recursive ismember predicate itself is just as we would write it in Prolog.
As always, we can test this with the queries
▶ ismember 2 [1,2,3] which succeeds and
▶ ismember 5 [1,2,3] which fails.

Michael Kohlhase: LBS 88 2024-01-20

Propositional Logic in ELPI

▶ Remember: we wanted to use ELPI to automate proof construction for our
target logics.

▶ Idea: Let’s just start with PL0 – this is really just like in Mmt.
kind oo type. % propositions (prop and o are taken)
type neg oo -> oo.
type and oo -> oo -> oo.
type or oo -> oo -> oo.
type impl oo -> oo -> oo.
type true oo.
type false oo.
type pvar int -> oo.

The declarations (and their ELPI syntax) should be quite obvious
the pvar function makes a countable collection of propositional variables.

Michael Kohlhase: LBS 89 2024-01-20

Predicates for Properties of Formulae
▶ Problem: We will need to know when a PL0 formula is atomic later.
▶ Idea: It is easier to (first) specify whehter a formula is complex.

type complex oo -> prop.
complex (neg _Y).
complex (and _X _Y).

And then we just make atomic to be “not complex”.
▶ Standard Method: In ELPI, we use negation as failure: To establish that a

term t is atomic we try to establish that it complex and if that succeeds, then
we fail.
On the other hand, if the first clause of the atomic predicate fails, then the
second clause (automatically) succeeeds.
Together they switch orchestrate the switch of truth values needed for negation
as failure
type atomic oo -> prop.
atomic (X) :- complex(X),!,fail.
atomic (_X).

The trick now is to guard the fail with a cut operator !, a literal that forbids
the atomic predicate to backtrack after it failed. Otherwise the first clause
would succeed via the second clause ruining the effect.

Michael Kohlhase: LBS 90 2024-01-20

Part 1
English as a Formal Language: The Method of

Fragments

Michael Kohlhase: LBS 90 2024-01-20

Chapter 4
Logic as a Tool for Modeling NL Semantics

Michael Kohlhase: LBS 90 2024-01-20

4.1 The Method of Fragments

Michael Kohlhase: LBS 90 2024-01-20

Natural Language Fragments
▶ Methodological Problem: How to organize the scientific method for natural

language?
▶ Delineation Problem: What is natural language, e.g. English?

Which Aspects do we want to study?
▶ Idea: Formalize a set (NL) sentences we want to study by a grammar

; Richard Montague’s method of fragments (1972).
▶ Definition 1.1. The language L of a context-free grammar is called a fragment

of a natural language N, iff L ⊆ N.
▶ Scientific Fiction: We can exhaust English with ever-increasing fragments,

develop a semantic meaning theory for each.
▶ Idea: Use nonterminals to classify NL phrases.
▶ Definition 1.2. We call a nonterminal symbol of a context-free grammar a

phrasal category. We distinguish two kinds of rules:
structural rules: L : H→c1, . . . , cn with head H, label L, and a sequence of
phrasal categories ci .
lexical rules: L : H→t1 | . . . | tn, where the ti are terminals (i.e. NL phrases)

▶ Definition 1.3. In the method of fragments we use a CFG to parse sentences
from the fragment into an abstract syntax tree (AST) for further processing.

Michael Kohlhase: LBS 91 2024-01-20

Formal Natural Language Semantics with Fragments

▶ Idea: We will follow the picture we have discussed before

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

|= ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

|= ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

Choose a target logic FL and specify a translation from syntax trees to formulae!

Michael Kohlhase: LBS 92 2024-01-20

Semantics by Translation

▶ Idea: We translate sentences by translating their syntax trees via tree node
translation rules.

▶ Note: This makes the induced meaning theory compositional.
▶ Definition 1.4. We represent a node α in a syntax tree with children β1, . . ., βn

by [X1β1 , . . . ,Xnβn
]α and write a translation rule as

L : [X1β1 , . . . ,Xnβn
]α ; Φ(X 1

′, . . .,X n
′)

if the translation of the node α can be computed from those of the βi via a
semantical function Φ.

▶ Definition 1.5. For a natural language utterance A, we will use ⟨A⟩ for the
result of translating A.

▶ Definition 1.6 (Default Rule). For every word w in the fragment we assume a
constant w ′ in the logic L and the “pseudo-rule” t1 : w ; w ′. (if no other
translation rule applies)

Michael Kohlhase: LBS 93 2024-01-20

4.2 What is Logic?

Michael Kohlhase: LBS 93 2024-01-20

What is Logic?

▶ Definition 2.1. Logic =̂ formal languages, inference and their relation with the
world
▶ Formal language FL: set of formulae (2 + 3/7, ∀x .x + y = y + x)
▶ Formula: sequence/tree of symbols (x , y , f , g , p, 1, π,∈,¬, ∀, ∃)
▶ Model: things we understand (e.g. number theory)
▶ Interpretation: maps formulae into models ([[three plus five]]I = 8)
▶ Validity: M|=A, iff [[A]]I = T (five greater three is valid)
▶ Entailment: A |=B, iff M|=B for all M|=A. (generalize to H |=A)
▶ Inference: rules to transform (sets of) formulae (A,A ⇒ B⊢B)
▶ Syntax: formulae, inference (just a bunch of symbols)
▶ Semantics: models, interpr., validity, entailment (math. structures)

▶ Important Question: relation between syntax and semantics?

Michael Kohlhase: LBS 94 2024-01-20

4.3 Using Logic to Model Meaning of Natural
Language

Michael Kohlhase: LBS 94 2024-01-20

Modeling Natural Language Semantics

▶ Problem: Find formal (logic) system for the meaning of natural language.
▶ History of ideas
▶ Propositional logic [ancient Greeks like Aristotle]

* Every human is mortal
▶ First-Order Predicate logic [Frege ≤ 1900]

* I believe, that my audience already knows this.
▶ Modal logic [Lewis18, Kripke65]

* A man sleeps. He snores. ((∃X man(X) ∧ sleeps(X))) ∧ snores(X)
▶ Various dynamic approaches (e.g. DRT, DPL)

* Most men wear black
▶ Higher-order Logic, e.g. generalized quantifiers
▶ . . .

Michael Kohlhase: LBS 95 2024-01-20

Natural Language Semantics?

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

|= ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

|= ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

Michael Kohlhase: LBS 96 2024-01-20

Logic-Based Knowledge Representation for NLP

▶ Logic (and related formalisms) allow to integrate world knowledge
▶ explicitly (gives more understanding than statistical methods)
▶ transparently (symbolic methods are monotonic)
▶ systematically (we can prove theorems about our systems)

▶ Signal + World knowledge makes more powerful model
▶ Does not preclude the use of statistical methods to guide inference

▶ Problems with logic-based approaches
▶ Where does the world knowledge come from? (Ontology problem)
▶ How to guide search induced by log. calculi (combinatorial explosion)

Michael Kohlhase: LBS 97 2024-01-20

Chapter 5
Fragment 1

Michael Kohlhase: LBS 97 2024-01-20

5.1 The First Fragment: Setting up the Basics

Michael Kohlhase: LBS 97 2024-01-20

Fragment 1 Data (Sentences we want to cover)

▶ Fragment 1 Data: We delineate the intended fragment by giving examples
1. Ethel kicked the cat and Fiona laughted
2. Peter is the teacher
3. The teacher is happy
4. It is not the case that Bertie ran
5. It is not the case that Jo is happy

▶ We can later use these sentences as benchmark tests.

Michael Kohlhase: LBS 98 2024-01-20

5.1.1 Natural Language Syntax (Fragment 1)

Michael Kohlhase: LBS 98 2024-01-20

Structural Grammar Rules

▶ Definition 1.1. F1 knows the following eight phrasal categories
S sentence NP noun phrase
N noun Npr proper name
V i intransitive verb V t transitive verb
conj connective Adj adjective

▶ Definition 1.2. We have the following production rules in F1.
S1 : S→NP,V i ,
S2 : S→NP,V t ,NP,
N1 : NP→Npr,
N2 : NP→the,N,
S3 : S→It is not the case that,S ,
S4 : S→S , conj,S ,
S5 : S→NP, is,NP,
S6 : S→NP, is,Adj

Michael Kohlhase: LBS 99 2024-01-20

Lexical insertion rules for Fragment 1

▶ Definition 1.3. We have the following lexical rules in Fragment 1.
L1 : Npr→Prudence | Ethel | Chester | Jo | Bertie | Fiona,

L2 : N→book | cake | cat | golfer | dog | lecturer | student | singer,
L3 : V i→ran | laughed | sang | howled | screamed,

L4 : V t→read | poisoned | ate | liked | loathed | kicked, L5 : conj→and | or,
L6 : Adj→happy | crazy | messy | disgusting | wealthy

▶ Note: We will adopt the convention that new lexical rules can be generated
spontaneously as needed.

Michael Kohlhase: LBS 100 2024-01-20

Syntax Example: Jo poisoned the dog and Ethel laughed

▶ Observation 1.4. Jo poisoned the dog and Ethel laughed is a sentence of
fragment 1

▶ We can construct a syntax tree for it!

Jo poisoned the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S

Michael Kohlhase: LBS 101 2024-01-20

5.1.2 Predicate Logic without Quantifiers

Michael Kohlhase: LBS 101 2024-01-20

Individuals and their Properties/Relations
▶ Observation: We want to talk about individuals like Stefan, Nicole, and Jochen

and their properties, e.g. being blond, or studying AI
and relationships, e.g. that Stefan loves Nicole.

▶ Idea: Re-use PL0, but replace propositional variables with something more
expressive! (instead of fancy variable name trick)

▶ Definition 1.5. A first-order signature ⟨Σf ,Σp ⟩ consists of
▶ Σf :=

⋃
k∈NΣ

f
k of function constants, where members of Σf

k denote k-ary functions
on individuals,

▶ Σp:=
⋃

k∈NΣ
p
k of predicate constants, where members of Σp

k denote k-ary relations
among individuals,

where Σf
k and Σp

k are pairwise disjoint, countable sets of symbols for each k∈N.
▶ Definition 1.6. The formulae of PLnq are given by the following grammar

function constants f k ∈ Σf
k

predicate constants pk ∈ Σp
k

terms t ::= f 0 constant
| f k(t1, . . ., tk) application

formulae A ::= pk(t1, . . ., tk) atomic
| ¬A negation
| A1 ∧ A2 conjunction

Michael Kohlhase: LBS 102 2024-01-20

Individuals and their Properties/Relations
▶ Observation: We want to talk about individuals like Stefan, Nicole, and Jochen

and their properties, e.g. being blond, or studying AI
and relationships, e.g. that Stefan loves Nicole.

▶ Idea: Re-use PL0, but replace propositional variables with something more
expressive! (instead of fancy variable name trick)

▶ Definition 1.7. A first-order signature ⟨Σf ,Σp ⟩ consists of
▶ Σf :=

⋃
k∈NΣ

f
k of function constants, where members of Σf

k denote k-ary functions
on individuals,

▶ Σp:=
⋃

k∈NΣ
p
k of predicate constants, where members of Σp

k denote k-ary relations
among individuals,

where Σf
k and Σp

k are pairwise disjoint, countable sets of symbols for each k∈N.

▶ Definition 1.8. The formulae of PLnq are given by the following grammar

function constants f k ∈ Σf
k

predicate constants pk ∈ Σp
k

terms t ::= f 0 constant
| f k(t1, . . ., tk) application

formulae A ::= pk(t1, . . ., tk) atomic
| ¬A negation
| A1 ∧ A2 conjunction

Michael Kohlhase: LBS 102 2024-01-20

Individuals and their Properties/Relations
▶ Observation: We want to talk about individuals like Stefan, Nicole, and Jochen

and their properties, e.g. being blond, or studying AI
and relationships, e.g. that Stefan loves Nicole.

▶ Idea: Re-use PL0, but replace propositional variables with something more
expressive! (instead of fancy variable name trick)

▶ Definition 1.9. A first-order signature ⟨Σf ,Σp ⟩ consists of
▶ Σf :=

⋃
k∈NΣ

f
k of function constants, where members of Σf

k denote k-ary functions
on individuals,

▶ Σp:=
⋃

k∈NΣ
p
k of predicate constants, where members of Σp

k denote k-ary relations
among individuals,

where Σf
k and Σp

k are pairwise disjoint, countable sets of symbols for each k∈N.
▶ Definition 1.10. The formulae of PLnq are given by the following grammar

function constants f k ∈ Σf
k

predicate constants pk ∈ Σp
k

terms t ::= f 0 constant
| f k(t1, . . ., tk) application

formulae A ::= pk(t1, . . ., tk) atomic
| ¬A negation
| A1 ∧ A2 conjunction

Michael Kohlhase: LBS 102 2024-01-20

PLnq Semantics

▶ Definition 1.11. Domains D0 = {T,F} of truth values and Dι ̸= ∅ of
individuals.

▶ Definition 1.12. Interpretation I assigns values to constants, e.g.
▶ I(¬) : D0→D0;T7→F;F 7→T and I(∧) = . . . (as in PL0)
▶ I : Σf

0→Dι (interpret individual constants as individuals)
▶ I : Σf

k→Dιk →Dι (interpret function constants as functions)
▶ I : Σp

k→P(Dιk) (interpret predicate constants as relations)

▶ Definition 1.13. The value function I assigns values to formulae: (recursively)
▶ I(f (A1, . . .,Ak)):=I(f)(I(A1), . . . , I(Ak))
▶ I(p(A1, . . .,Ak)):=T, iff ⟨I(A1), . . . , I(Ak)⟩∈I(p)
▶ I(¬A) = I(¬)(I(A)) and I(A ∧ B) = I(∧)(I(A), I(G)) (just as in PL0)

▶ Definition 1.14. Model: M = ⟨Dι, I⟩ varies in Dι and I.
▶ Theorem 1.15. PLnq is isomorphic to PL0 (interpret atoms as prop. variables)

Michael Kohlhase: LBS 103 2024-01-20

A Model for PLnq

▶ Example 1.16. Let L:={a, b, c , d , e,P,Q,R,S}, we set the universe
D:={♣,♠,♡,♢}, and specify the interpretation function I by setting
▶ a 7→♣, b 7→♠, c 7→♡, d 7→♢, and e 7→♢ for constants,
▶ P 7→{♣,♠} and Q 7→{♠,♢}, for unary predicate constants.
▶ R 7→{⟨♡,♢⟩, ⟨♢,♡⟩}, and S 7→{⟨♢,♠⟩, ⟨♠,♣⟩} for binary predicate constants.

▶ Example 1.17 (Computing Meaning in this Model).
▶ I(R(a, b) ∧ P(c)) = T, iff
▶ I(R(a, b)) = T and I(P(c)) = T, iff
▶ ⟨I(a), I(b)⟩∈I(R) and I(c)∈I(P), iff
▶ ⟨♣,♠⟩∈{⟨♡,♢⟩, ⟨♢,♡⟩} and ♡∈{♣,♠}
So, I(R(a, b) ∧ P(c)) = F.

Michael Kohlhase: LBS 104 2024-01-20

PLnq and PL0 are Isomorphic
▶ Observation: For every choice of Σ of signature, the set AΣ of atomic PLnq

formulae is countable, so there is a VΣ ⊆ V0 and a bijection θΣ : AΣ→VΣ.
θΣ can be extended to formulae as PLnq and PL0 share connectives.

▶ Lemma 1.18. For every model M = ⟨Dι, I⟩, there is a variable assignment
φM, such that IφM(A) = I(A).

▶ Proof sketch: We just define φM(X):=I(θ−1
Σ (X))

▶ Lemma 1.19. For every variable assignment ψ : VΣ→{T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).

▶ Proof sketch: see next slide
▶ Corollary 1.20. PLnq is isomorphic to PL0, i.e. the following diagram commutes:

PLnq(Σ) PL0(AΣ)
θΣ

⟨Dψ, Iψ⟩ VΣ →{T,F}
ψ 7→ Mψ

Iψ() IφM()

▶ Note: This constellation with a language isomorphism and a corresponding
model isomorphism (in converse direction) is typical for a logic isomorphism.

Michael Kohlhase: LBS 105 2024-01-20

Valuation and Satisfiability

▶ Lemma 1.21. For every variable assignment ψ : VΣ→{T,F} there is a model
Mψ = ⟨Dψ, Iψ⟩, such that Iψ(A) = Iψ(A).

▶ Proof: We construct Mψ = ⟨Dψ, Iψ⟩ and show that it works as desired.
1. Let Dψ be the set of PLnq terms over Σ, and
▶ Iψ(f) : Dιk→Dψk

;⟨A1, . . .,Ak⟩7→f (A1, . . .,Ak) for f ∈Σf
k

▶ Iψ(p):={⟨A1, . . .,Ak⟩|ψ(θ−1
ψ p(A1, . . .,Ak)) = T} for p∈Σp.

2. We show Iψ(A) = A for terms A by induction on A
2.1. If A = c , then Iψ(A) = Iψ(c) = c = A
2.2. If A = f (A1, . . . ,An) then
Iψ(A) = Iψ(f)(I(A1), . . . , I(An)) = Iψ(f)(A1, . . .,Ak) = A.

3. For a PLnq formula A we show that Iψ(A) = Iψ(A) by induction on A.
3.1. If A = p(A1, . . .,Ak), then Iψ(A) = Iψ(p)(I(A1), . . . , I(An)) = T, iff
⟨A1, . . .,Ak⟩∈Iψ(p), iff ψ(θ−1

ψ A) = T, so Iψ(A) = Iψ(A) as desired.
3.2. If A = ¬B, then Iψ(A) = T, iff Iψ(B) = F, iff Iψ(B) = Iψ(B), iff
Iψ(A) = Iψ(A).
3.3. If A = B ∧ C then we argue similarly

4. Hence Iψ(A) = Iψ(A) for all PLnq formulae and we have concluded the
proof.

Michael Kohlhase: LBS 106 2024-01-20

5.1.3 Natural Language Semantics via
Translation

Michael Kohlhase: LBS 106 2024-01-20

Translation rules for non-basic expressions (NP and S)

▶ Definition 1.22. We have the following translation rules for non-leaf node of
the abstract syntax tree
T1 : [XNP,YV i]S ; Y ′(X ′)
T2 : [XNP,YV t ,ZNP]S ; Y ′(X ′,Z ′)
T3 : [XNpr]NP ; X ′

T4 : [the,XN]NP ; theX ′

T5 : [It is not the case thatXS]S ; (¬X ′)
T6 : [XS ,Yconj,ZS]S ; Y ′(X ′,Z ′)
T7 : [XNP, is,YNP]S ; X ′ = Y ′

T8 : [XNP, is,YAdj]S ; Y ′(X ′)
Read e.g. [Y ,Z]X as a node with label X in the syntax tree with children X and
Y . Read X ′ as the translation of X via these rules.

▶ Note that we have exactly one translation per syntax rule.

Michael Kohlhase: LBS 107 2024-01-20

Translation rule for basic lexical items

▶ Definition 1.23. The target logic for F1 is PLnq, the fragment of PL1 without
quantifiers.

▶ Lexical Translation Rules for F1 Categories:
▶ If w is a proper name, then w ′∈Σf

0. (individual constant)
▶ If w is an intransitive verb, then w ′∈Σp

1. (one-place predicate)
▶ If w is a transitive verb, w ′∈Σp

2. (two-place predicate)
▶ If w is a noun phrase, then w ′∈Σf

0. (individual constant)
▶ Semantics by Translation: We translate sentences by translating their syntax

trees via tree node translation rules.
▶ For any non-logical word w , we have the “pseudo-rule” t1 : w ; w ′.
▶ Note: This rule does not apply to the syncategorematic items is and the.
▶ Translations for logical connectives

t2 : and ; ∧, t3 : or ; ∨, t4 : it is not the case that ; ¬

Michael Kohlhase: LBS 108 2024-01-20

Translation Example

▶ Observation 1.24. Jo poisoned the dog and Ethel laughed is a sentence of
Fragment 1

▶ We can construct a syntax tree for it!

Jo poisoned the dog and Ethel laughed

Npr V t N conj Npr V i

NP NP NP

S S

S

Jo′ poisoned ′ ∧ Ethel ′ laughed ′

Jo′ thedog ′ Ethel ′

poisoned ′(Jo′, thedog ′) laughed ′(Ethel ′)

poisoned ′(Jo′, thedog ′) ∧ laughed ′(Ethel ′)

Michael Kohlhase: LBS 109 2024-01-20

5.2 Testing Truth Conditions via Inference

Michael Kohlhase: LBS 109 2024-01-20

Testing Truth Conditions in PLnq

▶ Idea 1: To test our language model (F1)
▶ Select a sentence S and a situation W that makes S true. (according to humans)
▶ Translate S in to a formula S ′ in PLnq.
▶ Express W as a set Φ of formulae in PLnq (Φ =̂ truth conditions)
▶ Our language model is supported if Φ |= S ′, falsified if Φ ̸|=S ′.

▶ Example 2.1 (John chased the gangster in the red sports car).
▶ We claimed that we have three readings 3.9

R1:=c(j , g) ∧ in(j , s), R2:=c(j , g) ∧ in(g , s), and R3:=c(j , g) ∧ in(j , s) ∧ in(g , s)
▶ So there must be three distinct situations W that make S true

1. John is in the red sports car, but the gangster isn’t
W1:=c(j , g) ∧ in(j , s) ∧ ¬in(g , s), so W1 |=R1, but W1 ̸|=R2 and W1 ̸|=R3

2. The gangster is in the red sports car, but John isn’t
W2:=c(j , g) ∧ in(j , s) ∧ ¬in(g , s), so W2 |=R2, but W2 ̸|=R1 and W2 ̸|=R3

3. Both are in the red sports car
=̂ they run around on the back seat of a very big sports car
W3:=c(j , g) ∧ in(j , s) ∧ in(g , s), so W3 |=R3, but W3 ̸|=R1 and W3 ̸|=R1

▶ Idea 2: Use a calculus to model |=, e.g. ND_0

Michael Kohlhase: LBS 110 2024-01-20

Fragment 1

▶ Fragment F1 of English (defined by grammar + lexicon)
▶ Logic PLnq (serves as a mathematical model for F1)
▶ Formal Language (individuals, predicates, ¬,∧,∨,⇒)
▶ Semantics Iφ defined recursively on formula structure

(; validity, entailment)
▶ Tableau calculus for validity and entailment (Calculemus!)

▶ Analysis function F1 ; PLnq (Translation)
▶ Test the model by checking predictions (calculate truth conditions)
▶ Coverage: Extremely Boring! (accounts for 0 examples from the intro) but the

conceptual setup is fascinating

Michael Kohlhase: LBS 111 2024-01-20

Summary: The Interpretation Process

▶ Interpretation Process:

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

Michael Kohlhase: LBS 112 2024-01-20

Chapter 6
Fragment 1: The Grammatical Logical Framework

Michael Kohlhase: LBS 112 2024-01-20

6.1 Implementing Fragment 1 in GF

Michael Kohlhase: LBS 112 2024-01-20

Implementing Fragment 1 in GF

▶ The grammar of Fragment 1 only differs trivially from Hello World grammar
two.gf from slide 65.
▶ Verbs: V t =̂ V2, V i =̂ cat V; fun sp : NP -> V -> S;
▶ Negation:

fun not : S -> S; lin not a = mkS ("it is not the case that"++ a.s);
▶ the: fun the : N -> NP; lin the n = mkNP ("the"++ n.s);
▶ conjunction:

fun and : S -> S -> S; lin and a b = mkS (a.s ++ "and"++ b.s);

Michael Kohlhase: LBS 113 2024-01-20

6.2 Implementing Fragment1 in GF and MMT

Michael Kohlhase: LBS 113 2024-01-20

Discourse Domain Theories for F1 (Lexicon)

▶ A “lexicon theory” (only selected constants here)

theory plnqFrag1 : ?plnq =
ethel : ι # ethel’
prudence : ι # prudence’
dog : ι # dog’
poison : ι→ ι→ o # poison’ 1 2
laugh : ι→ o # laugh’ 1

declares one logical constant for each from abstract GF grammar.
▶ Enough to interpret Prudence poisoned the dog and Ethel laughed from above.

ex : o = poison’ prudence’ dog’ ∧ laugh’ ethel’

Michael Kohlhase: LBS 114 2024-01-20

Representing Multiple Readings

▶ We can even represent the three readings of John chased the gangster in the red
sports car from 3.9.
theory sportscar : ?plnq =

john : ι gangster : ι sportscar : ι red : ι→ o
chased : ι→ ι→ o in : ι→ ι→ o
jcgirs1 : o = chased john gangster ∧ in sportscar gangster ∧

red sportscar
jcgirs2 : o = chased john gangster ∧ in sportscar john ∧ red sportscar
jcgirs3 : o = chased john gangster ∧ in sportscar john ∧

in sportscar gangster ∧ red sportscar

▶ Problem: Can we systematically generate terms like jcgirs1, jcgirs2, and
jcgirs3?

▶ Idea: Use the ASTs from GF in Mmt.

Michael Kohlhase: LBS 115 2024-01-20

Embedding GF into Mmt

▶ Observation: The GF system provides Java bindings and Mmt is programed in
Scala, which compiles into the Java virtual machine.

▶ Idea: Use GF as a sophisticated NL-parser/generator for Mmt
; Mmt with a natural language front-end.
; GF with a multi-logic back-end
▶ Definition 2.1. The MMT integration mapping interprets GF abstract syntax

trees as Mmt terms.
▶ Observation: This fits very well with our interpretation process in LBS

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

▶ Implementation: transform GF system (Java) data structures to Mmt
(Scala) ones in Mmt.

Michael Kohlhase: LBS 116 2024-01-20

GF Abstract syntax trees as Mmt Terms

▶ Idea: Make the MMT integration mapping (essentially) the identity.
▶ Prerequisite: Mmt theory isomorphic to GF grammar (declarations aligned)
▶ Recall: ASTs in GF are essentially terms.
▶ Indeed: GF abstract grammars are essentially Mmt theories.

▶ Example 2.2.▶ Observation: GF grammars and Mmt theories best when organized modularly.

Michael Kohlhase: LBS 117 2024-01-20

GF Abstract syntax trees as Mmt Terms

▶ Idea: Make the MMT integration mapping (essentially) the identity.
▶ Prerequisite: Mmt theory isomorphic to GF grammar (declarations aligned)
▶ Recall: ASTs in GF are essentially terms.
▶ Indeed: GF abstract grammars are essentially Mmt theories.
▶ Example 2.3. Syntactic categories of F1 (Syntactic categories =̂ types)

theory Frag1CatMMT : ur:?LF =
S : type
Conj : type
NP : type
Npr : type
N : type
Vi : type
Vt : type

▶ Observation: GF grammars and Mmt theories best when organized modularly.

Michael Kohlhase: LBS 117 2024-01-20

GF Abstract syntax trees as Mmt Terms

▶ Idea: Make the MMT integration mapping (essentially) the identity.
▶ Prerequisite: Mmt theory isomorphic to GF grammar (declarations aligned)
▶ Recall: ASTs in GF are essentially terms.
▶ Indeed: GF abstract grammars are essentially Mmt theories.
▶ Example 2.4. The F1 lexicon (words =̂ constants)

theory Frag1LexMMT : ur:?LF =
include ? Frag1CatMMT
ethel : Npr
prudence : Npr
dog : N
poison : Vt
laugh : Vi
and : Conj

▶ Observation: GF grammars and Mmt theories best when organized modularly.

Michael Kohlhase: LBS 117 2024-01-20

GF Abstract syntax trees as Mmt Terms

▶ Idea: Make the MMT integration mapping (essentially) the identity.
▶ Prerequisite: Mmt theory isomorphic to GF grammar (declarations aligned)
▶ Recall: ASTs in GF are essentially terms.
▶ Indeed: GF abstract grammars are essentially Mmt theories.
▶ Example 2.5. The structural rules of F1 (functions =̂ functions)

theory Frag1RulesMMT : ur:?LF =
include ? Frag1CatMMT
s1 : NP → Vi → S
s2 : NP → Vt → NP → S
n1 : Npr → NP
n2 : N → NP
s3 : S → S
s4 : S → Conj → S → S
s5 : NP → NP → S
s6 : NP → Adj → S

▶ Observation: GF grammars and Mmt theories best when organized modularly.

Michael Kohlhase: LBS 117 2024-01-20

GF Abstract syntax trees as Mmt Terms

▶ Idea: Make the MMT integration mapping (essentially) the identity.
▶ Prerequisite: Mmt theory isomorphic to GF grammar (declarations aligned)
▶ Recall: ASTs in GF are essentially terms.
▶ Indeed: GF abstract grammars are essentially Mmt theories.
▶ Example 2.6. putting it all together

theory Frag1LexMMT : ur:?LF =
include ? Frag1LexMMT
include ? Frag1RulesMMT

▶ Observation: GF grammars and Mmt theories best when organized modularly.

Michael Kohlhase: LBS 117 2024-01-20

GF Abstract syntax trees as Mmt Terms

▶ Idea: Make the MMT integration mapping (essentially) the identity.
▶ Prerequisite: Mmt theory isomorphic to GF grammar (declarations aligned)
▶ Recall: ASTs in GF are essentially terms.
▶ Indeed: GF abstract grammars are essentially Mmt theories.
▶ Example 2.7.▶ Observation: GF grammars and Mmt theories best when organized modularly.

Michael Kohlhase: LBS 117 2024-01-20

Semantics Construction as an MMT View

▶ Observation 2.8. We can express semantics construction as an Mmt view

Syntax Logic

NL Utterance

t
Syntax
Tree

parsing

φ(t)
Logic

Expression

Concrete
Grammar

CG
Theory PLNQ

=̂ φ

GF MMT

▶ Example 2.9.

Michael Kohlhase: LBS 118 2024-01-20

Semantics Construction as an MMT View

▶ Observation 2.10. We can express semantics construction as an Mmt view
▶ Example 2.11. Syntactic categories ; PLnq types

view Frag1CatSem : ?Frag1CatMMT -> ?plnqFrag1 =
S = o
NP = ι
Vi = ι→ o
Vt = ι→ ι→ o
Npr = ι
N = ι
Conj = o → o → o

Michael Kohlhase: LBS 118 2024-01-20

Semantics Construction as an MMT View

▶ Observation 2.12. We can express semantics construction as an Mmt view
▶ Example 2.13. Lexicon ; mapping into PLnq terms

view Frag1LexSem : ?Frag1CatMMT -> ?plnqFrag1 =
include ?Frag1CatSem
ethel = ethel’
prudence = prudence’
dog = dog’
poison = poison
laugh = laugh
and = and

Michael Kohlhase: LBS 118 2024-01-20

Semantics Construction as an MMT View

▶ Observation 2.14. We can express semantics construction as an Mmt view
▶ Example 2.15. Structural rules ; defining functions via λ-terms

view Frag1RulesSem : ?Frag1CatMMT -> ?plnqFrag1 =
include ?Frag1CatSem
s1 = [n, v] v n
s2 = [n1,v,n2] v n1 n2
n1 = [n] n
n2 = [n] n
s3 = [s] ¬s
s4 = [a,c,b] c a b
s5 = [n1,n2] n1 .

=n2
s6 = [n,a] a s

Michael Kohlhase: LBS 118 2024-01-20

Semantics Construction as an MMT View

▶ Observation 2.16. We can express semantics construction as an Mmt view
▶ Example 2.17. putting it all together

view Frag1Sem : ?Frag1CatMMT -> ?plnqFrag1 =
include ?Frag1LexSem
include ?Frag1RulesSem

Michael Kohlhase: LBS 118 2024-01-20

Montague-Style Processing of F1 in GLF

▶ Example 2.18. Prudence poisoned the dog and Ethel laughed
▶ Parsing with GF
▶ parse -lang=Eng "Prudence poisons the dog and Ethel laughs"
▶ s4 (s2 (n1 prudence) poison (n2 dog)) and (s1 (n1 ethel) laugh)

▶ Semantics construction via GLF: GF parsing + Mmt view
▶ parse -lang=Eng "Ethel poisons the dog and Prudence laughs" construct|
▶ poison’ prudence’ ∧ dog’ laugh’ ethel’

Michael Kohlhase: LBS 119 2024-01-20

Montague-Style Analysis of F1 in GF and MMT

▶ Recap: We have realized the green part of

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

|= ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

|= ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

▶ The GF grammar for F1 defines the fragment NL.
▶ The Mmt implementation of PLnq is FL.
▶ The Mmt view implements the compositional translation function for F1

Michael Kohlhase: LBS 120 2024-01-20

6.3 Implementing Natural Deduction in MMT

Michael Kohlhase: LBS 120 2024-01-20

Implementing Calculi in Mmt (Judgments as Types)

▶ Idea: Represent proofs and derivations as expressions in theory of “proofs” .
▶ Concretely: For any proposition A, introduce ⊢ A for the type of proofs of A.
▶ Any term of type ⊢ A =̂ a proof of A
▶ A is provable =̂ ⊢ A is nonempty
▶ inference rules are proof constructors (functions)
▶ a declaration c : ⊢A makes ¬A non-empty ; c : ⊢A =̂ an axiom
▶ a definition c : ⊢A = P does as well but also exhibits a “proof” P

; c : ⊢A = P =̂ a theorem
▶ in MMT: we introduce a (proof) type constructor ded a type ⊢ A.

theory pl0NDminimal : ur:?LF =
include ?proplogMinimal
ded : o → type # ⊢1 prec 10 role Judgment

the role Judgment specifies ?????

Michael Kohlhase: LBS 121 2024-01-20

Implementing Calculi in Mmt (ND_0 Rules)

▶ Recap: We only need the ND_0 rules for negation and conjunction:

A B
A ∧ B

ND_0 ∧ I
A ∧ B

A
ND_0 ∧ El

A ∧ B
B

ND_0 ∧ Er

[A]1

...
C

[A]1

...
¬C

¬A
ND_0¬I 1 ¬¬A

A
ND_0¬E

▶ The ND Rules:
notE : {A} ⊢¬¬A →⊢A # ¬E 2
notI : {A,Q} (⊢A →⊢Q) → (⊢A →⊢¬Q) →⊢¬A # ¬I 3 4
andI : {A,B} ⊢A →⊢B →⊢A∧ B # ∧ I 3 4
andEl : {A,B} ⊢A∧ B →⊢A # ∧ El 3
andEr : {A,B} ⊢A∧ B →⊢B # ∧ Er 3

Inference rules as and hypothetical derivations as proof-to-proof functions.
▶ Derived ND Rules: All other inference rules of ND_0 can be written down

similarly. What is more, as they are derivable from those above, they can
become Mmt definitions.

Michael Kohlhase: LBS 122 2024-01-20

Implementing Calculi in Mmt (a proof)

▶ Example 3.1. We can now write down the proof for the commutativity of V !

[A ∧ B]1
ND_0 ∧ Er

B

[A ∧ B]1
ND_0 ∧ El

A
ND_0 ∧ I

B) ∧ A
ND_0 ⇒I 1

A ∧ B ⇒ B) ∧ A

from ?? as the Mmt declaration
andcomm {A,B} ⊢A∧ B ⇒ B∧ A = ⇒ I([x] ∧ I (∧ Er x) (∧ El x))

Michael Kohlhase: LBS 123 2024-01-20

Chapter 7
Adding Context: Pronouns and World Knowledge

Michael Kohlhase: LBS 123 2024-01-20

7.1 Fragment 2: Pronouns and Anaphora

Michael Kohlhase: LBS 123 2024-01-20

Fragment 2 (F2 =̂ F1 + Pronouns)

▶ Want to cover: Peter loves Fido. He bites him. (almost intro)
▶ We need: Translation and interpretation for he, she, him,. . . .
▶ Also: A way to integrate world knowledge to filter out one interpretation (i.e.

Humans don’t bite dogs.)
▶ Idea: Integrate variables into PLnq (work backwards from that)

▶ Logical System: PLV
NQ = PLnq + variables (Translate pronouns to variables)

Michael Kohlhase: LBS 124 2024-01-20

New Grammar in F2 (Pronouns)

▶ Definition 1.1. We have the following structural grammar rules in F2

S1 : S→NP,V i ,
S2 : S→NP,V t ,NP,

N1 : NP→Npr,
N2 : NP→Pron,
N3 : NP→the,N,

S3 : S→it is not the case that,S ,
S4 : S→S , conj,S ,
S5 : S→NP, is,NP,
S6 : S→NP, is,Adj

and one additional lexical rule:
L7 : Pron→he | she | it | we | they

Michael Kohlhase: LBS 125 2024-01-20

Translation for F2 (first attempt)

▶ Idea: Pronouns are translated into new variables (so far)
▶ The syntax/semantic trees for Peter loves Fido and he bites him. are

straightforward. (almost intro)

Peter loves Fido and he bites him

Npr V t N conj Pron V t Pron

NP NP NP NP

S S

S

Peter loves Fido and he bites him

Peter ′ loves′ Fido′ ∧ X bites′ Y

Peter ′ Fido′ X Y

loves′(Peter ′,Fido′) bites′(X ,Y)

loves′(Peter ′ ∧ Fido′) ∧ bites′(X ∧ Y)

Michael Kohlhase: LBS 126 2024-01-20

Predicate Logic with Variables (but no Quantifiers)

▶ Definition 1.2 (Logical System PLV
NQ). PLV

NQ:=PLnq + variables

▶ Definition 1.3 (PLV
NQ Syntax).

Category V = {X ,Y ,Z ,X 1,X 2, . . .} of variables (allow variables wherever
individual constants were allowed)

▶ Definition 1.4 (PLV
NQ Semantics). Model M = ⟨D, I⟩ (need to evaluate

variables)
▶ variable assignment: φ : Vι→U
▶ value function: Iφ(X) = φ(X) (defined like I elsewhere)
▶ call a PLV

NQ formula A valid in M under φ, iff Iφ(A) = T,
▶ call it satisfiable in M, iff there is a variable assignment φ, such that Iφ(A) = T

Michael Kohlhase: LBS 127 2024-01-20

Implementing Fragment 2 in GF

▶ The grammar of Fragment 2 only differs from that of Fragment 1 by
▶ Pronouns: Pron =̂ cat Pron; fun usePron : Pron -> NP; he,she,it : Pron;,
▶ Case: for distinguishing he/him in English.

param Case = nom | acc;
oper
NounPhraseType : Type = { s : Case => Str };
PronounType : Type = { s : Case => Str };

lincat
NP = NounPhraseType;
Pron = PronounType;

▶ English Paradigms to deal with case

mkNP = overload {
mkNP : Str −> NP =

\name −> lin NP { s = table { nom => name; acc => name } };
mkNP : (Case => Str) −> NP = \caseTable −> lin NP { s = caseTable };};
mkPron : (she : Str) −> (her : Str) −> Pron =

\she,her −> lin Pron {s = table {nom => she; acc => her}};
he = mkPron "he" "him" ; she = mkPron "she" "her";it = mkPron "it" "it";

Michael Kohlhase: LBS 128 2024-01-20

7.2 A Tableau Calculus for PLNQ with Free
Variables

Michael Kohlhase: LBS 128 2024-01-20

7.2.1 Calculi for Automated Theorem Proving:
Analytical Tableaux

Michael Kohlhase: LBS 128 2024-01-20

7.2.1.1 Analytical Tableaux

Michael Kohlhase: LBS 128 2024-01-20

Recap: Atoms and Literals

▶ Definition 2.1. A formula is called atomic (or an atom) if it does not contain
logical constants, else it is called complex.

▶ Definition 2.2. We call a pair Aα of a formula and a truth value α∈{T,F} a
labeled formula. For a set Φ of formulae we use Φα:={Aα|A∈Φ}.

▶ Definition 2.3. A labeled atom Aα is called a (positive if α = T, else negative)
literal.

▶ Intuition: To satisfy a formula, we make it “true”. To satisfy a labeled formula
Aα, it must have the truth value α.

▶ Definition 2.4. For a literal Aα, we call the literal Aβ with α ̸= β the opposite
literal (or partner literal).

Michael Kohlhase: LBS 129 2024-01-20

Alternative Definition: Literals

▶ Note: Literals are often defined without recurring to labeled formulae:
▶ Definition 2.5. A literal is an atom A (positive literal) or negated atom ¬A

(negative literal). A and ¬A are opposite literals.
▶ Note: This notion of literal is equivalent to the labeled formulae-notion of

literal, but does not generalize as well to logics with more than two truth values.

Michael Kohlhase: LBS 130 2024-01-20

Test Calculi: Tableaux and Model Generation
▶ Idea: A tableau calculus is a test calculus that
▶ analyzes a labeled formulae in a tree to determine satisfiability,
▶ its branches correspond to valuations (; models).

▶ Example 2.6.Tableau calculi try to construct models for labeled formulae:
Tableau refutation (Validity) Model generation (Satisfiability)

|=P ∧ Q ⇒ Q ∧ P |=P ∧ (Q ∨ ¬R) ∧ ¬Q

(P ∧ Q ⇒ Q ∧ P)F

(P ∧ Q)T

(Q ∧ P)F

PT

QT

PF

⊥
QF

⊥

(P ∧ (Q ∨ ¬R) ∧ ¬Q)T

(P ∧ (Q ∨ ¬R))T
¬QT

QF

PT

(Q ∨ ¬R)T
QT

⊥
¬RT

RF

No Model Herbrand Model {PT,QF,RF}
φ:={P 7→ T,Q 7→ F,R 7→ F}

▶ Idea: Open branches in saturated tableaux yield models.
▶ Algorithm: Fully expand all possible tableaux, (no rule can be applied)
▶ Satisfiable, iff there are open branches (correspond to models)

Michael Kohlhase: LBS 131 2024-01-20

Analytical Tableaux (Formal Treatment of T0)

▶ Idea: A test calculus where
▶ A labeled formula is analyzed in a tree to determine satisfiability,
▶ branches correspond to valuations (models)

▶ Definition 2.7. The propositional tableau calculus T0 has two inference rules
per connective (one for each possible label)

(A ∧ B)T

AT

BT

T0∧
(A ∧ B)F

AF
∣∣∣ BF

T0∨
¬AT

AF T0¬T ¬AF

AT T0¬F

Aα

Aβ α ̸= β

⊥
T0⊥

Use rules exhaustively as long as they contribute new material (; termination)

▶ Definition 2.8. We call any tree (
∣∣∣ introduces branches) produced by the T0

inference rules from a set Φ of labeled formulae a tableau for Φ.
▶ Definition 2.9. Call a tableau saturated, iff no rule adds new material and a

branch closed, iff it ends in ⊥, else open. A tableau is closed, iff all of its
branches are.

Michael Kohlhase: LBS 132 2024-01-20

Analytical Tableaux (T0 continued)

▶ Definition 2.10 (T0-Theorem/Derivability). A is a T0-theorem (⊢T0A), iff
there is a closed tableau with AF at the root.
Φ ⊆ wff0(V0) derives A in T0 (Φ⊢T0A), iff there is a closed tableau starting with
AF and ΦT. The tableau with only a branch of AF and ΦT is called initial for
Φ⊢T0A.

Michael Kohlhase: LBS 133 2024-01-20

A Valid Real-World Example
▶ Example 2.11. If Mary loves Bill and John loves Mary, then John loves Mary

(loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary))F

¬(¬¬(loves(mary, bill) ∧ loves(john,mary)) ∧ ¬loves(john,mary))F

(¬¬(loves(mary, bill) ∧ loves(john,mary)) ∧ ¬loves(john,mary))T

¬¬(loves(mary, bill) ∧ loves(john,mary))T

¬(loves(mary, bill) ∧ loves(john,mary))F

(loves(mary, bill) ∧ loves(john,mary))T

¬loves(john,mary)T

loves(mary, bill)T

loves(john,mary)T

loves(john,mary)F

⊥
This is a closed tableau, so the
loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary) is a T0-theorem.
As we will see, T0 is sound and complete, so

loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary)

is valid.
Michael Kohlhase: LBS 134 2024-01-20

Deriving Entailment in T0

▶ Example 2.12. Mary loves Bill and John loves Mary together entail that John
loves Mary

loves(mary, bill)T

loves(john,mary)T

loves(john,mary)F

⊥

This is a closed tableau, so
{loves(mary, bill), loves(john,mary)}⊢T0 loves(john,mary).
Again, as T0 is sound and complete we have

{loves(mary, bill), loves(john,mary)} |= loves(john,mary)

Michael Kohlhase: LBS 135 2024-01-20

A Falsifiable Real-World Example

▶ Example 2.13. * If Mary loves Bill or John loves Mary, then John loves Mary
Try proving the implication (this fails)

((loves(mary, bill) ∨ loves(john,mary))⇒ loves(john,mary))F

¬(¬¬(loves(mary, bill) ∨ loves(john,mary)) ∧ ¬loves(john,mary))F

(¬¬(loves(mary, bill) ∨ loves(john,mary)) ∧ ¬loves(john,mary))T

¬loves(john,mary)T

loves(john,mary)F

¬¬(loves(mary, bill) ∨ loves(john,mary))T

¬(loves(mary, bill) ∨ loves(john,mary))F

(loves(mary, bill) ∨ loves(john,mary))T

loves(mary, bill)T loves(john,mary)T

⊥

Indeed we can make Iφ(loves(mary, bill)) = T but Iφ(loves(john,mary)) = F.

Michael Kohlhase: LBS 136 2024-01-20

Testing for Entailment in T0

▶ Example 2.14. Does Mary loves Bill or John loves Mary entail that John loves
Mary?

(loves(mary, bill) ∨ loves(john,mary))T

loves(john,mary)F

loves(mary, bill)T loves(john,mary)T

⊥

This saturated tableau has an open branch that shows that the interpretation
with Iφ(loves(mary, bill)) = T but Iφ(loves(john,mary)) = F falsifies the
derivability/entailment conjecture.

Michael Kohlhase: LBS 137 2024-01-20

7.2.1.2 Practical Enhancements for Tableaux

Michael Kohlhase: LBS 137 2024-01-20

Derived Rules of Inference

▶ Definition 2.15. An inference rule
A1 . . . An

C
is called derivable (or a derived

rule) in a calculus C, if there is a C derivation A1, . . .,An⊢CC.
▶ Definition 2.16. We have the following derivable inference rules in T0:

(A ⇒ B)T

AF
∣∣∣ BT

(A ⇒ B)F

AT

BF

AT

(A ⇒ B)T

BT

(A ∨ B)T

AT
∣∣∣ BT

(A ∨ B)F

AF

BF

A ⇔ BT

AT

BT

∣∣∣∣ AF

BF

A ⇔ BF

AT

BF

∣∣∣∣ AF

BT

AT

(A ⇒ B)T

(¬A ∨ B)T

¬(¬¬A ∧ ¬B)T

(¬¬A ∧ ¬B)F

¬¬AF

¬AT

AF

⊥

¬BF

BT

Michael Kohlhase: LBS 138 2024-01-20

Tableaux with derived Rules (example)

Example 2.17.

(loves(mary, bill) ∧ loves(john,mary)⇒ loves(john,mary))F

(loves(mary, bill) ∧ loves(john,mary))T

loves(john,mary)F

loves(mary, bill)T

loves(john,mary)T

⊥

Michael Kohlhase: LBS 139 2024-01-20

7.2.2 A Tableau Calculus for PLNQ with Free
Variables

Michael Kohlhase: LBS 139 2024-01-20

A Tableau Calculus for PLV
NQ

▶ Definition 2.18 (Tableau Calculus for PLV
NQ). T p

V = T0 + new tableau rules
for formulae with variables

...
Aα
...

c∈H

([c/X](A))α
T p
V WK

...
(Aα)

H = {a1, . . ., an}
free(A) = {X 1, . . .,Xm}

(σ1(A))
α
∣∣∣ . . . ∣∣∣ (σ(nm)(A))

α
T p
V Ana

H is the set of ind. constants in the branch above (Herbrand Base) and the σi

are substitutions that instantiate the X j with any combinations of the ak (there
are nm of them).
▶ the first rule is used for world knowledge (up in the branch)
▶ the second rule is used for input logical forms · · ·

this rule has to be applied eagerly (while they are still at the leaf)

Michael Kohlhase: LBS 140 2024-01-20

Some Examples in F2

▶ Example 2.19 (Peter snores). (Only sleeping people snore)

(snores(X)⇒ sleeps(X))T

(snores(peter)T)

(snores(peter)⇒ sleeps(peter))T

sleeps(peter)T

▶ Example 2.20 (Peter sleeps. John walks. He snores). (who snores?)

(sleeps(peter)T)

(walks(john)T)

(snores(X)T)

snores(peter)T snores(john)T

Michael Kohlhase: LBS 141 2024-01-20

Does Tweety fly? The everlasting Question in AI

▶ Example 2.21.

Tweety is a bird Tweety is an eagle

(bird(X)⇒ (flies(X) ∨ penguin(X)))T

(penguin(X)⇒¬flies(X))T

(bird(tweety)T)

(flies(tweety) ∨ penguin(tweety))T

flies(tweety)T penguin(tweety)T

¬flies(tweety)T

flies(tweety)F

(bird(X)⇒ (flies(X) ∨ penguin(X)))T

(eagle(X)⇒ bird(X))T

(penguin(X)⇒¬eagle(X))T

(penguin(X)⇒¬flies(X))T

(eagle(tweety)T)

bird(tweety)T

(flies(tweety) ∨ penguin(tweety))T

flies(tweety)T penguin(tweety)T

(¬eagle(tweety))T

eagle(tweety)F

⊥
▶ For the second we need to add more world knowledge.

Michael Kohlhase: LBS 142 2024-01-20

7.2.3 Case Study: Peter loves Fido, even though
he sometimes bites him

Michael Kohlhase: LBS 142 2024-01-20

Finally: Peter loves Fido. He bites him.

▶ Let’s try it naively (worry about the problems later.)

(l(p, f)T)

(b(X ,Y)T)

b(p, p)T b(p, f)T b(f , p)T b(f , f)T

▶ Problem: We get four readings instead of one!
▶ Idea: We have not specified enough world knowledge

Michael Kohlhase: LBS 143 2024-01-20

Peter and Fido with World Knowledge

▶ Nobody bites himself, humans do not bite dogs.

d(f)T

m(p)T

b(X ,X)F

(d(X) ∧m(Y)⇒¬b(Y ,X))T

(l(p, f)T)

(b(X ,Y)T)

b(p, p)T

b(p, p)F

⊥

b(p, f)T

(d(f) ∧m(p)⇒¬b(p, f))T

b(p, f)F

⊥

b(f , p)T b(f , f)T

b(f , f)F

⊥

▶ Observation: Pronoun resolution introduces ambiguities.
▶ Pragmatics: Use world knowledge to filter out impossible readings.

Michael Kohlhase: LBS 144 2024-01-20

7.2.4 The Computational Role of Ambiguities

Michael Kohlhase: LBS 144 2024-01-20

The computational Role of Ambiguities

▶ Observation: (in the traditional waterfall model)
Every processing stage introduces ambiguities that need to be resolved.
▶ Syntax: e.g. Peter chased the man in the red sports car (attachment)
▶ Semantics: e.g. Peter went to the bank (lexical)
▶ Pragmatics: e.g. Two men carried two bags (collective vs. distributive)

▶ Question: Where does pronoun-ambiguity belong? (much less clear)
▶ Answer: we have freedom to choose

1. resolve the pronouns in the syntax (generic waterfall model)
; multiple syntactic representations (pragmatics as filter)

2. resolve the pronouns in the pragmatics (our model here)
; need underspecified syntactic representations (e.g. variables)
; pragmatics needs ambiguity treatment (e.g. tableaux)

Michael Kohlhase: LBS 145 2024-01-20

Translation for F2 Reconsidered

▶ Idea: Pronouns are translated into new variables (so far)
▶ Problem: Peter loves Mary. She loves him.

(loves(peter,mary)T)

(loves(X ,Y)T)

loves(peter, peter)T loves(peter,mary)T loves(mary, peter)T loves(mary,mary)T

▶ Idea: attach world knowledge to pronouns (just as with Peter and Fido)
▶ use the world knowledge to distinguish (linguistic) gender by predicates masc and

fem
▶ Idea: attach world knowledge to pronouns (just as with Peter and Fido)
▶ Problem: properties of
▶ proper names are given in the model,
▶ pronouns must be given by the syntax/semantics interface

▶ In particular: How to generate loves(X ,Y) ∧ masc(X) ∧ fem(Y)
compositionally?

Michael Kohlhase: LBS 146 2024-01-20

Sorts refine World Categories

▶ Definition 2.22 (Sorted Logics). (in our case PL1
S) assume a set of sorts

S:={A,B,C, . . .}, annotate every syntactic and semantic structure with them.
Make all constructions and operations well worted:
▶ Syntax: variables and constants are sorted XA,YB,Z

1
C1 . . ., aA, bA, . . .

▶ Semantics: subdivide the Universe Dι into subsets DA ⊆ Dι
Interpretation I and variable assignment φ have to be well-sorted.
I(aA), φ(XA)∈DA.

▶ calculus: substitutions must be well sorted [aA/XA] OK, [aA/XB] not.
▶ Observation: Sorts do not add expressivity in principle (just practically) For

every sort A, we introduce a first-order predicate RA and
▶ Translate R(XA)∧¬P(ZC) to RA(X)∧RC(Z)⇒R(X)∧¬P(Z) in world knowledge.
▶ Translate R(XA) ∧ ¬P(ZC) to RA(X) ∧RC(Z) ∧ R(X ,Y) ∧ ¬P(Z) in input.
▶ Meaning is preserved, but translation is non-compositional!

Michael Kohlhase: LBS 147 2024-01-20

7.3 Tableaux and Model Generation

Michael Kohlhase: LBS 147 2024-01-20

7.3.1 Tableau Branches and Herbrand Models

Michael Kohlhase: LBS 147 2024-01-20

Model Generation and Interpretation

▶ Example 3.1 (from above). In 2.14 we claimed that

H:={loves(john,mary)F, loves(mary, bill)T}

constitutes a model

(loves(mary, bill) ∨ loves(john,mary))T

loves(john,mary)F

loves(mary, bill)T loves(john,mary)T

⊥

▶ Recap: A model M is a pair ⟨U, I⟩, where D is a set of individuals, and I is
an interpretation function.

▶ Problem: Find U and I

Michael Kohlhase: LBS 148 2024-01-20

Model Generation and Models

▶ Idea: Choose the universe U as the set Σf
0 of constants, choose I(=)IdΣf

0
,

interpret p∈Σp
k via I(p):={⟨a1, . . ., ak⟩|p(a1, . . ., ak)∈H}.

▶ Definition 3.2. We call a model a Herbrand model, iff U = Σf
0 and I = IdΣf

0
.

▶ Lemma 3.3.
Let H be a set of atomic propositions, then setting

I(p):={⟨a1, . . ., ak⟩|p(a1, . . ., ak)∈H}

yields a Herbrand Model that satisfies H. (proof trivial)
▶ Corollary 3.4. Let H be a consistent (i.e. ∇c holds) set of atomic propositions,

then there is a Herbrand Model that satisfies H. (take HT)

Michael Kohlhase: LBS 149 2024-01-20

7.3.2 Using Model Generation for Interpretation

Michael Kohlhase: LBS 149 2024-01-20

Using Model Generation for Interpretation

▶ Definition 3.5. Mental model theory [JL83; JLB91] posits that humans form
mental models of the world, i.e. (neural) representations of possible states of the
world that are consistent with the perceptions up to date and use them to
reason about the world.

▶ So communication by natural language is a process of transporting parts of the
mental model of the speaker into the mental model of the hearer.

▶ Therefore the NL interpretation process on the part of the hearer is a process of
integrating the meaning of the utterances of the speaker into his mental model.

▶ Idea: We can model discourse understanding as a process of generating
Herbrand models for the logical form of an utterance in a discourse by a tableau
based model generation procedure.

▶ Advantage: Capturing ambiguity by generating multiple models for input
logical forms.

Michael Kohlhase: LBS 150 2024-01-20

Tableau Machine

▶ Definition 3.6. The tableau machine is an inferential cognitive model for
incremental natural language understanding that implements mental model
theory via tableau based model generation over a sequence of input sentences.
It iterates the following process for every input sentence staring with the empty
tableau:
1. add the logical form of the input sentence Si to the selected branch,
2. perform tableau inferences below Si until saturated or some resource criterion is met
3. if there are open branches choose a “preferred branch”, otherwise backtrack to

previous tableau for Sj with j < i and open branches, then re-process Sj+1, . . . , Si if
possible, else fail.

The output is application dependent; some choices are
▶ the Herbrand model for the preferred branch ; preferred interpretation;
▶ the literals augmented with all non expanded formulae

(from the discourse); (resource-bound was reached)
▶ machine answers user queries (preferred model |= query?)

▶ model generation mode (guided by resources and strategies)
▶ theorem proving mode (2 for side conditions; using tableau rules)

Michael Kohlhase: LBS 151 2024-01-20

The Tableau Machine in Action
▶ Example 3.7. The tableau machine in action on two sentences.

initialize tableau
Background
Knowledge

input sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branchre-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

The Tableau Machine in Action
▶ Example 3.8. The tableau machine in action on two sentences.

initialize tableau

Background
Knowledgeinput sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branchre-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

The Tableau Machine in Action
▶ Example 3.9. The tableau machine in action on two sentences.

initialize tableau

Background
Knowledge

input sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branchre-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

The Tableau Machine in Action
▶ Example 3.10. The tableau machine in action on two sentences.

initialize tableau

Background
Knowledge

input sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branchre-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

The Tableau Machine in Action
▶ Example 3.11. The tableau machine in action on two sentences.

initialize tableau

Background
Knowledgeinput sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branchre-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

The Tableau Machine in Action
▶ Example 3.12. The tableau machine in action on two sentences.

initialize tableau

Background
Knowledge

input sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branchre-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

The Tableau Machine in Action
▶ Example 3.13. The tableau machine in action on two sentences.

initialize tableau

Background
Knowledge

input sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branch

re-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

The Tableau Machine in Action
▶ Example 3.14. The tableau machine in action on two sentences.

initialize tableau

Background
Knowledge

input sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branch

re-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

The Tableau Machine in Action
▶ Example 3.15. The tableau machine in action on two sentences.

initialize tableau

Background
Knowledge

input sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branchre-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

The Tableau Machine in Action
▶ Example 3.16. The tableau machine in action on two sentences.

initialize tableau

Background
Knowledge

input sentence

Sentence 1

saturate tableau

⊥ 2 ⊥ 2

choose branch

Sentence 2

⊥ ⊥ ⊥ ⊥

reject branchre-add sentence

Sentence 2

⊥ 2 ⊥ ⊥

Michael Kohlhase: LBS 152 2024-01-20

Two (Syntactical) Readings

▶ Example 3.17. Peter loves Mary and Mary sleeps or Peter snores (syntactically
ambiguous)
Reading 1 loves(peter,mary) ∧ (sleeps(mary) ∨ snores(peter))
Reading 2 loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

▶ Let us first consider the first reading in 3.17. Let us furthermore assume that we
start out with the empty tableau, even though this is cognitively implausible,
since it simplifies the presentation.

loves(peter,mary) ∧ (sleeps(mary) ∨ snores(peter))

loves(peter,mary)T

(sleeps(mary) ∨ snores(peter))T

sleeps(mary)T snores(peter)T

▶ Observation: We have two models, so we have a case of semantical ambiguity.

Michael Kohlhase: LBS 153 2024-01-20

The other (Syntactical) Reading

loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

(loves(peter,mary) ∧ sleeps(mary))T

loves(peter,mary)T

sleeps(mary)T

snores(peter)T

Michael Kohlhase: LBS 154 2024-01-20

Continuing the Discourse

▶ Example 3.18. Peter does not love Mary
then the second tableau would be extended to

loves(peter,mary) ∧ sleeps(mary) ∨ snores(peter)

(loves(peter,mary) ∧ sleeps(mary))T

loves(peter,mary)T

sleeps(mary)T

¬loves(peter,mary)

loves(peter,mary)F

⊥

snores(peter)T

¬loves(peter,mary)

and the first tableau closes altogether.
▶ In effect the choice of models has been reduced to one, which constitutes the

intuitively correct reading of the discourse

Michael Kohlhase: LBS 155 2024-01-20

Model Generation models Discourse Understanding

▶ Conforms with psycholinguistic findings:
▶ Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also

models containing referents.
▶ deVega [de 95]: online, incremental process.
▶ Singer [Sin94]: enriched by background knowledge.
▶ Glenberg et al. [GML87]: major function is to provide basis for anaphor resolution.

Michael Kohlhase: LBS 156 2024-01-20

Towards a Performance Model for NLU

▶ Problem: The tableau machine is only a competence model.
▶ Definition 3.19. A competence model is a meaning theory that delineates a

space of possible discourses. A performance model delineates the discourses
actually used in communication. (after [Cho65a])

▶ Idea: We need to guide the tableau machine in which inferences and branch
choices it performs.

▶ Idea: Each tableau rule comes with rule costs.
▶ Here: each sentence in the discourse has a fixed inference budget.

Expansion until budget used up.
▶ Ultimately we want bounded optimization regime [Rus91]:

Expansion as long as expected gain in model quality outweighs proof costs
▶ Effect: Expensive rules are rarely applied. (only if the promise great rewards)

▶ Finding appropriate values for rule costs and model quality is an open
problem.

Michael Kohlhase: LBS 157 2024-01-20

7.3.3 Adding Equality to PLNQ or Fragment 1

Michael Kohlhase: LBS 157 2024-01-20

PLNQˆ =: Adding Equality to PLnq

▶ Syntax: Just another binary predicate constant =
▶ Semantics: Fixed as Iφ(a = b) = T, iff Iφ(a) = Iφ(b). (logical constant)
▶ Definition 3.20 (Tableau Calculus T =

NQ). Add two additional inference rules (a
positive and a negative) to T0

a∈H
a = aT T =

NQsym

a = bT

A [a]p
α

[b/p]Aα
T =

NQrep

where
▶ H =̂ the Herbrand Base, i.e. the set of constants occurring on the branch
▶ we write C [A]p to indicate that C|p = A (C has subterm A at position p).
▶ [A/p]C is obtained from C by replacing the subterm at position p with A.

▶ Note: We could have equivalently written T =
NQsym as

a = aF

⊥
: With T =

NQsym

we can conjure a a = aT from thin air which can then be used to close the
a = aF.

▶ So, . . . T =
NQsym and T =

NQrep follow the pattern of having a T and a F rule per
logical constant.

Michael Kohlhase: LBS 158 2024-01-20

Reading Comprehension Example: Mini TOEFL test
▶ Example 3.21 (Reading Comprehension). If you hear/read Mary is the

teacher. Peter likes the teacher., do you know whether Peter likes Mary?
▶ Idea: Interpret via tableau machine (interpretation mode) and test entailment

in theorem proving mode.
▶ Interpretation: Feed Φ1:=mary = the_teacher and

Φ2:=likes(peter, the_teacher) to the tableau machine in turn.
Model generation tableau (nothing to do on these inputs)

mary = the_teacherT

likes(peter, the_teacher)T

▶ Entailment Test: label φ:=likes(peter,mary) with F and saturate the tableau.

mary = the_teacherT

likes(peter, the_teacher)T

likes(peter,mary)F

likes(peter, the_teacher)F

⊥
Indeed, it closes, so Φ1,Φ2 |=φ.

Michael Kohlhase: LBS 159 2024-01-20

Chapter 8
Pronouns and World Knowledge in First-Order

Logic

Michael Kohlhase: LBS 159 2024-01-20

8.1 First-Order Logic

Michael Kohlhase: LBS 159 2024-01-20

First-Order Predicate Logic (PL1)

▶ Coverage: We can talk about (All humans are mortal)
▶ individual things and denote them by variables or constants
▶ properties of individuals, (e.g. being human or mortal)
▶ relations of individuals, (e.g. sibling_of relationship)
▶ functions on individuals, (e.g. the father_of function)

We can also state the existence of an individual with a certain property, or the
universality of a property.

▶ But we cannot state assertions like
▶ There is a surjective function from the natural numbers into the reals.

▶ First-Order Predicate Logic has many good properties (complete calculi,
compactness, unitary, linear unification,. . .)

▶ But too weak for formalizing: (at least directly)
▶ natural numbers, torsion groups, calculus, . . .
▶ generalized quantifiers (most, few,. . .)

Michael Kohlhase: LBS 160 2024-01-20

8.1.1 First-Order Logic: Syntax and Semantics

Michael Kohlhase: LBS 160 2024-01-20

PL1 Syntax (Signature and Variables)

▶ Definition 1.1. First-order logic (PL1), is a formal system extensively used in
mathematics, philosophy, linguistics, and computer science. It combines
propositional logic with the ability to quantify over individuals.

▶ PL1 talks about two kinds of objects: (so we have two kinds of symbols)
▶ truth values by reusing PL0

▶ individuals, e.g. numbers, foxes, Pokémon,. . .
▶ Definition 1.2. A first-order signature consists of (all disjoint; k∈N)
▶ connectives: Σ0 = {T ,F ,¬,∨,∧,⇒,⇔, . . .} (functions on truth values)
▶ function constants: Σf

k = {f , g , h, . . .} (k-ary functions on individuals)
▶ predicate constants: Σp

k = {p, q, r , . . .} (k-ary relations among individuals.)
▶ (Skolem constants: Σsk

k = {f 1
k , f

2
k , . . .}) (witness constructors; countably ∞)

▶ We take Σ1 to be all of these together: Σ1:=Σf ∪Σp ∪Σsk and define Σ:=Σ1 ∪Σ0.
▶ Definition 1.3. We assume a set of individual variables: Vι:={X ,Y ,Z , . . .}.

(countably ∞)

Michael Kohlhase: LBS 161 2024-01-20

PL1 Syntax (Formulae)

▶ Definition 1.4. Terms: A∈wff ι(Σ1,Vι) (denote individuals)
▶ Vι ⊆ wff ι(Σ1,Vι),
▶ if f ∈Σf

k and Ai∈wff ι(Σ1,Vι) for i≤k, then f (A1, . . .,Ak)∈wff ι(Σ1,Vι).
▶ Definition 1.5. Propositions: A∈wff o(Σ1,Vι): (denote truth values)
▶ if p∈Σp

k and Ai∈wff ι(Σ1,Vι) for i≤k, then p(A1, . . .,Ak)∈wff o(Σ1,Vι),
▶ if A,B∈wff o(Σ1,Vι) and X∈Vι, then T ,A ∧ B,¬A, ∀X A∈wff o(Σ1,Vι).

∀ is a binding operator called the universal quantifier.
▶ Definition 1.6. We define the connectives F ,∨,⇒,⇔ via the abbreviations

A ∨ B:=¬(¬A ∧ ¬B), A ⇒ B:=¬A ∨ B, A ⇔ B:=(A ⇒ B) ∧ (B ⇒ A), and
F :=¬T . We will use them like the primary connectives ∧ and ¬

▶ Definition 1.7. We use ∃X A as an abbreviation for ¬(∀X ¬A). ∃ is a binding
operator called the existential quantifier.

▶ Definition 1.8. Call formulae without connectives or quantifiers atomic else
complex.

Michael Kohlhase: LBS 162 2024-01-20

Alternative Notations for Quantifiers

Here Elsewhere
∀x A

∧
x A (x)A

∃x A
∨
x A

Michael Kohlhase: LBS 163 2024-01-20

Free and Bound Variables

▶ Definition 1.9. We call an occurrence of a variable X bound in a formula A, iff
it occurs in a sub-formula ∀X B of A. We call a variable occurrence free
otherwise.
For a formula A, we will use BVar(A) (and free(A)) for the set of bound (free)
variables of A, i.e. variables that have a free/bound occurrence in A.

▶ Definition 1.10. We define the set free(A) of frees variable of a formula A:
free(X):={X}
free(f (A1, . . .,An)):=

⋃
1≤i≤nfree(Ai)

free(p(A1, . . .,An)):=
⋃

1≤i≤nfree(Ai)
free(¬A):=free(A)
free(A ∧ B):=free(A) ∪ free(B)
free(∀X A):=free(A)\{X}

▶ Definition 1.11. We call a formula A closed or ground, iff free(A) = ∅. We call
a closed proposition a sentence, and denote the set of all ground terms with
cwff ι(Σ1) and the set of sentences with cwff o(Σ1).

Michael Kohlhase: LBS 164 2024-01-20

Semantics of PL1 (Models)

▶ Definition 1.12. We inherit the domain D0 = {T,F} of truth values from PL0

and assume an arbitrary domain Dι ̸= ∅ of individuals.(this choice is a parameter
to the semantics)

▶ Definition 1.13. An interpretation I assigns values to constants, e.g.
▶ I(¬) : D0→D0 with T 7→F, F7→T, and I(∧) = . . . (as in PL0)
▶ I : Σf

k→Dιk →Dι (interpret function symbols as arbitrary functions)
▶ I : Σp

k→P(Dιk) (interpret predicates as arbitrary relations)
▶ Definition 1.14. A variable assignment φ : Vι→Dι maps variables into the

domain.
▶ Definition 1.15. A model M = ⟨Dι, I⟩ of PL1 consists of a domain Dι and an

interpretation I.

Michael Kohlhase: LBS 165 2024-01-20

Semantics of PL1 (Evaluation)

▶ Definition 1.16. Given a model ⟨D, I⟩, the value function Iφ is recursively
defined: (two parts: terms & propositions)
▶ Iφ : wff ι(Σ1,Vι)→Dι assigns values to terms.
▶ Iφ(X):=φ(X) and
▶ Iφ(f (A1, . . .,Ak)):=I(f)(Iφ(A1), . . ., Iφ(Ak))

▶ Iφ : wff o(Σ1,Vι)→D0 assigns values to formulae:
▶ Iφ(T) = I(T) = T,
▶ Iφ(¬A) = I(¬)(Iφ(A))
▶ Iφ(A ∧ B) = I(∧)(Iφ(A), Iφ(B)) (just as in PL0)
▶ Iφ(p(A1, . . .,Ak)):=T, iff ⟨Iφ(A1), . . ., Iφ(Ak)⟩∈I(p)
▶ Iφ(∀X A):=T, iff I(φ,[a/X])(A) = T for all a∈Dι.

▶ Definition 1.17 (Assignment Extension). Let φ be a variable assignment into
D and a∈D, then φ,[a/X] is called the extension of φ with [a/X] and is defined
as {(Y ,a)∈φ|Y ̸= X} ∪ {(X ,a)}: φ,[a/X] coincides with φ off X , and gives the
result a there.

Michael Kohlhase: LBS 166 2024-01-20

Semantics Computation: Example

▶ Example 1.18. We define an instance of first-order logic:
▶ Signature: Let Σf

0:={j ,m}, Σf
1:={f }, and Σp

2:={o}
▶ Universe: Dι:={J,M}
▶ Interpretation: I(j):=J, I(m):=M, I(f)(J):=M, I(f)(M):=M, and

I(o):={(M,J)}.
Then ∀X o(f (X),X) is a sentence and with ψ:=φ,[a/X] for a∈Dι we have

Iφ(∀X o(f (X),X)) = T iff Iψ(o(f (X),X)) = T for all a∈Dι
iff (Iψ(f (X)),Iψ(X))∈I(o) for all a∈{J,M}
iff (I(f)(Iψ(X)),ψ(X))∈{(M,J)} for all a∈{J,M}
iff (I(f)(ψ(X)),a) = (M,J) for all a∈{J,M}
iff I(f)(a) = M and a = J for all a∈{J,M}

But a ̸= J for a = M, so Iφ(∀X o(f (X),X)) = F in the model ⟨Dι, I⟩.

Michael Kohlhase: LBS 167 2024-01-20

8.1.2 First-Order Substitutions

Michael Kohlhase: LBS 167 2024-01-20

Substitutions on Terms
▶ Intuition: If B is a term and X is a variable, then we denote the result of

systematically replacing all occurrences of X in a term A by B with [B/X](A).
▶ Problem: What about [Z/Y], [Y /X](X), is that Y or Z?
▶ Folklore: [Z/Y], [Y /X](X) = Y , but [Z/Y]([Y /X](X)) = Z of course.

(Parallel application)
▶ Definition 1.19. Let wfe(Σ,V) be an expression language, then we call
σ : V→wfe(Σ,V) a substitution, iff the support supp(σ):={X |(X ,A)∈σ,X ̸= A}
of σ is finite. We denote the empty substitution with ϵ.

▶ Definition 1.20 (Substitution Application). We define substitution
application by
▶ σ(c) = c for c∈Σ
▶ σ(X) = A, iff A∈V and (X ,A)∈σ.
▶ σ(f (A1, . . .,An)) = f (σ(A1), . . ., σ(An)),
▶ σ(β X A) = β X σ−X (A).

▶ Example 1.21. [a/x], [f (b)/y], [a/z] instantiates g(x , y , h(z)) to
g(a, f (b), h(a)).

▶ Definition 1.22. Let σ be a substitution then we call
intro(σ):=

⋃
X∈supp(σ)free(σ(X)) the set of variables introduced by σ.

Michael Kohlhase: LBS 168 2024-01-20

Substitution Extension

▶ Definition 1.23 (Substitution Extension).
Let σ be a substitution, then we denote the extension of σ with [A/X] by
σ,[A/X] and define it as {(Y ,B)∈σ|Y ̸= X} ∪ {(X ,A)}: σ,[A/X] coincides with
σ off X , and gives the result A there.

▶ Note: If σ is a substitution, then σ,[A/X] is also a substitution.
▶ We also need the dual operation: removing a variable from the support:
▶ Definition 1.24. We can discharge a variable X from a substitution σ by setting
σ−X :=σ,[X/X].

Michael Kohlhase: LBS 169 2024-01-20

Substitutions on Propositions

▶ Problem: We want to extend substitutions to propositions, in particular to
quantified formulae: What is σ(∀X A)?

▶ Idea: σ should not instantiate bound variables. ([A/X](∀X B) = ∀A B′

ill-formed)
▶ Definition 1.25. σ(∀X A):=(∀X σ−X (A)).
▶ Problem: This can lead to variable capture: [f (X)/Y](∀X p(X ,Y)) would

evaluate to ∀X p(X , f (X)), where the second occurrence of X is bound after
instantiation, whereas it was free before.

▶ Definition 1.26. Let B∈wff ι(Σι,Vι) and A∈wff o(Σι,Vι), then we call B
substitutable for X in A, iff A has no occurrence of X in a subterm ∀Y C with
Y∈free(B).

▶ Solution: Forbid substitution [B/X]A, when B is not substitutablex for X in A.
▶ Better Solution: Rename away the bound variable X in ∀X p(X ,Y) before

applying the substitution. (see alphabetic renaming later.)

Michael Kohlhase: LBS 170 2024-01-20

Substitution Value Lemma for Terms
▶ Lemma 1.27. Let A and B be terms, then Iφ([B/X]A) = Iψ(A), where
ψ = φ, [Iφ(B)/X].

▶ Proof: by induction on the depth of A:
1. depth=0 Then A is a variable (say Y), or constant, so we have three cases

1.1. A = Y = X
1.1.1. then
Iφ([B/X](A)) = Iφ([B/X](X)) = Iφ(B) = ψ(X) = Iψ(X) = Iψ(A).
1.2. A = Y ̸= X
1.2.1. then Iφ([B/X](A)) = Iφ([B/X](Y)) = Iφ(Y) = φ(Y) = ψ(Y) =
Iψ(Y) = Iψ(A).
1.3. A is a constant
1.3.1. Analogous to the preceding case (Y ̸= X).
1.4. This completes the base case (depth = 0).

2. depth> 0
2.1. then A = f (A1, . . .,An) and we have

Iφ([B/X](A)) = I(f)(Iφ([B/X](A1)), . . ., Iφ([B/X](An)))

= I(f)(Iψ(A1), . . ., Iψ(An))

= Iψ(A).
by induction hypothesis
2.2. This completes the induction step, and we have proven the assertion.

Michael Kohlhase: LBS 171 2024-01-20

Substitution Value Lemma for Propositions

▶ Lemma 1.28. Let B∈wff ι(Σι,Vι) be substitutable for X in A∈wff o(Σι,Vι),
then Iφ([B/X](A)) = Iψ(A), where ψ = φ,[Iφ(B)/X].

▶ Proof: by induction on the number n of connectives and quantifiers in A
1. n = 0

1.1. then A is an atomic proposition, and we can argue like in the induction
step of the substitution value lemma for terms.

2. n>0 and A = ¬B or A = C ◦ D
2.1. Here we argue like in the induction step of the term lemma as well.

3. n>0 and A = ∀X C
3.1. then Iψ(A) = Iψ(∀X C) = T, iff I(ψ,[a/X])(C) = I(φ,[a/X])(C) = T,
for all a∈Dι, which is the case, iff Iφ(∀X C) = Iφ([B/X](A)) = T.

4. n>0 and A = ∀Y C where X ̸= Y
4.1. then Iψ(A) = Iψ(∀Y C) = T, iff
I(ψ,[a/Y])(C) = I(φ,[a/Y])([B/X](C)) = T, by induction hypothesis.
4.2. So Iψ(A) = Iφ(∀Y [B/X](C)) = Iφ([B/X](∀Y C)) = Iφ([B/X](A))

Michael Kohlhase: LBS 172 2024-01-20

8.1.3 Alpha-Renaming for First-Order Logic

Michael Kohlhase: LBS 172 2024-01-20

Alphabetic Renaming

▶ Lemma 1.29. Bound variables can be renamed: If Y is substitutable for X in A,
then Iφ(∀X A) = Iφ(∀Y [Y /X](A)).

▶ Proof: by the definitions:
1. Iφ(∀X A) = T, iff
2. I(φ,[a/X])(A) = T for all a∈Dι, iff
3. I(φ,[a/Y])([Y /X](A)) = T for all a∈Dι, iff (by substitution value lemma)
4. Iφ(∀Y [Y /X](A)) = T.

▶ Definition 1.30. We call two formulae A and B alphabetic variants (or α-equal;
write A =α B), iff A = ∀X C and B = ∀Y [Y /X](C) for some variables X and
Y .

Michael Kohlhase: LBS 173 2024-01-20

Avoiding Variable Capture by Built-in α-renaming

▶ Idea: Given alphabetic renaming, consider alphabetic variants as identical!
▶ So: Bound variable names in formulae are just a representational device. (we

rename bound variables wherever necessary)
▶ Formally: Take cwff o(Σι) (new) to be the quotient space of cwff o(Σι) (old)

modulo =α. (formulae as syntactic representatives of equivalence classes)
▶ Definition 1.31 (Capture-Avoiding Substitution Application). Let σ be a

substitution, A a formula, and A′ an alphabetic variant of A, such that
intro(σ) ∩ BVar(A) = ∅. Then [A]=α

= [A′]=α
and we can define

σ([A]=α):=[(σ(A′))]=α .
▶ Notation: After we have understood the quotient construction, we will neglect

making it explicit and write formulae and substitutions with the understanding
that they act on quotients.

▶ Alternative: Replace variables with numbers in formulae (de Bruijn indices).

Michael Kohlhase: LBS 174 2024-01-20

Undecidability of First-Order Logic

▶ Theorem 1.32. Validity in first-order logic is undecidable.
▶ Proof: We prove this by contradiction

1. Let us assume that there is a

Michael Kohlhase: LBS 175 2024-01-20

8.2 First-Order Inference with Tableaux

Michael Kohlhase: LBS 175 2024-01-20

First-Order Standard Tableaux (T1)

▶ Definition 2.1. The standard tableau calculus (T1) extends T0 (propositional
tableau calculus) with the following quantifier rules:

(∀X A)T C∈cwff ι(Σι)

([C/X](A))T
T1 ∀

(∀X A)F c∈Σsk
0 new

([c/X](A))F
T1 ∃

▶ Problem: The rule T1 ∀ displays a case of “don’t know indeterminism”: to find a
refutation we have to guess a formula C from the (usually infinite) set cwff ι(Σι).
For proof search, this means that we have to systematically try all, so T1 ∀ is
infinitely branching in general.

Michael Kohlhase: LBS 176 2024-01-20

8.2.1 Free Variable Tableaux

Michael Kohlhase: LBS 176 2024-01-20

Free variable Tableaux (T f
1)

▶ Definition 2.2. The free variable tableau calculus (T f
1) extends T0

(propositional tableau calculus) with the quantifier rules:

(∀X A)T Y new
([Y /X](A))T

T f
1 ∀ (∀X A)F free(∀X A) = {X 1, . . .,X k} f ∈Σsk

k new
([f (X 1, . . . ,X k)/X](A))F

T f
1 ∃

and generalizes its cut rule T0⊥ to:

Aα

Bβ α ̸= β σ(A) = σ(B)

⊥ : σ
T f
1⊥

T f
1⊥ instantiates the whole tableau by σ.

▶ Advantage: No guessing necessary in T f
1 ∀-rule!

▶ New Problem: find suitable substitution (most general unifier) (later)

Michael Kohlhase: LBS 177 2024-01-20

Free variable Tableaux (T f
1): Derivable Rules

▶ Definition 2.3. Derivable quantifier rules in T f
1 :

(∃X A)T free(∀X A) = {X 1, . . .,X k} f ∈Σsk
k new

([f (X 1, . . . ,X k)/X](A))T

(∃X A)F Y new

([Y /X](A))F

Michael Kohlhase: LBS 178 2024-01-20

Termination and Multiplicity in Tableaux

▶ Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

▶ Observation 2.4. All T f
1 rules except T f

1 ∀ only need to be applied once.

▶ Example 2.5. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).
▶ Definition 2.6. Let T be a tableau for A, and a positive occurrence of ∀x B in

A, then we call the number of applications of T f
1 ∀ to ∀x B its multiplicity.

▶ Observation 2.7. Given a prescribed multiplicity for each positive ∀, saturation
with T f

1 terminates.
▶ Proof sketch: All T f

1 rules reduce the number of connectives and negative ∀ or
the multiplicity of positive ∀.

▶ Theorem 2.8. T f
1 is only complete with unbounded multiplicities.

▶ Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in 2.5.
▶ Remark: Otherwise validity in PL1 would be decidable.
▶ Implementation: We need an iterative multiplicity deepening process.

Michael Kohlhase: LBS 179 2024-01-20

Termination and Multiplicity in Tableaux
▶ Recall: In T0, all rules only needed to be applied once.

; T0 terminates and thus induces a decision procedure for PL0.
▶ Observation 2.9. All T f

1 rules except T f
1 ∀ only need to be applied once.

▶ Example 2.10. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).
Start, close left branch use T f

1 ∀ again (right branch)

((p(a) ∨ p(b))⇒ (∃ p()))F

(p(a) ∨ p(b))T

(∃x p(x))F

(∀x ¬p(x))T

¬p(y)T

p(y)F

p(a)T

⊥ : [a/y]
p(b)T

((p(a) ∨ p(b))⇒ (∃ p()))F

(p(a) ∨ p(b))T

(∃x p(x))F

(∀x ¬p(x))T

¬p(a)T

p(a)F

p(a)T

⊥ : [a/y]
p(b)T

¬p(z)T

p(z)F

⊥ : [b/z]

After we have used up p(y)F by applying [a/y] in T f
1⊥, we have to get a new

instance p(z)F via T f
1 ∀.

▶ Definition 2.11. Let T be a tableau for A, and a positive occurrence of ∀x B in
A, then we call the number of applications of T f

1 ∀ to ∀x B its multiplicity.
▶ Observation 2.12. Given a prescribed multiplicity for each positive ∀,

saturation with T f
1 terminates.

▶ Proof sketch: All T f
1 rules reduce the number of connectives and negative ∀ or

the multiplicity of positive ∀.
▶ Theorem 2.13. T f

1 is only complete with unbounded multiplicities.
▶ Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in 2.5.
▶ Remark: Otherwise validity in PL1 would be decidable.
▶ Implementation: We need an iterative multiplicity deepening process.

Michael Kohlhase: LBS 179 2024-01-20

Termination and Multiplicity in Tableaux

▶ Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

▶ Observation 2.14. All T f
1 rules except T f

1 ∀ only need to be applied once.
▶ Example 2.15. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).
▶ Definition 2.16. Let T be a tableau for A, and a positive occurrence of ∀x B in

A, then we call the number of applications of T f
1 ∀ to ∀x B its multiplicity.

▶ Observation 2.17. Given a prescribed multiplicity for each positive ∀,
saturation with T f

1 terminates.
▶ Proof sketch: All T f

1 rules reduce the number of connectives and negative ∀ or
the multiplicity of positive ∀.

▶ Theorem 2.18. T f
1 is only complete with unbounded multiplicities.

▶ Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in 2.5.
▶ Remark: Otherwise validity in PL1 would be decidable.
▶ Implementation: We need an iterative multiplicity deepening process.

Michael Kohlhase: LBS 179 2024-01-20

Termination and Multiplicity in Tableaux

▶ Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

▶ Observation 2.19. All T f
1 rules except T f

1 ∀ only need to be applied once.
▶ Example 2.20. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).
▶ Definition 2.21. Let T be a tableau for A, and a positive occurrence of ∀x B in

A, then we call the number of applications of T f
1 ∀ to ∀x B its multiplicity.

▶ Observation 2.22. Given a prescribed multiplicity for each positive ∀,
saturation with T f

1 terminates.
▶ Proof sketch: All T f

1 rules reduce the number of connectives and negative ∀ or
the multiplicity of positive ∀.

▶ Theorem 2.23. T f
1 is only complete with unbounded multiplicities.

▶ Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in 2.5.

▶ Remark: Otherwise validity in PL1 would be decidable.
▶ Implementation: We need an iterative multiplicity deepening process.

Michael Kohlhase: LBS 179 2024-01-20

Termination and Multiplicity in Tableaux

▶ Recall: In T0, all rules only needed to be applied once.
; T0 terminates and thus induces a decision procedure for PL0.

▶ Observation 2.24. All T f
1 rules except T f

1 ∀ only need to be applied once.
▶ Example 2.25. A tableau proof for (p(a) ∨ p(b))⇒ (∃ p()).
▶ Definition 2.26. Let T be a tableau for A, and a positive occurrence of ∀x B in

A, then we call the number of applications of T f
1 ∀ to ∀x B its multiplicity.

▶ Observation 2.27. Given a prescribed multiplicity for each positive ∀,
saturation with T f

1 terminates.
▶ Proof sketch: All T f

1 rules reduce the number of connectives and negative ∀ or
the multiplicity of positive ∀.

▶ Theorem 2.28. T f
1 is only complete with unbounded multiplicities.

▶ Proof sketch: Replace p(a) ∨ p(b) with p(a1) ∨ . . . ∨ p(an) in 2.5.
▶ Remark: Otherwise validity in PL1 would be decidable.
▶ Implementation: We need an iterative multiplicity deepening process.

Michael Kohlhase: LBS 179 2024-01-20

Treating T f
1⊥

▶ Recall: The T f
1⊥ rule instantiates the whole tableau.

▶ Problem: There may be more than one T f
1⊥ opportunity on a branch.

▶ Example 2.29. Choosing which matters – this tableau does not close!

(∃x (p(a) ∧ p(b)⇒ p()) ∧ (q(b)⇒ q(x)))F

((p(a) ∧ p(b)⇒ p()) ∧ (q(b)⇒ q(y)))F

(p(a)⇒ p(b)⇒ p())F

p(a)T

p(b)T

p(y)F

⊥ : [a/y]

(q(b)⇒ q(y))F

q(b)T

q(y)F

choosing the other T f
1⊥ in the left branch allows closure.

▶ Idea: Two ways of systematic proof search in T f
1 :

▶ backtracking search over T f
1⊥ opportunities

▶ saturate without T f
1⊥ and find spanning matings (next slide)

Michael Kohlhase: LBS 180 2024-01-20

Spanning Matings for T f
1⊥

▶ Observation 2.30. T f
1 without T f

1⊥ is terminating and confluent for given
multiplicities.

▶ Idea: Saturate without T f
1⊥ and treat all cuts at the same time (later).

▶ Definition 2.31.
Let T be a T f

1 tableau, then we call a unification problem
E :=A1=

?B1 ∧ . . . ∧ An=
?Bn a mating for T , iff Ai

T and Bi
F occur in the same

branch in T .
We say that E is a spanning mating, if E is unifiable and every branch B of T
contains Ai

T and Bi
F for some i .

▶ Theorem 2.32. A T f
1 -tableau with a spanning mating induces a closed T1

tableau.
▶ Proof sketch: Just apply the unifier of the spanning mating.
▶ Idea: Existence is sufficient, we do not need to compute the unifier.
▶ Implementation: Saturate without T f

1⊥, backtracking search for spanning
matings with DU , adding pairs incrementally.

Michael Kohlhase: LBS 181 2024-01-20

Spanning Matings for T f
1⊥

▶ Observation 2.33. T f
1 without T f

1⊥ is terminating and confluent for given
multiplicities.

▶ Idea: Saturate without T f
1⊥ and treat all cuts at the same time (later).

▶ Definition 2.34.
Let T be a T f

1 tableau, then we call a unification problem
E :=A1=

?B1 ∧ . . . ∧ An=
?Bn a mating for T , iff Ai

T and Bi
F occur in the same

branch in T .
We say that E is a spanning mating, if E is unifiable and every branch B of T
contains Ai

T and Bi
F for some i .

▶ Theorem 2.35. A T f
1 -tableau with a spanning mating induces a closed T1

tableau.
▶ Proof sketch: Just apply the unifier of the spanning mating.
▶ Idea: Existence is sufficient, we do not need to compute the unifier.
▶ Implementation: Saturate without T f

1⊥, backtracking search for spanning
matings with DU , adding pairs incrementally.

Michael Kohlhase: LBS 182 2024-01-20

8.3 Model Generation with Quantifiers

Michael Kohlhase: LBS 182 2024-01-20

Model Generation (The RM Calculus [Kon04])

▶ Idea: Try to generate domain-minimal (i.e. fewest individuals) models (for NL
interpretation)

▶ Problem: Even one function constant makes Herbrand base infinite (solution:
leave them out)

▶ Definition 3.1. RM adds ground quantifier rules to propositional tableau
calculus

(∀X A)T c∈H
([c/X](A))T

RM ∀ (∀X A)F H = {a1, . . ., an} w ̸∈H new
([a1/X](A))F . . . ([an/X](A))F ([w/X](A))F

RM ∃

▶ RM ∃ rule introduces new witness constant w to Herbrand base H of branch
▶ Apply RM ∀ exhaustively (for new w reapply all RM ∀ rules on branch!)

Michael Kohlhase: LBS 183 2024-01-20

Generating infinite models (Natural Numbers)

▶ We have to re-apply the RM ∀ rule for any new constant
▶ Example 3.2. This leads to the generation of infinite models

(∀x ¬x > x ∧ . . .)T

N(0)T

(∀x N(x)⇒ (∃y N(y) ∧ y > x))T

(N(0)⇒ (∃y N(y) ∧ y > 0))T

N(0)F

⊥
(∃y N(y) ∧ y > 0)T

0 > 0T

N(0)T

0 > 0F

⊥

N(1)T

1 > 0T

(N(1)⇒ (∃y N(y) ∧ y > 1))T

N(1)F

⊥
(∃y N(y) ∧ y > 1)T

N(0)T

0 > 1T

...
⊥

N(1)T

1 > 1T

1 > 1F

⊥

N(2)T

2 > 1T

...

Michael Kohlhase: LBS 184 2024-01-20

Example: Peter is a man. No man walks

without sorts with sort Male
man(peter)

¬(∃X man(X) ∧ walks(X))

(∃X man(X) ∧ walks(X))F

(man(peter) ∧ walks(peter))F

man(peter)F

⊥
walks(peter)F

man(peter)

¬(∃XMale walks(X))

(∃XMale walks(X))F

walks(peter)F

problem: 1000 women
⇒

1000 closed branches

▶ Herbrand-model
{man(peter)T,walks(peter)F}

Michael Kohlhase: LBS 185 2024-01-20

Anaphor Resolution A man sleeps. He snores

▶

∃X sleeps(X)

sleeps(c1
Man)

T

∃YMan snores(Y)

snores(c1
Man)

T

minimal
snores(c2

Man)
T

deictic

In a situation without men (but maybe thousands of women)

Michael Kohlhase: LBS 186 2024-01-20

Anaphora with World Knowledge

▶ Example 3.3. Mary is married to Jeff. Her husband is not in town. (slightly
outside F2) In PL1: married(mary, jeff), and

∃WMale,W
′
Female husband(W ,W ′) ∧ ¬intown(W)

▶ World knowledge
▶ If woman X is married to man Y , then Y is the only husband of X .
▶ ∀XFemale,YMale married(X ,Y)⇒ husband(Y ,X) ∧ (∀Z husband(Z ,X)⇒ (Z = Y))

▶ Model generation gives tableau where all open branches contain

{married(mary, jeff)T, husband(jeff,mary)T, intown(jeff)F}

▶ Differences: Additional negative facts e.g. married(mary,mary)F.

Michael Kohlhase: LBS 187 2024-01-20

A branch without world knowledge

married(mary, jeff)T

(∃ZMale,Z
′
Female husband(Z ,Z ′) ∧ ¬intown(Z))T

(∃Z ′ husband(c1
Male,Z

′) ∧ ¬intown(c1
Male))

T

(husband(c1
Male,mary) ∧ ¬intown(c1

Male))
T

husband(c1
Male,mary)T

¬intown(c1
Male)

T

intown(c1
Male)

F

▶ Problem: Bigamy:
c1
Male and jeff are

husbands of Mary!

Michael Kohlhase: LBS 188 2024-01-20

Chapter 9
Fragment 3: Complex Verb Phrases

Michael Kohlhase: LBS 188 2024-01-20

9.1 Fragment 3 (Handling Verb Phrases)

Michael Kohlhase: LBS 188 2024-01-20

New Data (Verb Phrases)

▶ Ethel howled and screamed.
▶ Ethel kicked the dog and poisoned the cat.
▶ Fiona liked Jo and loathed Ethel and tolerated Prudence.
▶ Fiona kicked the cat and laughed.
▶ Prudence kicked and scratched Ethel.
▶ Bertie didn’t laugh.
▶ Bertie didn’t laugh and didn’t scream.
▶ Bertie didn’t laugh or scream.
▶ Bertie didn’t laugh or kick the dog.
▶ * Bertie didn’t didn’t laugh.

Michael Kohlhase: LBS 189 2024-01-20

New Grammar in Fragment 3 (Verb Phrases)

▶ To account for the syntax we come up with the concept of a verb-phrase (VP)
▶ Definition 1.1. F3 has the following rules:
S1. S → NPVP+fin

S2. S → SconjS
V1. VP±fin → V i

±fin
V2. VP±fin → V t

±fin,NP
V3. VP±fin → VP±fin, conj,VP±fin

V4. VP+fin → BE=,NP
V5. VP+fin → BEpred ,Adj.
V6. VP+fin → didn’t VP−fin

N1. NP → Npr
N2. NP → Pron
N3. NP → the N

L8. BE= → is
L9. BEpred → is
L10. V i

−fin → run, laugh, sing,. . .
L11. V t

−fin → read, poison,eat,. . .

▶ Limitations of F3:
▶ The rule for didn’t over-generates: * John didn’t didn’t run (need tense for that)
▶ F3 does not allow coordination of transitive verbs (problematic anyways)

Michael Kohlhase: LBS 190 2024-01-20

Implementing Fragment 3 in GF

▶ The grammar of Fragment 3 only differs from that of Fragment 2 by
▶ Verb phrases: cat VP; VPf; infinite and finite verb phrases
▶ Verb Form: to distinguish howl and howled in English

param VForm = VInf | VPast;
oper VerbType : Type = {s : VForm => Str };

▶ English Paradigms to deal with verb forms.

mkVP = overload {
mkVP : (v : VForm => Str) −> VP = \v −> lin VP {s = v};
mkVP : (v : VForm => Str) −> Str −> VP =
\v,str −> lin VP {s = table{VInf => v!VInf ++ str; VPast => v!VPast ++ str}};
mkVP : (v : VForm => Str) −> Str −> (v : VForm => Str) −> VP =
\v1,str,v2 −> lin VP {s = table{VInf => v1!VInf ++ str ++ v2!VInf;

VPast => v1!VPast ++ str ++ v2!VPast}};};
mkVPf : Str −> VPf = \str −> lin VPf {s = str};

Michael Kohlhase: LBS 191 2024-01-20

9.2 Dealing with Functions in Logic and
Language

Michael Kohlhase: LBS 191 2024-01-20

Types

▶ Types are semantic annotations for terms that prevent antinomies
▶ Definition 2.1. Given a set BT of base types, construct function types: α→ β

is the type of functions with domain type α and range type β. We call the
closure T of BT under function types the set of types over BT .

▶ Definition 2.2.
We will use ι for the type ofindividuals and prop for the type of truth values.

▶ Right Associativity: The type constructor is used as a right-associative
operator, i.e. we use α→ β → γ as an abbreviation for α→ β → γ

▶ Vector Notation:
We will use a kind of vector notation for function types, abbreviating
α1 → . . .→ αn → β with αn → β.

Michael Kohlhase: LBS 192 2024-01-20

Syntactical Categories and Types

▶ Now, we can assign types to phrasial categories.
Cat Type Intuition
S prop truth value

NP ι individual
Npr ι individuals
VP ι→ prop property
V i ι→ prop unary predicate
V t ι→ ι→ prop binary relation

▶ For the category conj, we cannot get by with a single type. Depending on where
it is used, we need the types
▶ prop → prop → prop for S-coordination in rule S2 : S→S , conj,S
▶ ι→ prop → ι→ prop → ι→ prop for VP-coordination in V 3 : VP→VP, conj,VP.
▶ Note: Computational Linguistics, often uses a different notation for types: e

(entiry) for ι, t (truth value) for prop, and ⟨α,β⟩ for α→ β (no bracket elision
convention).
So the type for VP-coordination has the form ⟨⟨ι,[⟩ling]t,⟨⟨ι,[⟩ling]t,⟨ι,[⟩ling]t⟩⟩

Michael Kohlhase: LBS 193 2024-01-20

From Comprehension to β-Conversion

▶ ∃Fα→β ∀Xα FX = Aβ for arbitrary variable Xα and term A∈wff β(ΣT ,VT)
(for each term A and each variable X there is a function f ∈D(α→β), with
f (φ(X)) = Iφ(A))
▶ schematic in α, β, Xα and Aβ , very inconvenient for deduction

▶ Transformation in HΩ

▶ ∃Fα→β ∀Xα FX = Aβ
▶ ∀Xα (λXα A)X = Aβ (∃E)

Call the function F whose existence is guaranteed “(λXα A)”
▶ (λXα A)B = [B/X]Aβ (∀E), in particular for B∈wff α(ΣT ,VT).

▶ Definition 2.3. Axiom of β equality: (λXα A) B = [B/X](Aβ)
▶ Idea: Introduce a new class of formulae (λ-calculus [Chu40])

Michael Kohlhase: LBS 194 2024-01-20

From Extensionality to η-Conversion

▶ Definition 2.4. Extensionality Axiom:
∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒ F = G

▶ Idea: Maybe we can get by with a simplified equality schema here as well.
▶ Definition 2.5. We say that A and λXα A X are η-equal, (write

Aα→β=η(λXα A X)), iff X ̸∈free(A).
▶ Theorem 2.6. η-equality and Extensionality are equivalent
▶ Proof: We show that η-equality is special case of extensionality; the converse

direction is trivial
1. Let ∀Xα AX = BX , thus AX = BX with ∀E
2. λXα AX = λXα BX , therefore A = B with η
3. Hence ∀Fα→β ∀Gα→β (∀Xα FX = GX)⇒ F = G by twice ∀I .

▶ Axiom of truth values: ∀Fprop ∀Gprop FG ⇔ F = G unsolved.

Michael Kohlhase: LBS 195 2024-01-20

9.3 Translation for Fragment 3

Michael Kohlhase: LBS 195 2024-01-20

Translations for Fragment 3

▶ We will look at the new translation rules (the rest stay the same).
T1 : [XNP,YVP]S ; VP ′(NP′), T3 : [XVP ,Yconj,ZVP]VP ; conj′(VP ′,VP ′),

T4 : [XV t ,YNP]VP ; V t ′(NP′)
▶ The lexical insertion rules will give us two items each for is, and, and or,

corresponding to the two types we have given them.

word type term case
BEpred ι→ prop → ι→ prop λPι→prop P adjective
BEeq ι→ ι→ prop λXιYι X = Y verb
and prop → prop → prop V ! S-coord.
and ι→ prop → ι→ prop → ι→ prop λFι→propGι→propXι F (X) ∧ G(X) VP-coord.
or prop → prop → prop ∨ S-coord.
or ι→ prop → ι→ prop → ι→ prop λFι→propGι→propXι F (X) ∨ G(X) VP-coord.
didn′t ι→ prop → ι→ prop λPι→propXι ¬P X

Need to assume the logical connectives as constants of the λ-calculus.

▶ Note: With these definitions, it is easy to restrict ourselves to binary branching
in the syntax of the fragment.

Michael Kohlhase: LBS 196 2024-01-20

Translation Example

▶ Example 3.1. Ethel howled and screamed to

(λFι→propGι→propXι F (X) ∧ G (X)) howls screams ethel
→β (λGι→propXι howls(X) ∧ G (X)) screams ethel
→β (λXι howls(X) ∧ screams(X)) ethel
→β howls(ethel) ∧ screams(ethel)

Michael Kohlhase: LBS 197 2024-01-20

Higher-Order Logic without Quantifiers (HOLNQ)

▶ Problem: Need a logic like PLnq, but with λ-terms to interpret F3 into.
▶ Idea: Re-use the syntactical framework of Λ→.
▶ Definition 3.2. Let HOLNQ be an instance of Λ→, with BT = {ι, prop},

∧∈Σprop→prop→prop, ¬∈Σprop→prop, and = ∈Σα→α→prop for all types α.
▶ Idea: To extend this to a semantics for HOLNQ , we only have to say something

about the base type prop, and the logical constants ¬prop→prop, ∧prop→prop→prop,
and =α→α→prop.

▶ Definition 3.3. We define the semantics of HOLNQ by setting
1. Dprop = {T,F}; the set of truth values
2. I(¬)∈D(prop→prop), is the function {F 7→T,T7→F}
3. I(∧)∈D(prop→prop→prop) is the function with I(∧)@⟨a, b⟩ = T, iff a = T and b = T.
4. I(=)∈D(α→α→prop) is the identity relation on Dα.

Michael Kohlhase: LBS 198 2024-01-20

9.4 Simply Typed λ-Calculus

Michael Kohlhase: LBS 198 2024-01-20

Simply typed λ-Calculus (Syntax)
▶ Definition 4.1. Signature ΣT =

⋃
α∈T Σα (includes countably infinite

signatures ΣSk
α of Skolem contants).

▶ VT =
⋃
α∈T Vα, such that Vα are countably infinite.

▶ Definition 4.2. We call the set wff α(ΣT ,VT) defined by the rules
▶ Vα ∪ Σα ⊆ wff α(ΣT ,VT)
▶ If C∈wff α→β(ΣT ,VT) and A∈wff α(ΣT ,VT), then C A∈wff β(ΣT ,VT)
▶ If A∈wff α(ΣT ,VT), then λXβ A∈wff β→α(ΣT ,VT)

the set of well typed formulae of type α over the signature ΣT and use
wff T (ΣT ,VT):=

⋃
α∈T wff α(ΣT ,VT) for the set of all well-typed formulae.

▶ Definition 4.3. We will call all occurrences of the variable X in A bound in
λX A. Variables that are not bound in B are called free in B.

▶ Substitutions are well typed, i.e. σ(Xα)∈wff α(ΣT ,VT) and capture-avoiding.
▶ Definition 4.4 (Simply Typed λ-Calculus). The simply typed λ calculus Λ→

over a signature ΣT has the formulae wff T (ΣT ,VT) (they are called λ-terms)
and the following equalities:
▶ α conversion: (λX A) =α (λY [Y /X](A)).
▶ β conversion: (λX A) B=β [B/X](A).
▶ η conversion: (λX A X)=ηA if X ̸∈free(A).

Michael Kohlhase: LBS 199 2024-01-20

Simply typed λ-Calculus (Notations)

▶ Application is left-associative:
We abbreviate F A1 A2 . . . An with F(A1, . . .,An) eliding the brackets and
further with F An in a kind of vector notation.

▶ Andrews’ dot Notation: A stands for a left bracket whose partner is as far
right as is consistent with existing brackets; i.e. A B C abbreviates A (B C).

▶ Abstraction is right-associative:
We abbreviate λX 1 λX 2 · · ·λX n A · · · with λX 1. . .X n A eliding brackets, and
further to λX n A in a kind of vector notation.

▶ Outer brackets: Finally, we allow ourselves to elide outer brackets where they
can be inferred.

Michael Kohlhase: LBS 200 2024-01-20

=αβη-Equality (Overview)

▶ Definition 4.5. Reduction with
{

=β : (λX A) B→β[B/X](A)
=η : (λX A X)→ηA

under

=α :
λX A
=α

λY [Y /X](A)
▶ Theorem 4.6. β-reduction is well-typed, terminating and confluent in the

presence of α-conversion.
▶ Definition 4.7 (Normal Form). We call a λ-term A a normal form (in a

reduction system E), iff no rule (from E) can be applied to A.
▶ Corollary 4.8. =βη-reduction yields unique normal forms (up to

=α-equivalence).

Michael Kohlhase: LBS 201 2024-01-20

Syntactic Parts of λ-Terms
▶ Definition 4.9 (Parts of λ-Terms). We can always write a λ-term in the form

T = λX 1. . .X k HA1 . . .An, where H is not an application. We call
▶ H the syntactic head of T
▶ H(A1, . . .,An) the matrix of T, and
▶ λX 1. . .X k (or the sequence X 1, . . .,X k) the binder of T

▶ Definition 4.10.
Head reduction always has a unique β redex

(λX n λY A(B2, . . .,Bn))→h
β(λX

n [B1/Y](A)(B2, . . .,Bn))

▶ Theorem 4.11. The syntactic heads of β-normal forms are constant or
variables.

▶ Definition 4.12. Let A be a λ-term, then the syntactic head of the β-normal
form of A is called the head symbol of A and written as head(A). We call a
λ-term a j-projection, iff its head is the j th bound variable.

▶ Definition 4.13. We call a λ-term a η long form, iff its matrix has base type.
▶ Definition 4.14. η Expansion makes η long forms

η
[
(λX 1. . .X n A)

]
:=(λX 1. . .X n λY 1. . .Ym A(Y 1, . . .,Ym))

▶ Definition 4.15. Long βη normal form, iff it is β normal and η-long.

Michael Kohlhase: LBS 202 2024-01-20

Semantics of Λ→

▶ Definition 4.16. We call a collection DT :={Dα|α∈T } a typed collection (of
sets) and a collection fT : DT →ET , a typed function, iff fα : Dα→Eα.

▶ Definition 4.17. A typed collection DT is called a frame, iff
D(α→β) ⊆ Dα →Dβ

▶ Definition 4.18. Given a frame DT , and a typed function I : Σ→D, then we
call Iφ : wff T (ΣT ,VT)→D the value function induced by I, iff
▶ Iφ|VT

= φ, Iφ|ΣT
= I

▶ Iφ(A B) = Iφ(A)(Iφ(B))
▶ Iφ(λXα A) is that function f ∈D(α→β), such that f (a) = I(φ,[a/X])(A) for all a∈Dα

▶ Definition 4.19. We call a frame ⟨D, I⟩ comprehension closed or a ΣT -algebra,
iff Iφ : wff T (ΣT ,VT)→D is total. (every λ-term has a value)

Michael Kohlhase: LBS 203 2024-01-20

Domain Theory for F3

▶ Observation 1: We we can reuse the lexicon theories from F1

▶ Observation 2: We we can even reuse the grammar theory from F1, if we
extend it in the obvious way (Mmt has all we need)

Michael Kohlhase: LBS 204 2024-01-20

Chapter 10
Fragment 4: Noun Phrases and Quantification

Michael Kohlhase: LBS 204 2024-01-20

10.1 Fragment 4

Michael Kohlhase: LBS 204 2024-01-20

New Data (more Noun Phrases)

▶ We want to be able to deal with the following sentences (without the “the-NP”
trick)
1. Peter loved the cat., but not * Peter loved the the cat.
2. John killed a cat with a white tail.
3. Peter chased the gangster in the car.
4. Peter loves every cat.
5. Every man loves a woman.

Michael Kohlhase: LBS 205 2024-01-20

New Grammar in Fragment 4 (Common Noun Phrases)

▶ To account for the syntax we extend the functionality of noun phrases.
▶ Definition 1.1. F4 adds the rules on the right to F3 (on the left):
S1 : S→NP,VP+fin, S2 : S→S , Sconj,
V 1 : VP±fin→V i

±fin, V 2 : VP±fin→V t
±fin,CNP,

V 3 : VP±fin→VP±fin,VPconj±fin,
V 4 : VP+fin→BE=,NP,
V 5 : VP+fin→BEpred ,Adj,
V 6 : VP+fin→didn′t,VP−fin, N1 : NP→Npr,
N2 : NP→Pron

N3 : NP→DetCNP, N4 : CNP→N,
N5 : CNP→PP, N6 : CNP→Adj,
P1 : PP→P,NP, S3 : Sconj→conj, S ,
V 4 : VPconj±fin→conj,VP±fin,
L1 : P→with | of | . . .

▶ Definition 1.2. A common noun is a noun that describes a type, for example
woman, or philosophy rather than an individual, such as Amelia Earhart (proper
name).

Michael Kohlhase: LBS 206 2024-01-20

Implementing Fragment 4 in GF (Grammar)

▶ The grammar of Fragment 4 only differs from that of Fragment 4 by
▶ common noun phrases: cat CNP; Npr; lincat CNP = NounPhraeType;
▶ prepositional phrases :

cat PP; Det; Prep; lincat Npr, Det, Prep, PP = {s: Str}
▶ new grammar rules

useDet : Det -> CNP -> NP; -- every book
useNpr : Npr -> NP; -- Bertie
useN : N -> CNP; -- book
usePrep : Prep -> NP -> PP; -- with a book
usePP : PP -> CNP -> CNP; -- teacher with a book

▶ grammar rules for “special” words that might not belong into the lexicon
Abstract English
with_Prep : Prep;
of_Prep : Prep;
the_Det : Det;
every_Det : Det;
a_Det : Det;

with_Prep = mkPrep "with";
of_Prep = mkPrep "of";
the_Det = mkDet "the";
every_Det = mkDet "every";
a_Det = mkDet "a";

Michael Kohlhase: LBS 207 2024-01-20

Implementing Fragment 4 in GF (Grammar)

▶ English Paradigms to deal with (common) noun phrases
▶ Another case for mkNP

mkNP : Str −> (Case => Str) −> NP
= \prefix,t −> lin NP { s = table { nom => prefix ++ t!nom;

acc => prefix ++ t!acc}};

mkNpr : Str −> Npr = \name −> lin Npr { s = name };
mkDet : Str −> Det = \every −> lin Det { s = every };
mkPrep : Str −> Prep = \p −> lin Prep { s = p };
mkPP : Str −> PP = \s −> lin PP { s = s };
mkCNP = overload {

mkCNP : Str −> CNP
= \book −> lin CNP { s = table { nom => book; acc => book } };

mkCNP : (Case => Str) −> Str −> CNP
= \t,suffix −> lin CNP { s = table { nom => (t!nom) ++ suffix;

acc => (t!acc) ++ suffix}};};

Michael Kohlhase: LBS 208 2024-01-20

Translation of Determiners and Quantifiers

▶▶ Idea: We establish the semantics of quantifying determiners by =β-expansion.
1. assume that we are translating into a λ-calculus with quantifiers and that

∀X boy(X)⇒ runs(X) translates Every boy runs, and ∃X boy(X) ∧ runs(X) for
Some boy runs

2. ∀∀:=(λPι→propQι→prop (∀ P(X)⇒ Q(X))) for every. (subset relation)

3. ∃∃:=(λPι→propQι→prop (∃ P(X) ∧ Q(X))) for some. (nonempty intersection)
▶ Problem: Linguistic Quantifiers take two arguments (restriction and scope),

logical ones only one! (in logics, restriction is the universal set)
▶ We cannot treat the with regular quantifiers (new logical constant; see below)
▶ Definition 1.3. We translate the to τ :=(λPι→propQι→prop Q ι P), where ι is a

new operator that given a set returns its (unique) member.
▶ Example 1.4. This translates The pope spoke to τ(pope, speaks), which

=β-reduces to speaks(ι pope).

Michael Kohlhase: LBS 209 2024-01-20

10.2 Inference for Fragment 4

Michael Kohlhase: LBS 209 2024-01-20

10.2.1 Quantifiers and Equality in Higher-Order
Logic

Michael Kohlhase: LBS 209 2024-01-20

Higher-Order Abstract Syntax

▶ Idea: In HOL→, we already have variable binder: λ, use that to treat
quantification.

▶ Definition 2.1. We assume logical constants Πα and σα of type
α→ prop → prop.
Regain quantifiers as abbreviations:

(∀Xα A):=Πα (λXα A) (∃Xα A):=σα (λXα A)

▶ Definition 2.2. We must fix the semantics of logical constants:
1. I(Πα)(p) = T, iff p(a) = T for all a∈Dα (i.e. if p is the universal set)
2. I(σα)(p) = T, iff p(a) = T for some a∈Dα (i.e. iff p is non-empty)

▶ With this, we re-obtain the semantics we have given for quantifiers above:

Iφ(∀Xι A) = Iφ(Πι (λXι A)) = I(Πι)(Iφ(λXι A)) = T

iff Iφ(λXι A)(a) = I([a/X],φ)(A) = T for all a∈Dα

Michael Kohlhase: LBS 210 2024-01-20

Equality
▶ Definition 2.3 (Leibniz equality). QαAαBα = ∀Pα→prop PA ⇔ PB

(indiscernability)
▶ Note: ∀Pα→prop PA ⇒ PB (get the other direction by instantiating P with Q,

where QX ⇔ (¬PX))
▶ Theorem 2.4. If M = ⟨D, I⟩ is a standard model, then Iφ(Qα) is the identity

relation on Dα.
▶ Definition 2.5 (Notation). We write A = B for QAB (A and B are equal, iff

there is no property P that can tell them apart.)
▶ Proof:

1. Iφ(QAB) = Iφ(∀P PA ⇒ PB) = T, iff
I(φ,[r/P])(PA ⇒ PB) = T for all r∈D(α→prop).

2. For A = B we have I(φ,[r/P])(PA) = r(Iφ(A)) = F or
I(φ,[r/P])(PB) = r(Iφ(B)) = T.

3. Thus Iφ(QAB) = T.
4. Let Iφ(A) ̸= Iφ(B) and r={Iφ(A)}∈D(α→prop) (exists in a standard

model)
5. so r(Iφ(A)) = T and r(Iφ(B)) = F
6. Iφ(QAB) = F, as I(φ,[r/P])(PA ⇒ PB) = F, since

I(φ,[r/P])(PA) = r(Iφ(A)) = T and I(φ,[r/P])(PB) = r(Iφ(B)) = F.

Michael Kohlhase: LBS 211 2024-01-20

Alternative: HOL∞

▶ Definition 2.6. There is only one logical constant in HOL∞: qα∈Σα→α→prop
with I(qα)(a, b) = T, iff a = b.
We define the rest as below: Definitions (D) and Notations (N)

N Aα = Bα for qαAαBα
D T for qprop = qprop

D F for λXprop T = λXprop Xprop
D Πα for qα→prop (λXα T)
N ∀Xα A for Πα (λXα A)
D ∧ for λXprop λYprop (λGprop→prop→prop GTT = λGprop→prop→prop GXY)
N A ∧ B for ∧ (Aprop) (Bprop)
D ⇒ for λXprop λYprop (X = X ∧ Y)
N A ⇒ B for ⇒ (Aprop) (Bprop)
D ¬ for qprop F
D ∨ for λXprop λYprop ¬(¬X ∧ ¬Y)
N A ∨ B for ∨ (Aprop) (Bprop)
D ∃Xα Aprop for ¬(∀Xα ¬A)
N Aα ̸= Bα for ¬qα (Aα) (Bα)

▶ yield the intuitive meanings for connectives and quantifiers.

Michael Kohlhase: LBS 212 2024-01-20

Generalized Quantifiers

▶ Problem: What about Most boys run.: linguistically most behaves exactly like
every or some.

▶ Idea: Most boys run is true just in case the number of boys who run is greater
than the number of boys who do not run.

#(Iφ(boy) ∩ Iφ(runs)) > #(Iφ(boy)\Iφ(runs))

▶ Definition 2.7. #(A)>#(B), iff there is no surjective function from B to A, so
we can define

most ′:=(λAB ¬(∃F ∀X A(X) ∧ ¬B(X)⇒ (∃ A(Y) ∧ B(Y) ∧ X = F (Y))))

Michael Kohlhase: LBS 213 2024-01-20

Back to every and some (set characterization)

▶ We can now give an explicit set characterization of every and some:
1. every denotes {⟨X ,Y ⟩|X ⊆ Y }
2. some denotes {⟨X ,Y ⟩|X ∩ Y ̸= ∅}

▶ The denotations can be given in equivalent function terms, as demonstrated
above with the denotation of most.

Michael Kohlhase: LBS 214 2024-01-20

10.2.2 Model Generation with Definite
Descriptions

Michael Kohlhase: LBS 214 2024-01-20

Semantics of Definite Descriptions

▶ Problem: We need a semantics for the determiner the, as in the boy runs
▶ Idea (Type): the boy behaves like a proper name (e.g. Peter), i.e. has type ι.

Applying the to a noun (type ι→ prop) yields ι. So the has type
α→ prop → α, i.e. it takes a set as argument.

▶ Idea (Semantics): the has the fixed semantics that this function returns the
single member of its argument if the argument is a singleton, and is otherwise
undefined. (new logical constant)

▶ Definition 2.8. We introduce a new logical constant ι. I(ι) is the function
f ∈D(α→prop→α), such that f (s) = a, iff s∈D(α→prop) is the singleton {a}, and is
otherwise undefined. (remember that we can interpret predicates as sets)

▶ Axioms for ι:
∀Xα X = ι = X

∀P,Q Q(ι P) ∧ (∀X ,Y P(X) ∧ P(Y)⇒ X = Y)⇒ (∀ P(Z)⇒ Q(Z))

Michael Kohlhase: LBS 215 2024-01-20

More Operators and Axioms for HOL→

▶ Definition 2.9. The unary conditional wα∈Σprop→α→α

w (Aprop)Bα means: “If A, then B”.
▶ Definition 2.10. The binary conditional ifα∈Σprop→α→α→α

if (Aprop) (Bα) (Cα) means: “if A, then B else C”.
▶ Definition 2.11. The description operator ια∈Σα→prop→α

if P is a singleton set, then ι (Pα→prop) is the (unique) element in P.
▶ Definition 2.12. The choice operator γα∈Σα→prop→α

if P is non-empty, then γ (Pα→prop) is an arbitrary element from P.
▶ Definition 2.13 (Axioms for these Operators).
▶ unary conditional: ∀φprop ∀Xα φ⇒ w φX = X
▶ binary conditional: ∀φprop ∀Xα,Yα,Zα (φ⇒ if φ X Y = X)∧ (¬φ⇒ if φ Z X = X)
▶ description operator ∀Pα→prop (∃1Xα PX)⇒ (∀Yα PY ⇒ ι P = Y)
▶ choice operator ∀Pα→prop (∃Xα PX)⇒ (∀Yα PY ⇒ γ P = Y)

▶ Idea: These operators ensure a much larger supply of functions in Henkin
models.

Michael Kohlhase: LBS 216 2024-01-20

More on the Description Operator

▶ ι is a weak form of the choice operator. (only works on singletons)
▶ Alternative Axiom of Descriptions: ∀Xα ια = X = X .
▶ use that I [a/X](= X) = {a}
▶ we only need this for base types ̸= prop
▶ Define ιprop:= = (λXprop X) or ιprop:=(λGprop→prop G T) or ιprop:= = = T
▶ ι(α→β):=(λHα→β→propXα ι

β (λZβ (∃Fα→β H F ∧ F X = Z)))

Michael Kohlhase: LBS 217 2024-01-20

A Model Generation Rule for ι

▶ Definition 2.14.
P(c)T

Q(ι P)α
H = {c , a1, . . . , an}

RM ι
Q(c)α

(P(a1)⇒ c = a1)
T

...
(P(an)⇒ c = an)

T

▶ Intuition: If we have a member c of P and Q(ι P) is defined (it has truth
value α∈{T,F}), then P must be a singleton (i.e. all other members X of P are
identical to c) and Q must hold on c . So the rule RM ι forces it to be by
making all other members of P equal to c .

Michael Kohlhase: LBS 218 2024-01-20

Mary owned a lousy computer. The hard drive crashed.

(∀X computer(X)⇒ (∃Y harddrive(Y) ∧ partof(Y ,X)))T

(∃X computer(X) ∧ lousy(X) ∧ own(mary,X))T

computer(c)T

lousy(c)T

own(mary, c)T

harddrive(c)T

partof(c , c)T
...
⊥

harddrive(d)T

partof(d , c)T

crashes(ι harddrive)T

crashes(d)T

(harddrive(mary)⇒ mary = d)T

(harddrive(c)⇒ c = d)T

Michael Kohlhase: LBS 219 2024-01-20

Another Example The dog barks

▶ In a situation, where there are two dogs: Fido and Chester

dog(fido)T

dog(chester)T

bark(ι dog)

bark(fido)T

(dog(chester)⇒ chester = fido)T

dog(chester)F

⊥
chester = fidoT

(1)

▶ Note that none of our rules allows us to close the right branch, since we do not
know that Fido and Chester are distinct. Indeed, they could be the same dog
(with two different names). But we can eliminate this possibility by adopting a
new assumption.

Michael Kohlhase: LBS 220 2024-01-20

10.2.3 Model Generation with Unique Name
Assumptions

Michael Kohlhase: LBS 220 2024-01-20

Model Generation with Unique Name Assumption (UNA)

▶ Problem: Names are unique usually in natural language
▶ Definition 2.15. The unique name assumption (UNA) makes the assumption

that names are unique (in the respective context)
▶ Idea: Add background knowledge of the form n = mF (n and m names)
▶ Better Idea: Build UNA into the calculus: partition the Herbrand base

H = U ∪W into subsets U for constants with a UNA, and W without. (treat
them differently)

▶ Definition 2.16 (Model Generation with UNA). We add the following two
rules to the RM calculus to deal with the unique name assumption.

a = bT

Aα
a∈W b∈H

([b/a](A))α
RM subst

a = bT a, b∈U
⊥

RM una

Michael Kohlhase: LBS 221 2024-01-20

Solving a Crime with Unique Names
▶ Example 2.17. Tony has observed (at most) two people. Tony observed a

murderer that had black hair. It turns out that Bill and Bob were the two people
Tony observed. Bill is blond, and Bob has black hair. (Who was the murderer.)
Let U = {Bill,Bob} and W = {murderer}:

(∀z observes(Tony, z)⇒ (z = Bill ∨ z = Bob))T

observes(Tony,Bill)T

observes(Tony,Bob)T

observes(Tony,murderer)T

black_hair(murderer)T

¬black_hair(Bill)T

black_hair(Bill)F

black_hair(Bob)T

(observes(Tony,murderer)⇒ (murderer = Bill ∨ murderer = Bob))T

(murderer = Bill ∨ murderer = Bob)T

murderer = BillT

black_hair(Bill)T

⊥

murderer = BobT

Michael Kohlhase: LBS 222 2024-01-20

Rabbits [Gardent & Konrad ’99]

▶ Interpret “the” as λPQ Qι P ∧ uniq(P)
where uniq:=(λP (∃X P(X) ∧ (∀Y P(Y)⇒ X = Y)))
and ∀∀:=(λPQ (∀X P(X)⇒ Q(X))).

▶ “the rabbit is cute”, has logical form uniq(rabbit) ∧ (rabbit ⊆ cute).
▶ RM generates { . . . , rabbit(c), cute(c)} in situations with at most 1 rabbit.

(special RM ∃ rule yields identification and accommodation (cnew))
+ At last an approach that takes world knowledge into account!
– tractable only for toy discourses/ontologies

The world cup final was watched on TV by 7 million people.
A rabbit is in the garden.
∀X human(x)∃Y human(X) ∧ father(X ,Y) ∀X ,Y father(X ,Y)⇒ X ̸= Y

Michael Kohlhase: LBS 223 2024-01-20

More than one Rabbit

▶ Problem: What about two rabbits?
Bugs and Bunny are rabbits. Bugs is in the hat. Jon removes the rabbit from
the hat.

▶ Idea: Uniqueness under Scope [Gardent & Konrad ’99]:
▶ refine the to λPRQ uniq(P ∩ R ∧ ∀∀(P ∩ R,Q))

where R is an “identifying property” (identified from the context and passed as an
arbument to the)

▶ here R is “being in the hat” (by world knowledge about removing)
▶ makes Bugs unique (in P ∩ R) and the discourse acceptable.

▶ Idea: [Hobbs & Stickel&. . .]:
▶ use generic relation rel for “relatedness to context” for P2.
?? Is there a general theory of relatedness?

Michael Kohlhase: LBS 224 2024-01-20

10.3 Davidsonian Semantics: Treating Verb
Modifiers

Michael Kohlhase: LBS 224 2024-01-20

Event semantics: Davidsonian Systems

▶ Problem: How to deal with argument structure of (action verbs) and their
modifiers
▶ John killed a cat with a hammer.

▶ Idea: Just add an argument to kills for express the means
▶ Problem: But there may be more modifiers

1. Peter killed the cat in the bathroom with a hammer.
2. Peter killed the cat in the bathroom with a hammer at midnight.

So we would need a lot of different predicates for the verb killed. (impractical)
▶ Definition 3.1. In event semantics we extend the argument structure of (action)

verbs contains a ’hidden’ argument, the event argument, then treat modifiers as
predicates (often called roles) over events [Dav67a].

▶ Example 3.2.
1. ∃e ∃x , y bathroom(x) ∧ hammer(y) ∧ kill(e, peter, ι cat) ∧ in(e, x) ∧ with(e, y)
2. ∃e ∃x , y bathroom(x) ∧ hammer(y) ∧ kill(e, peter, ι cat) ∧ in(e, x) ∧ with(e, y) ∧

at(e, 24 : 00)

Michael Kohlhase: LBS 225 2024-01-20

Event semantics: Neo-Davidsonian Systems

▶ Idea: Take apart the Davidsonian predicates even further, add event
participants via thematic roles (from [Par90]).

▶ Definition 3.3. Neo-Davisonian semantics extends event semantics by adding
two standardized roles: the agent ag(e, s) and the patient pat(e, o) for the
subject s and direct object d of the event e.

▶ Example 3.4. Translate John killed a cat with a hammer. as
∃e ∃x hammer(x) ∧ killing(e) ∧ ag(e, peter) ∧ pat(e, ι cat) ∧ with(e, x)

▶ Further Elaboration: Events can be broken down into sub-events and
modifiers can predicate over sub-events.

▶ Example 3.5. The “process” of climbing Mt. Everest starts with the “event” of
(optimistically) leaving the base camp and culminates with the “achievement” of
reaching the summit (being completely exhausted).

▶ Note: This system can get by without functions, and only needs unary and
binary predicates. (well-suited for model generation)

Michael Kohlhase: LBS 226 2024-01-20

Event types and properties of events
▶ Example 3.6 (Problem). Some (temporal) modifiers are incompatible with

some events, e.g. in English progressive:
1. He is eating a sandwich and He is pushing the cart., but not
2. * He is being tall. or * He is finding a coin.

▶ Definition 3.7 (Types of Events). There are different types of events that go
with different temporal modifiers. [Ven57] distinguishes
1. states: e.g. know the answer, stand in the corner
2. processes: e.g. run, eat, eat apples, eat soup
3. accomplishments: e.g. run a mile, eat an apple, and
4. achievements: e.g. reach the summit

▶ Observations:
1. processes and accomplishments appear in the progressive (1),
2. states and achievements do not (2).

▶ Definition 3.8. The in test
1. states and activities, but not accomplishments and achievements are compatible

with for-adverbials
2. whereas the opposite holds for in-adverbials (5).

▶ Example 3.9.
1. run a mile in an hour vs. * run a mile for an hour, but
2. * reach the summit for an hour vs reach the summit in an hour

Michael Kohlhase: LBS 227 2024-01-20

Chapter 11
Davidsonian Semantics: Treating Verb Modifiers

Michael Kohlhase: LBS 227 2024-01-20

Event semantics: Davidsonian Systems

▶ Problem: How to deal with argument structure of (action verbs) and their
modifiers
▶ John killed a cat with a hammer.

▶ Idea: Just add an argument to kills for express the means
▶ Problem: But there may be more modifiers

1. Peter killed the cat in the bathroom with a hammer.
2. Peter killed the cat in the bathroom with a hammer at midnight.

So we would need a lot of different predicates for the verb killed. (impractical)
▶ Definition 0.1. In event semantics we extend the argument structure of (action)

verbs contains a ’hidden’ argument, the event argument, then treat modifiers as
predicates (often called roles) over events [Dav67a].

▶ Example 0.2.
1. ∃e ∃x , y bathroom(x) ∧ hammer(y) ∧ kill(e, peter, ι cat) ∧ in(e, x) ∧ with(e, y)
2. ∃e ∃x , y bathroom(x) ∧ hammer(y) ∧ kill(e, peter, ι cat) ∧ in(e, x) ∧ with(e, y) ∧

at(e, 24 : 00)

Michael Kohlhase: LBS 228 2024-01-20

Event semantics: Neo-Davidsonian Systems

▶ Idea: Take apart the Davidsonian predicates even further, add event
participants via thematic roles (from [Par90]).

▶ Definition 0.3. Neo-Davisonian semantics extends event semantics by adding
two standardized roles: the agent ag(e, s) and the patient pat(e, o) for the
subject s and direct object d of the event e.

▶ Example 0.4. Translate John killed a cat with a hammer. as
∃e ∃x hammer(x) ∧ killing(e) ∧ ag(e, peter) ∧ pat(e, ι cat) ∧ with(e, x)

▶ Further Elaboration: Events can be broken down into sub-events and
modifiers can predicate over sub-events.

▶ Example 0.5. The “process” of climbing Mt. Everest starts with the “event” of
(optimistically) leaving the base camp and culminates with the “achievement” of
reaching the summit (being completely exhausted).

▶ Note: This system can get by without functions, and only needs unary and
binary predicates. (well-suited for model generation)

Michael Kohlhase: LBS 229 2024-01-20

Event types and properties of events
▶ Example 0.6 (Problem). Some (temporal) modifiers are incompatible with

some events, e.g. in English progressive:
1. He is eating a sandwich and He is pushing the cart., but not
2. * He is being tall. or * He is finding a coin.

▶ Definition 0.7 (Types of Events). There are different types of events that go
with different temporal modifiers. [Ven57] distinguishes
1. states: e.g. know the answer, stand in the corner
2. processes: e.g. run, eat, eat apples, eat soup
3. accomplishments: e.g. run a mile, eat an apple, and
4. achievements: e.g. reach the summit

▶ Observations:
1. processes and accomplishments appear in the progressive (1),
2. states and achievements do not (2).

▶ Definition 0.8. The in test
1. states and activities, but not accomplishments and achievements are compatible

with for-adverbials
2. whereas the opposite holds for in-adverbials (5).

▶ Example 0.9.
1. run a mile in an hour vs. * run a mile for an hour, but
2. * reach the summit for an hour vs reach the summit in an hour

Michael Kohlhase: LBS 230 2024-01-20

Part 2
Topics in Semantics

Michael Kohlhase: LBS 230 2024-01-20

Chapter 12
Dynamic Approaches to NL Semantics

Michael Kohlhase: LBS 230 2024-01-20

12.1 Discourse Representation Theory

Michael Kohlhase: LBS 230 2024-01-20

Anaphora and Indefinites revisited (Data)

▶ Observation: We have concentrated on single sentences so far; let’s do better.
▶ Definition 1.1. A discourse is a a unit of natural language longer than a single

sentence.
▶ New Data: discourses interact with anaphora.:
▶ Peter1 is sleeping. He1 is snoring. (normal anaphoric reference)
▶ A man1 is sleeping. He1 is snoring. (Scope of existential?)
▶ Peter has a car1. It1 is parked outside. (even if this worked)
▶ * Peter has no car1. It1 is parked outside. (what about negation?)
▶ There is a book1 that Peter does not own. It1 is a novel. (OK)
▶ * Peter does not own every book1. It1 is a novel. (equivalent in PL1)
▶ If a farmer1 owns a donkey2, he1 beats it2. (even inside sentences)

Michael Kohlhase: LBS 231 2024-01-20

Dynamic Effects in Natural Language

▶ Problem: E.g. Quantifier Scope
▶ * A man sleeps. He snores.
▶ (∃X man(X) ∧ sleeps(X)) ∧ snores(X)
▶ X is bound in the first conjunct, and free in the second.

▶ Problem: donkey sentence: If a farmer owns a donkey, he beats it.
∀X ,Y farmer(X) ∧ donkey(Y) ∧ own(X ,Y)⇒ beat(X ,Y)

▶ Ideas:
▶ Composition of sentences by conjunction inside the scope of existential quantifiers

(non-compositional, . . .)
▶ Extend the scope of quantifiers dynamically (DPL)
▶ Replace existential quantifiers by something else (DRT)

Michael Kohlhase: LBS 232 2024-01-20

Discourse Representation Theory (DRT)
▶ Definition 1.2. Discourse Representation Theory (DRT) is a logical system,

which uses discourse referents to model quantification and pronouns. DRT
formulae are called discourse representation structure (DRS); these introduce a
set of discourse referents and specify their meaning by conditions:
▶ atomic propositions,
▶ dynamic negations ¬¬D,
▶ dynamic implications D⇒⇒E , and
▶ dynamic disjunctions D∨∨E .

▶ Discourse referents e.g. in A student owns a book.

▶ are kept in a dynamic context (; accessibility)
▶ are declared e.g. in indefinite nominals
▶ specified in conditions via predicates

X ,Y
student(X)
book(Y)
own(X ,Y)

▶ Discourse representation structures (DRS)
A student owns a book. He reads it. If a farmer owns a donkey, he beats it.

X ,Y ,R,S
student(X)
book(Y)
own(X ,Y)
read(R, S)
X = R
Y = S

X ,Y
farmer(X)
donkey(Y)
own(X ,Y)

⇒⇒ beat(X ,Y)

Michael Kohlhase: LBS 233 2024-01-20

Discourse DRS Construction

▶ Problem: How do we construct DRSes for multi-sentence discourses?
▶ Solution: We construct sentence DRSes individually and merge them (DRSes

and conditions separately)
▶ Example 1.3. A three-sentence discourse. (not quite Shakespeare)

Mary sees John. John kills a cat. Mary calls a cop. merge

see(mary, john)

U
cat(U)
kills(john,U)

V
policeman(V)
calls(mary,V)

U,V
see(mary, john)
cat(U)
kills(john,U)
policeman(V)
calls(mary,V)

▶ Sentence composition via the DRT Merge Operator ⊗. (acts on DRSes)

Michael Kohlhase: LBS 234 2024-01-20

Anaphor Resolution in DRT

▶ Problem: How do we resolve anaphora in DRT?
▶ Solution: Two phases
▶ translate pronouns into discourse referents (semantics construction)
▶ identify (equate) coreferring discourse referents, (maybe) simplify

(semantic/pragmatic analysis)
▶ Example 1.4. A student owns a book. He reads it.

A student1 owns a book2. He1 reads it2 resolution simplify

X ,Y ,R,S
student(X)
book(Y)
read(R,S)

X ,Y ,R,S
student(X)
book(Y)
read(R,S)
X = R
Y = S

X ,Y
student(X)
book(Y)
read(X ,Y)

Michael Kohlhase: LBS 235 2024-01-20

DRT (Syntax)

▶ Definition 1.5. Given a set DR of discourse referents, discourse representation
structure (DRSes) are given by the following grammar:

conditions C::=p(a1, . . ., an) | C1 ∧ C2 | ¬¬D | D1∨∨D2 | D1⇒⇒D2
DRSes D::=δU1, . . .,Un C | D1 ⊗D2 | D1 ;;D2

▶ ⊗ and ;; are for sentence composition (⊗ from DRT, ;; from DPL)
▶ Example 1.6. δU,V farmer(U) ∧ donkey(V) ∧ own(U,V) ∧ beat(U,V)

▶ Definition 1.7. The meaning of ⊗ and ;; is given operationally by =τ Equality:

δX C1 ⊗ δY C2 →τ δX ,Y C1 ∧ C2

δX C1 ;; δY C2 →τ δX ,Y C1 ∧ C2

▶ Discourse referents used instead of bound variables. (specify scoping
independently of logic)

▶ Idea: Semantics inherited from first-order logic by a translation mapping.

Michael Kohlhase: LBS 236 2024-01-20

Sub DRSes and Accessibility

▶ Problem: How can we formally define accessibility. (to make predictions)
▶ Idea: Make use of the structural properties of DRT.
▶ Definition 1.8. A referent is accessible in all sub DRS of the declaring DRS.
▶ If D = δU1, . . .,Un C, then any sub DRS of C is a sub DRS of D.
▶ If D = D1 ⊗D2, then D1 is a sub DRS of D2 and vice versa.
▶ If D = D1 ;;D2, then D2 is a sub DRS of D1.
▶ If C is of the form C1 ∧ C2, or ¬¬D, or D1∨∨D2, or D1⇒⇒D2, then any sub DRS of

the C i , and the Di is a sub DRS of C.
▶ If D = D1⇒⇒D2, then D2 is a sub DRS of D1

▶ Definition 1.9 (Dynamic Potential). (which referents can be picked up?) A
referent U is in the dynamic potential of a DRS D, iff it is accessible in

D ⊗
p(U)

▶ Definition 1.10. We call a DRS static, iff the dynamic potential is empty, and
dynamic, if it is not.

Michael Kohlhase: LBS 237 2024-01-20

Sub DRSes and Accessibility

▶ Observation: Accessibility gives DRSes the flavor of binding structures. (with
non-standard scoping!)

▶ Idea: Apply the usual binding heuristics to DRT, e.g.
▶ reject DRSes with unbound discourse referents.

▶ Questions: if view of discourse referents as “nonstandard bound variables”
▶ what about renaming referents?

Michael Kohlhase: LBS 238 2024-01-20

Translation from DRT to FOL
▶ Definition 1.11. For =τ -normal (fully merged) DRSes use the translation ·:

δU1, . . .,Un C = ∃U1, . . .,Un C
¬¬D = ¬D

D∨∨E = D ∨ E
D ∧ E = D ∧ E

(δU1, . . .,Un C1)⇒⇒(δV 1, . . .,V n C2) = ∀U1, . . .,Un C1 ⇒ (∃V 1, . . .,V n C2)

▶ Example 1.12.

X ,Y
student(X)
book(Y)
own(X ,Y)

= ∃X ∃Y student(X) ∧ book(Y) ∧ own(X ,Y).

▶ Example 1.13.

(δU,V farmer(U) ∧ donkey(V) ∧ own(U,V))⇒⇒(δW stick(W) ∧ beatwith(U,V ,W))
= ∀X ,Y farmer(X) ∧ donkey(X) ∧ own(X ,Y)⇒ (∃ stick(Z) ∧ beatwith(Z ,X ,Y))

▶ Consequence: Validity of DRSes can be checked by translation.
▶ Question: Why not use first-order logic directly?
▶ Answer: Only translate at the end of a discourse(translation closes all dynamic

contexts: frequent re-translation).

Michael Kohlhase: LBS 239 2024-01-20

Properties of Dynamic Scope
▶ Idea: Test DRT on the data above for the dynamic phenomena
▶ Example 1.14 (Negation Closes Dynamic Potential).

Peter has no1 car. * It1 is parked outside.

¬¬
U

acar(U)
own(peter,U)

⊗
parked(U)

¬(∃U acar(U) ∧ own(peter,U)). . .

▶ Example 1.15 (Universal Quantification is Static).
Peter does not own every book1. * It1 is a novel.

¬¬ U

book(U)
⇒⇒

own(peter,U)

⊗
novel(U)

¬(∀U book(U)⇒ own(peter,U)). . .
▶ Example 1.16 (Existential Quantification is Dynamic).

There is a book1 that Peter does not own. It1 is a novel.
V

book(V)
(¬own(peter,V))

⊗
novel(V)

∃U book(U) ∧ ¬own(peter,U) ∧ novel(U)

Michael Kohlhase: LBS 240 2024-01-20

DRT as a Representational Level

▶ DRT adds a level to the knowledge representation which provides anchors (the
discourse referents) for anaphora and the like.

▶ Propositional semantics by translation into PL1. (“+s” adds a sentence)

a
A

a,b
A
B

a,b,c
A
B
C

· · ·
· · ·

∃a.A ∃a, b.A ∧ B ∃a, b, c .A ∧ B ∧ C · · ·

+s +s +s

? ? ?

τ τ τ

Repn.
Layer

Logic
Layer

▶ Anaphor resolution works incrementally on the representational level.

Michael Kohlhase: LBS 241 2024-01-20

A Direct Semantics for DRT (Dyn. Interpretation Iδφ)

▶ Definition 1.17. Let M = ⟨D, I⟩ be a first-order model, then a state is an
assignment from discourse referents into D.

▶ Definition 1.18. Let φ,ψ : DR→U be states, then we say that ψ extends φ on
X ⊆ DR (write φ[X]ψ), if φ(U) = ψ(U) for all U ̸∈X .

▶ Idea: Conditions as truth values; DRSes as pairs (X ,S) (S set of states)
▶ Definition 1.19 (Meaning of complex formulae).The value function Iφ for

DRT is defined with the help of a dynamic value function Iδφ on DRSs: For
conditions:
▶ Iφ(¬¬D) = T, if Iδφ(D)2 = ∅.
▶ Iφ(D∨∨E) = T, if Iδφ(D)2 ̸= ∅ or Iδφ(E)2 ̸= ∅.
▶ Iφ(D⇒⇒E) = T, if for all ψ∈Iδφ(D)2 there is a τ∈Iδφ(E)2 with ψ[Iδφ(E)1]τ .

For DRSs D we set Iφ(D) = T, iff Iδφ(D)2 ̸= ∅, and define
▶ Iδφ(δX C) = (X ,{ψ|φ[X]ψ and Iψ(C) = T}).
▶ Iδφ(D ⊗ E) = Iδφ(D ;; E) = (Iδφ(D)1 ∪ Iδφ(E)1,Iδφ(D)2 ∩ Iδφ(E)2)

Michael Kohlhase: LBS 242 2024-01-20

Examples (Computing Direct Semantics)

▶ Example 1.20. Peter owns a car

Iδφ(δU acar(U) ∧ own(peter,U))

= ({U},{ψ|φ[U]ψ and Iψ(acar(U) ∧ own(peter,U)) = T})
= ({U},{ψ|φ[U]ψ and Iψ(acar(U)) = T and Iψ(own(peter,U)) = T})
= ({U},{ψ|φ[U]ψ and ψ(U)∈I(acar) and (ψ(U),peter)∈I(own)})

The set of states [a/U], such that a is a car and is owned by Peter
▶ Example 1.21. For Peter owns no car we look at the condition:

Iφ(¬¬(δU acar(U) ∧ own(peter,U))) = T

⇔ Iδφ(δU acar(U) ∧ own(peter,U))2 = ∅
⇔ ({U},{ψ|φ[X]ψ and ψ(U)∈I(acar) and (ψ(U),peter)∈I(own)})2 = ∅
⇔ {ψ|φ[X]ψ and ψ(U)∈I(acar) and (ψ(U),peter)∈I(own)} = ∅

i.e. iff there are no a, that are cars and that are owned by Peter.

Michael Kohlhase: LBS 243 2024-01-20

12.2 Dynamic Model Generation

Michael Kohlhase: LBS 243 2024-01-20

Deduction in Dynamic Logics

▶ Mechanize the dynamic entailment relation (with anaphora)
▶ Use dynamic deduction theorem to reduce (dynamic) entailment to (dynamic)

satisfiability
▶ Direct Deduction on DRT (or DPL) [Sau93; RG94; MR98]

(++) Specialized Calculi for dynamic representations
(– –) Needs lots of development until we have efficient implementations
▶ Translation approach (used in our experiment)
(–) Translate to FOL

(++) Use off-the-shelf theorem prover (in this case MathWeb)

Michael Kohlhase: LBS 244 2024-01-20

An Opportunity for Off-The-Shelf ATP?

▶ Pro: ATP is mature enough to tackle applications
▶ Current ATP are highly efficient reasoning tools.
▶ Full automation is needed for NLP. (ATP as an oracle)
▶ ATP as logic engines is one of the initial promises of the field.

▶ contra: ATP are general logic systems
1. NLP uses other representation formalisms (DRT, Feature Logic,. . .)
2. ATP optimized for mathematical (combinatorially complex) proofs.
3. ATP (often) do not terminate.

▶ Experiment: Use translation approach for 1. to test 2. and 3. [Bla+01] (Wow,
it works!)

Michael Kohlhase: LBS 245 2024-01-20

Excursion: Incrementality in Dynamic Calculi

▶ For applications, we need to be able to check for
▶ satisfiability (∃M M|=A), validity (∀M M|=A) and
▶ entailment (H |=A, iff M|=H implies M|=A for all M)

▶ Theorem 2.1 (Entailment Theorem). H,A |=B, iff H |=A ⇒ B. (e.g. for
first-order logic and DPL)

▶ Theorem 2.2 (Deduction Theorem). For most calculi C we have H,A⊢CB, iff
H⊢CA ⇒ B. (e.g. for ND1)

▶ Problem: Analogue H1 ⊗ · · · ⊗ Hn |= A is not equivalent to
|= (H1 ⊗ · · · ⊗ Hn)⇒⇒A in DRT, as ⊗ symmetric.

▶ Thus the validity check cannot be used for entailment in DRT.
▶ Solution: Use sequential merge ;; (from DPL) for sentence composition.

Michael Kohlhase: LBS 246 2024-01-20

Model Generation for Dynamic Logics

▶ Problem: Translation approach is not incremental!
▶ For each check, the DRS for the whole discourse has to be translated.
▶ Can become infeasible, once discourses get large (e.g. novel).
▶ This applies for all other approaches for dynamic deduction too.

▶ Idea: Extend model generation techniques instead!
▶ Remember: A DRS D is valid in M = ⟨D, I⟩, iff Iδ∅(D)2 ̸= ∅.
▶ Find a model M and state φ, such that φ∈Iδ∅(D)2.
▶ Adapt first-order model generation technology for that.

Michael Kohlhase: LBS 247 2024-01-20

Dynamic Herbrand Interpretation

▶ Definition 2.3. We call a model M = ⟨U , I, Iδ· ⟩ a dynamic Herbrand
interpretation, if ⟨U , I⟩ is a Herbrand model.

▶ Can represent M as a triple ⟨X ,S,B⟩, where B is the Herbrand base for ⟨U , I⟩.
▶ Definition 2.4. M is called finite, iff U is finite.
▶ Definition 2.5. M is minimal, iff for all M′ the following holds:

(B(M)′ ⊆ B(M))⇒M = M′.
▶ Definition 2.6. M is domain minimal if for all M′ the following holds:

#(U(M))≤#(U(M)′)

Michael Kohlhase: LBS 248 2024-01-20

Dynamic Model Generation Calculus

▶ Definition 2.7. We use a tableau framework, extend by state information, and
rules for DRSes.
▶

(δUA A)T H = {a1, . . ., an} w ̸∈H new
[a1/U]

([a1/U](A))T
∣∣∣ . . . ∣∣∣ [an/U]

([an/U](A))T
∣∣∣ [w/U]

([w/U](A))T

RM δ

▶ Mechanize ;; by adding representation of the second DRS at all leaves. (⇝tableau
machine)

▶ Treat conditions by DRT translation

¬¬D
¬¬D

D⇒⇒D′

D⇒⇒D′

D∨∨D′

D∨∨D′

Michael Kohlhase: LBS 249 2024-01-20

Example: Peter is a man. No man walks

▶ Example 2.8 (Model Generation). Peter is a man. No man walks

man(peter)

¬¬(δU man(U) ∧ walks(U))

(man(U) ∧ walks(U))T

(∀X man(X) ∧ walks(X))F

(man(peter) ∧ walks(peter))F

man(peter)F

⊥
walks(peter)F

Dynamic Herbrand interpretation: ⟨∅, ∅, {man(peter)T,walks(peter)F}⟩

Michael Kohlhase: LBS 250 2024-01-20

Example: Anaphor Resolution A man sleeps. He snores

▶ Example 2.9 (Anaphor Resolution). A man sleeps. He snores

δUMan man(U) ∧ sleeps(U)

[c1
Man/UMan]

man(c1
Man)

T

sleeps(c1
Man)

T

δVMan snores(V)

[c1
Man/VMan]

snores(c1
Man)

T

minimal

[c2
Man/VMan]

snores(c2
Man)

T

deictic

Michael Kohlhase: LBS 251 2024-01-20

Anaphora with World Knowledge

▶ Example 2.10 (Anaphora with World Knowledge).
▶ Mary is married to Jeff. Her husband is not in town.
▶ δUF,VM U = mary ∧ married(U,V) ∧ V = jeff ;; δWM,W

′
F husband(W ,W ′) ∧ ¬intown(W)

▶ World knowledge
▶ if a female X is married to a male Y , then Y is X ’s only husband
▶ ∀XF,YM married(X ,Y)⇒ husband(Y ,X) ∧ (∀Z husband(Z ,X)⇒ Z = Y)

▶ Model generation yields tableau, all branches contain

⟨{U,V ,W ,W ′}, {[mary/U], [jeff/V], [jeff/W], [mary/W ′]},H⟩

with
H = {married(mary, jeff)T, husband(jeff,mary)T,¬intown(jeff)T}

▶ they only differ in additional negative facts, e.g. married(mary,mary)F.

Michael Kohlhase: LBS 252 2024-01-20

Model Generation models Discourse Understanding

▶ Conforms with psycholinguistic findings:
▶ Zwaan& Radvansky [ZR98]: listeners not only represent logical form, but also

models containing referents.
▶ deVega [de 95]: online, incremental process.
▶ Singer [Sin94]: enriched by background knowledge.
▶ Glenberg et al. [GML87]: major function is to provide basis for anaphor resolution.

Michael Kohlhase: LBS 253 2024-01-20

Chapter 13
Propositional Attitudes and Modalities

Michael Kohlhase: LBS 253 2024-01-20

13.1 Introduction

Michael Kohlhase: LBS 253 2024-01-20

Modalities and Propositional Attitudes

▶ Definition 1.1. Modality is a feature of language that allows for communicating
things about, or based on, situations which need not be actual.

▶ Definition 1.2. Modality is signaled by grammatical expressions (called moods)
that express a speaker’s general intentions and commitment to how believable,
obligatory, desirable, or actual an expressed proposition is.

▶ Example 1.3. Data on modalities (moods in red)
▶ A probably holds, (possibilistic)
▶ it has always been the case that A, (temporal)
▶ it is well-known that A, (epistemic)
▶ A is allowed/prohibited, (deontic)
▶ A is provable, (provability)
▶ A holds after the program P terminates, (program)
▶ A hods during the execution of P. (dito)
▶ it is necessary that A, (aletic)
▶ it is possible that A, (dito)

Michael Kohlhase: LBS 254 2024-01-20

Modeling Modalities and Propositional Attitudes

▶ Example 1.4. Again, the pattern from above:
▶ it is necessary that Peter knows logic (A = Peter knows logic)
▶ it is possible that John loves logic, (A = John loves logic)

▶ Observation: All of the red parts above modify the clause/sentence A. We call
them modalities.

▶ Definition 1.5 (A related Concept from Philosophy). A propositional
attitude is a mental state held by an agent toward a proposition.

▶ Question: But how to model this in logic?
▶ Idea: New sentence-to-sentence operators for necessary and possible. (extend

existing logics with them.)
▶ Observation: A is necessary, iff ¬A is impossible.
▶ Definition 1.6. A modal logic is a logical system that has logical constants that

model modalities.

Michael Kohlhase: LBS 255 2024-01-20

History of Modal Logic

▶ Aristoteles studies the logic of necessity and possibility
▶ Diodorus: temporal modalities
▶ possible: is true or will be
▶ necessary: is true and will never be false

▶ Clarence Irving Lewis 1918 [Lew18] (Systems S1, . . . , S5)
▶ strict implication I (A ∧ B) (I for “impossible”)

▶ Kurt Gödel 1932: Modal logic of provability (S4) [Göd32]
▶ Saul Kripke 1959-63: Possible worlds semantics [Kri63]
▶ Vaugham Pratt 1976: Dynamic Program Logic [Pra76]

▶
...

Michael Kohlhase: LBS 256 2024-01-20

Basic Modal Logics (ML0 and ML1)

▶ Definition 1.7. Propositional modal logic ML0 extends propositional logic with
two new logical constants: 2 for necessity and 3 for possibility.(3A = ¬(2¬A))

▶ Observation: Nothing hinges on the fact that we use propositional logic!
▶ Definition 1.8. First-order modal logic ML1 extends first-order logic with two

new logical constants: 2 for necessity and 3 for possibility.
▶ Example 1.9. We interpret

1. Necessarily, every mortal will die. as 2(∀X mortal(X)⇒ willdie(X))

2. Possibly, something is immortal. as 3(∃X ¬mortal(X))

▶ Questions: What do 2 and 3 mean? How do they behave?

Michael Kohlhase: LBS 257 2024-01-20

Epistemic and Doxastic Modality

▶ Definition 1.10. Modal sentences can convey information about the speaker’s
state of knowledge (epistemic state) or belief (doxastic state).

▶ Example 1.11. We might paraphrase sentence (epposs) as (3):
1. A: Where’s John?
2. B: He might be in the library.
3. B ′: It is consistent with the speaker’s knowledge that John is in the library.

▶ Definition 1.12. We way that a world w is an epistemic possibility for an agent
B if it could be consistent with B’s knowledge.

▶ Definition 1.13. An epistemic logic is one that models the epistemic state of a
speaker. Doxastic logic does the same for the doxastic state.

▶ Definition 1.14. In deontic modal logic, we interpret the accessibility relation R
as epistemic accessibility:
▶ With this R, represent B’s utterance as 3inlib(j).
▶ Similarly, represent John must be in the library. as 2inlib(j).

▶ Question: If R is epistemic accessibility, what properties should it have?

Michael Kohlhase: LBS 258 2024-01-20

Deontic modality

▶ Definition 1.15. Deontic modality is a modality that indicates how the world
ought to be according to certain norms, expectations, speaker desire, etc.

▶ Definition 1.16. Deontic modality has the following subcategories
▶ Commissive modality (the speaker’s commitment to do something, like a promise or

threat): e.g. I shall help you.
▶ Directive modality (commands, requests, etc.): e.g. Come!, Let’s go!, You’ve got to

taste this curry!
▶ Volitive modality (wishes, desires, etc.): If only I were rich!

▶ Question: If we want to interpret 2runs(j) as It is required that John runs (or,
more idiomatically, as John must run), what formulae should be valid on this
interpretation of the operators? (This is for homework!)

Michael Kohlhase: LBS 259 2024-01-20

13.2 Semantics for Modal Logics

Michael Kohlhase: LBS 259 2024-01-20

Semantics of ML0

▶ Definition 2.1. We use a set W of possible worlds, and a accessibility relation
R ⊆ W ×W: if R(v ,w), then we say that w is accessible from v .

▶ Example 2.2. W = N with R = {⟨n, n + 1⟩|n∈N}. (temporal logic)
▶ Definition 2.3. Variable assignment φ : V0 ×W→D0 assigns values to variables

in a given possible world.
▶ Definition 2.4. Value function I ·

· : W × wff0()→D0 (assigns values to formulae
in a possible world)
▶ Iw

φ(V) = φ(w ,V)
▶ Iw

φ(¬A) = T, iff Iw
φ(A) = F (∧ analogous)

▶ Iw
φ(2A) = T, iff Iw′

φ (A) = T for all w ′∈W with wRw ′.
▶ Definition 2.5. We call a triple M:=⟨W,R, I⟩ a Kripke model.

Michael Kohlhase: LBS 260 2024-01-20

Accessibility Relations. E.g. for Temporal Modalities

▶ Example 2.6 (Temporal Worlds with Ordering). Let ⟨W, ◦, <,⊆⟩ an interval
time structure, then we can use ⟨W, <⟩ as a Kripke models. Then PAST
becomes a modal operator.

▶ Example 2.7. Suppose we have i < j and j < k . Then intuitively, if Jane is
laughing is true at i , then Jane laughed should be true at j and at k , i.e.
Iw
φ(j)PAST(laughs(j)) and Iw

φ(k)PAST(laughs(j)).
But this holds only if “<” is transitive. (which it is!)

▶ Example 2.8. Here is a clearly counter-intuitive claim: For any time i and any
sentence A, if Iw

φ(i)PRES(A) then Iw
φ(i)PAST(A).

(For example, the truth of Jane is at the finish line at i implies the truth of Jane
was at the finish line at i .)
But we would get this result if we allowed < to be reflexive. (< is irreflexive)

▶ Treating tense modally, we obtain reasonable truth conditions.

Michael Kohlhase: LBS 261 2024-01-20

Modal Axioms (Propositional Logic)

▶ Definition 2.9. Necessitation:
A
2A

N

▶ Definition 2.10 (Normal Modal Logics).
System Axioms Accessibility Relation
K 2(A ⇒ B)⇒ (2A ⇒2B) general
T K + 2A ⇒ A reflexive
S4 T + 2A ⇒22A reflexive + transitive
B T + 32A ⇒ A reflexive + symmetric
S5 S4 + 3A ⇒23A equivalence relation

Michael Kohlhase: LBS 262 2024-01-20

K Theorems

▶ Observation 2.11. 2(A ∧ B) |=2A ∧2B in K.
▶ Observation 2.12. A ⇒ B |=2A ⇒2B in K.
▶ Observation 2.13. A ⇒ B |=3A ⇒3B in K.

Michael Kohlhase: LBS 263 2024-01-20

Translation to First-Order Logic

▶ Question: Is modal logic more expressive than predicate logic?
▶ Answer: Very rarely! (usually can be translated)
▶ Definition 2.14. Translation τ from ML into PL1, (so that the diagram

commutes)

modal logic predicate logic

Kripke-Sem. Tarski-Sem.

IφIw
φ

τ

τ

▶ Idea: Axiomatize Kripke models in PL1. (diagram is simple consequence)
▶ Definition 2.15. A logic morphism Θ: L→L′ is called
▶ correct, iff ∃M M |= Φ implies ∃M′ M′ |=′ Θ(Φ).
▶ complete, iff ∃M′ M′ |=′ Θ(Φ) implies ∃M M |= Φ.

Michael Kohlhase: LBS 264 2024-01-20

Modal Logic Translation (formal)

▶ Definition 2.16. The standard translation τw from modal logics to first-order
logic is given by the following process:
▶ Extend all function constants by a “world argument”: f ∈Σf

k+1 for every f ∈Σf
k

▶ for predicate constants accordingly.
▶ insert the “translation world” there: e.g. τw (f (a, b)) = f (w , a(w), b(w)).
▶ New predicate constant R for the accessibility relation.
▶ New constant s for the “start world”.
▶ τw (2A) = ∀w ′ wRw ′ ⇒ τw′(A).
▶ Use all axioms from the respective correspondence theory.

▶ Definition 2.17 (Alternative). Functional translations, if R associative:
▶ New function constant fR for the accessibility relation.
▶ Revise the standard translation by one of the following
▶ τw (2A) = ∀w ′ w = fR(w ′)⇒ τw (A). (naive solution)
▶ τfR(w)(2A) = τw (A) (better for mechanizing [Ohl88])

Michael Kohlhase: LBS 265 2024-01-20

Translation (continued)

▶ Theorem 2.18. τs : ML0→PL0 is correct and complete.
▶ Proof: show that ∃M M |= Φ iff ∃M′ M′ |= τs(Φ)

1. Let M = ⟨W,R, φ⟩ with M |= A
2. chose M = ⟨W, I ′⟩, such that I(p) = φ(p) : W→{T,F} and I(r) = R.
we prove M |=ψ τw (A)′ for ψ = IdW by structural induction over A.
3. A = P

3.1. Iψ(τw (A)) = Iψ(p(w)) = I (p(w)) = φ(P,w) = T
4. A = ¬B, A = B ∧ C trivial by IH.
5. A = 2B

5.1. Iψ(τw (A)) = Iψ(∀w r(w , v)⇒ τv (B)) = T, if Iψ(r(w , v)) = F or
Iψ(τv (B)) = T for all v∈W.
5.2. M |=ψ τv ′(B) so by IH M |=v B.
5.3. so M |=ψ τw (A)′.

Michael Kohlhase: LBS 266 2024-01-20

Modal Logic (References)

▶ G. E. Hughes und M. M. Cresswell: A companion to Modal Logic, University
Paperbacks, Methuen (1984) [HC84].

▶ David Harel: Dynamic Logic, Handbook of Philosophical Logic, D. Gabbay,
Hrsg. Reidel (1984) [Har84].

▶ Johan van Benthem: Language in Action, Categories, Lambdas and Dynamic
Logic, North Holland (1991) [Ben91].

▶ Reinhard Muskens, Johan van Benthem, Albert Visser, Dynamics, in Handbook
of Logic and Language, Elsevier, (1995) [MBV95].

▶ Blackburn, DeRijke, Vedema: Modal Logic; 2001 [BRV01]. look at the chapter
“Guide to the literature” in the end.

Michael Kohlhase: LBS 267 2024-01-20

13.3 A Multiplicity of Modalities ; Multimodal
Logic

Michael Kohlhase: LBS 267 2024-01-20

A Multiplicity of Modalities

▶ Epistemic (knowledge and belief) modalities must be relativized to an individual
▶ Peter knows that Trump is lying habitually.
▶ John believes that Peter knows that Trump is lying habitually.
▶ You must take the written drivers’ exam to be admitted to the practical test.

▶ Similarly, we find in natural language expressions of necessity and possibility
relative to many different kinds of things.

▶ Consider the deontic (obligatory/permissible) modalities
▶ [Given the university’s rules] Jane can take that class.
▶ [Given her intellectual ability] Jane can take that class.
▶ [Given her schedule] Jane can take that class.
▶ [Given my desires] I must meet Henry.
▶ [Given the requirements of our plan] I must meet Henry.
▶ [Given the way things are] I must meet Henry [every day and not know it].

▶ Many different sorts of modality, sentences are multiply ambiguous towards
which one.

Michael Kohlhase: LBS 268 2024-01-20

Multimodal Logics

▶ Definition 3.1. A multi modal logic provides operators for multiple modalities:
[1], [2], [3], . . . , ⟨1⟩, ⟨2⟩, . . .

▶ Definition 3.2. Multi modal Kripke models provide multiple accessibility
relations R1,R2, . . .⊆W ×W.

▶ Definition 3.3. The value function in logic generalizes the clause for 2 in ML0
to
▶ Iw

φ([i]A) = T, iff Iw′
φ (A) = T for all w ′∈W with wRiw

′.
▶ Example 3.4 (Epistemic Logic: talking about knowing/believing).

[peter]⟨klaus⟩A (Peter knows that Klaus considers A possible)
▶ Example 3.5 (Program Logic: talking about programs).

[X :=A][Y :=A]X = Y (after assignments, the values of X and Y are equal)

Michael Kohlhase: LBS 269 2024-01-20

13.4 Dynamic Logic for Imperative Programs

Michael Kohlhase: LBS 269 2024-01-20

Dynamic Program Logic (DL)

▶ Modal logics for argumentation about imperative, non-deterministic programs.
▶ Idea: Formalize the traditional argumentation about program correctness:

tracing the variable assignments (state) across program statements.
▶ Example 4.1 (Fibonacci).

Consider the following (imperative) program that computes Fib(X) as the value
of Z :
α:=⟨Y ,Z ⟩:=⟨1, 1⟩ ; while X ̸= 0 do ⟨X ,Y ,Z ⟩:=⟨X − 1,Z ,Y + Z ⟩ end
▶ States for the “input” X = 4: ⟨4,_,_⟩, ⟨4, 1, 1⟩, ⟨3, 1, 2⟩, ⟨2, 2, 3⟩, ⟨1, 3, 5⟩, ⟨0, 5, 8⟩
▶ Correctness? For positive X , running α with input ⟨X ,_,_⟩ we end with

⟨0,F (X−1),FX ⟩
▶ Termination? α does not terminate on input ⟨ − 1,_,_⟩.

Michael Kohlhase: LBS 270 2024-01-20

Multi-Modal Logic fits well

▶ Observation: Multi modal logic fits well
▶ States as possible worlds, program statements as accessibility relations.
▶ Two syntactic categories: programs α and formulae A.
▶ Interpret [α]A as If α terminates, then A holds afterwards
▶ Interpret ⟨α⟩A as α terminates and A holds afterwards.

▶ Example 4.2. Assertions about Fibonacci number (α)
▶ ∀X ,Y [α]Z = Fib(X)
▶ ∀X ,Y (X≥0)⇒ ⟨α⟩Z = Fib(X)

Michael Kohlhase: LBS 271 2024-01-20

Levels of Description in Dynamic Logic

▶ Propositional dynamic logic (DL0) (independent of variable assignments)
▶ |= ([α]A ∧ [α]B)⇔ ([α](A ∧ B))
▶ |= ([while A ∨ B do α end]C)⇔ ([while A do α end ; while B do α ; while A do α end end]C)

▶ First-order program logic (DL1) (function, predicates uninterpreted)
▶ |= p(f (X))⇒ g(Y , f (X))⇒ ⟨(Z :=f (X))⟩p(Z , g(Y ,Z))
▶ |= Z = Y ∧ (∀X f (g(X)) = X) ⇒ [while p(Y) do Y :=g(Y) end]⟨while Y ̸= Z do Y :=f (Y) end⟩T

▶ DL1 with interpreted functions, predicates (maybe some other time)
▶ ∀X ⟨while X ̸= 1 do if even(X) thenX :=X

2 else X :=3X + 1 end⟩T

Michael Kohlhase: LBS 272 2024-01-20

DL0 Syntax

▶ Definition 4.3. Propositional dynamic logic (DL0) is PL0 extended by
▶ program variables Vπ = {α, β, γ, . . .},
▶ modalities [α], ⟨α⟩.
▶ program constructors Σπ = {;,∪, ∗, ?} (minimal set)

α ; β execute first α, then β sequence
α ∪ β execute (non-deterministically) either α or β distribution
∗α (non-deterministically) repeat α finitely often iteration
A? proceed if |= A, else error test

▶ Idea: Standard program primitives as derived concepts
Construct as
if A thenα else β (A? ; α) ∪ (¬A? ; β)
while A do α end ∗(A? ; α) ; ¬A?
repeat α until A end ∗(α ; ¬A?) ; A?

Michael Kohlhase: LBS 273 2024-01-20

DL0 Semantics

▶ Definition 4.4. A model for DL0 consists of a set W of possible worlds called
states for DL0.

▶ Definition 4.5. DL0 variable assignments come in two parts:
▶ φ : V0 ×W→D0 (for propositional variables)
▶ π : Vπ→P(W ×W) (maps program variables to accessibility relations)

▶ Definition 4.6. The meaning of complex formulae is given by the following
value function Iw

φ,π : wff0(V0)→D0:
▶ Iw

φ,π(V) = φ(w ,V) for V∈V0 and Iw
φ,π(α) = π(α) for α∈Vπ.

▶ Iw
φ,π(¬A) = T iff Iw

φ,π(A) = F
▶ Iw

φ,π([α]A) = T iff Iw′
φ,π(A) = T for all w ′∈W with wIw

φ,π(α)w
′.

▶ Iw
φ,π(α) = π(α). (program variable by assignment)

▶ Iw
φ,π(α ; β) = Iw

φ,π(β) ◦ Iw
φ,π(α) (sequence by composition)

▶ Iw
φ,π(α ∪ β) = Iw

φ,π(α) ∪ Iw
φ,π(β) (distribution by union)

▶ Iw
φ,π(∗α) = Iw

φ,π(α)
∗ (iteration by reflexive transitive closure)

▶ Iw
φ,π(A?) = {⟨w ,w⟩|Iw

φ,π(A) = T} (test by subset of identity relation)

Michael Kohlhase: LBS 274 2024-01-20

First-Order Program Logic (DL1)

▶ Observation: Imperative programs contain variables, constants, functions and
predicates (uninterpreted), but no program variables. The main operation is
variable assignment.

▶ Idea: Make a multi modal logic in the spirit of DL0 that features all of these for
a deeper understanding.

▶ Definition 4.7. First-order program logic (DL1) combines the features of PL1,
DL0 without program variables, with the following two assignment operators:
▶ nondeterministic assignment X :=?
▶ deterministic assignment X :=A

▶ Example 4.8. |= p(f (X))⇒ g(Y , f (X))⇒ ⟨Z :=f (X)⟩p(Z , g(Y ,Z)) in DL1.
▶ Example 4.9. In DL1 we have

|= Z = Y ∧ (∀X p(f (g(X)) = X)) ⇒ [while p(Y) do Y :=g(Y) end]⟨while Y ̸= Z do Y :=f (Y) end⟩T

Michael Kohlhase: LBS 275 2024-01-20

DL1 Semantics

▶ Definition 4.10. Let M = ⟨D, I⟩ be a first-order model then the states
(possible worlds) are variable assignments: W = {φ|φ : Vι→D}

▶ Definition 4.11. For a set X of variables, write φ[X]ψ, iff φ(X) = ψ(X) for all
X ̸∈X .

▶ Definition 4.12. The meaning of complex formulae is given by the following
value function Iw

φ : wff o(Σ,Vι)→D0
▶ Iw

φ(A) = Iφ(A) if A term or atom.
▶ Iw

φ(¬A) = T iff Iw
φ(A) = F

▶
...

▶ Iw
φ(X :=?) = {⟨φ,ψ⟩|φ[X]ψ}

▶ Iw
φ(X :=A) = {⟨φ,ψ⟩|φ[X]ψ and ψ(X) = Iφ(A)}.

▶ Observation 4.13 (Substitution and Quantification). We have
▶ Iφ([X :=A]B) = I(φ,[Iφ(A)/X])(B)
▶ ∀X A = [X :=?]A.

▶ Thus substitutions and quantification are definable in DL1.

Michael Kohlhase: LBS 276 2024-01-20

Natural Language as Programming Languages

▶ Question: Why is dynamic program logic interesting in a natural language
course?

▶ Answer: There are fundamental relations between dynamic (discourse) logics
and dynamic program logics.

▶ David Israel: “Natural languages are programming languages for mind” [Isr93]

Michael Kohlhase: LBS 277 2024-01-20

Chapter 14
Some Issues in the Semantics of Tense

Michael Kohlhase: LBS 277 2024-01-20

Tense as a Deictic Element

▶ Goal: capturing the truth conditions and the logical form of sentences of
English.

▶ Clearly: the following three sentences have different truth conditions.
1. Jane saw George.
2. Jane sees George.
3. Jane will see George.

▶ Observation 0.1. Tense is a deictic element, i.e. its interpretation requires
reference to something outside the sentence itself.

▶ Remark: Often, in particular in the case of monoclausal sentences occurring in
isolation, as in our examples, this “something” is the speech time.

▶ Idea: make use of the reference time now:
▶ Jane saw George is true at a time iff Jane sees George was true at some point in

time before now.
▶ Jane will see George is true at a time iff Jane sees George will be true at some point

in time after now.

Michael Kohlhase: LBS 278 2024-01-20

A Simple Semantics for Tense

▶ Problem: the meaning of Jane saw George and Jane will see George is defined
in terms of Jane sees George.
; We need the truth conditions of the present tense sentence.

▶ Idea: Jane sees George is true at a time iff Jane sees George at that time.
▶ Implementation: Postulate tense operators as sentential operators (expressions

of type prop → prop). Interpret

1. Jane saw George as PAST(see(g , j)),
2. Jane sees George as PRES(see(g , j)), and
3. Jane wil see George as FUT(see(g , j)).

Michael Kohlhase: LBS 279 2024-01-20

Models and Evaluation for a Tensed Language

▶ Problem: The interpretations of constants vary over time.
▶ Idea: Introduce times into our models, and let the interpretation function give

values of constants at a time. Relativize the valuation function to times
▶ Idea: We will consider temporal structures, where denotations are constant on

intervals.
▶ Definition 0.2. Let I ⊆ {[i ,j]|i , j∈R} be a set of real intervals, then we call

⟨I , ◦, <,⊆⟩ an interval time structure, where for intervals i :=[il ,il] and j :=[ll ,jr]
we say that
▶ i and j overlap (written i ◦ j), iff ll≤ir ,
▶ i precedes j (written i < j), iff ir≤ll , and
▶ i is contained in j (written i ⊆ j), iff ll≤il and ir≤jr .

▶ Definition 0.3. A temporal model is a triple ⟨D, I, I⟩, where
▶ D is a set called the domain,
▶ Iis a interval time structure, and
▶ I : I× ΣT →D an interpretation function.

Michael Kohlhase: LBS 280 2024-01-20

Interpretation rules for the temporal operators

▶ Definition 0.4. For the value function I i (φ)· we only redefine the clause for
constants:
▶ I i (φ)c:=I(i , c)
▶ I i (φ)X :=φ(X)
▶ I i (φ)FA:=I i (φ)F(I i (φ)A).

▶ Definition 0.5. We define the meaning of the tense operators
1. I i (φ)PRES(Φ) = T, iff I i (φ)Φ = T.
2. I i (φ)PAST(Φ) = T iff there is an interval j∈I with j < i and I j(φ)Φ = T.
3. I i (φ)FUT(Φ) = T iff there is an interval j∈I with i < j and I j(φ)Φ = T.

Michael Kohlhase: LBS 281 2024-01-20

Complex tenses in English

▶ How do we use this machinery to deal with complex tenses in English?
▶ Past of past (pluperfect): Jane had left (by the time I arrived).
▶ Future perfect: Jane will have left (by the time I arrive).
▶ Past progressive: Jane was going to leave (when I arrived).

▶ Perfective vs. imperfective
▶ Jane left.
▶ Jane was leaving.

▶ How do the truth conditions of these sentences differ? Standard
observation: Perfective indicates a completed action, imperfective indicates an
incomplete or ongoing action. This becomes clearer when we look at the
“creation predicates” like build a house or write a book
▶ Jane built a house. entails: There was a house that Jane built.
▶ Jane was building a house. does not entail that there was a house that Jane built.

Michael Kohlhase: LBS 282 2024-01-20

Future readings of present tense

▶ New Data;
1. Jane leaves tomorrow.
2. Jane is leaving tomorrow.
3. ?? It rains tomorrow.
4. ?? It is raining tomorrow.
5. ?? The dog barks tomorrow.
6. ??The dog is barking tomorrow.

▶ Future readings of present tense appear to arise only when the event described is
planned, or planable, either by the subject of the sentence, the speaker, or a
third party.

Michael Kohlhase: LBS 283 2024-01-20

Sequence of Tense

▶ George said that Jane was laughing.
▶ Reading 1: George said “Jane is laughing.” I.e. saying and laughing co-occur. So

past tense in subordinate clause is past of utterance time, but not of main clause
reference time.

▶ Reading 2: George said “Jane was laughing.” I.e. laughing precedes saying. So past
tense in subordinate clause is past of utterance time and of main clause reference
time.

▶ George saw the woman who was laughing.
▶ How many readings?

▶ George will say that Jane is laughing.
▶ Reading 1: George will say “Jane is laughing.” Saying and laughing co-occur, but

both saying and laughing are future of utterance time. So present tense in
subordinate clause indicates futurity relative to utterance time, but not to main
clause reference time.

▶ Reading 2: Laughing overlaps utterance time and saying (by George). So present
tense in subordinate clause is present relative to utterance time and main clause
reference time.

Michael Kohlhase: LBS 284 2024-01-20

Sequence of Tense

▶ George said that Jane was laughing.
▶ Reading 1: George said “Jane is laughing.” I.e. saying and laughing co-occur. So

past tense in subordinate clause is past of utterance time, but not of main clause
reference time.

▶ Reading 2: George said “Jane was laughing.” I.e. laughing precedes saying. So past
tense in subordinate clause is past of utterance time and of main clause reference
time.

▶ George saw the woman who was laughing.
▶ How many readings?

▶ George will say that Jane is laughing.
▶ Reading 1: George will say “Jane is laughing.” Saying and laughing co-occur, but

both saying and laughing are future of utterance time. So present tense in
subordinate clause indicates futurity relative to utterance time, but not to main
clause reference time.

▶ Reading 2: Laughing overlaps utterance time and saying (by George). So present
tense in subordinate clause is present relative to utterance time and main clause
reference time.

Michael Kohlhase: LBS 284 2024-01-20

Sequence of Tense

▶ George said that Jane was laughing.
▶ Reading 1: George said “Jane is laughing.” I.e. saying and laughing co-occur. So

past tense in subordinate clause is past of utterance time, but not of main clause
reference time.

▶ Reading 2: George said “Jane was laughing.” I.e. laughing precedes saying. So past
tense in subordinate clause is past of utterance time and of main clause reference
time.

▶ George saw the woman who was laughing.
▶ How many readings?

▶ George will say that Jane is laughing.
▶ Reading 1: George will say “Jane is laughing.” Saying and laughing co-occur, but

both saying and laughing are future of utterance time. So present tense in
subordinate clause indicates futurity relative to utterance time, but not to main
clause reference time.

▶ Reading 2: Laughing overlaps utterance time and saying (by George). So present
tense in subordinate clause is present relative to utterance time and main clause
reference time.

Michael Kohlhase: LBS 284 2024-01-20

Sequence of Tense
▶ George will see the woman who is laughing.
▶ How many readings?

▶ Note that in all of the above cases, the predicate in the subordinate clause
describes an event that is extensive in time. Consider readings when subordinate
event is punctual.

▶ George said that Mary fell.
▶ Falling must precede George’s saying.

▶ George saw the woman who fell.
▶ Same three readings as before: falling must be past of utterance time, but could be

past, present or future relative to seeing (i.e main clause reference time).
▶ And just for fun, consider past under present. . . George will claim that Mary hit

Bill.
▶ Reading 1: hitting is past of utterance time (therefore past of main clause reference

time).
▶ Reading 2: hitting is future of utterance time, but past of main clause reference time.

▶ And finally. . .
1. A week ago, John decided that in ten days at breakfast he would tell his mother that

they were having their last meal together. (Abusch 1988)
2. John said a week ago that in ten days he would buy a fish that was still alive.

(Ogihara 1996)

Michael Kohlhase: LBS 285 2024-01-20

Sequence of Tense
▶ George will see the woman who is laughing.
▶ How many readings?

▶ Note that in all of the above cases, the predicate in the subordinate clause
describes an event that is extensive in time. Consider readings when subordinate
event is punctual.

▶ George said that Mary fell.
▶ Falling must precede George’s saying.

▶ George saw the woman who fell.
▶ Same three readings as before: falling must be past of utterance time, but could be

past, present or future relative to seeing (i.e main clause reference time).
▶ And just for fun, consider past under present. . . George will claim that Mary hit

Bill.
▶ Reading 1: hitting is past of utterance time (therefore past of main clause reference

time).
▶ Reading 2: hitting is future of utterance time, but past of main clause reference time.

▶ And finally. . .
1. A week ago, John decided that in ten days at breakfast he would tell his mother that

they were having their last meal together. (Abusch 1988)
2. John said a week ago that in ten days he would buy a fish that was still alive.

(Ogihara 1996)

Michael Kohlhase: LBS 285 2024-01-20

Sequence of Tense
▶ George will see the woman who is laughing.
▶ How many readings?

▶ Note that in all of the above cases, the predicate in the subordinate clause
describes an event that is extensive in time. Consider readings when subordinate
event is punctual.

▶ George said that Mary fell.
▶ Falling must precede George’s saying.

▶ George saw the woman who fell.
▶ Same three readings as before: falling must be past of utterance time, but could be

past, present or future relative to seeing (i.e main clause reference time).

▶ And just for fun, consider past under present. . . George will claim that Mary hit
Bill.
▶ Reading 1: hitting is past of utterance time (therefore past of main clause reference

time).
▶ Reading 2: hitting is future of utterance time, but past of main clause reference time.

▶ And finally. . .
1. A week ago, John decided that in ten days at breakfast he would tell his mother that

they were having their last meal together. (Abusch 1988)
2. John said a week ago that in ten days he would buy a fish that was still alive.

(Ogihara 1996)

Michael Kohlhase: LBS 285 2024-01-20

Sequence of Tense
▶ George will see the woman who is laughing.
▶ How many readings?

▶ Note that in all of the above cases, the predicate in the subordinate clause
describes an event that is extensive in time. Consider readings when subordinate
event is punctual.

▶ George said that Mary fell.
▶ Falling must precede George’s saying.

▶ George saw the woman who fell.
▶ Same three readings as before: falling must be past of utterance time, but could be

past, present or future relative to seeing (i.e main clause reference time).
▶ And just for fun, consider past under present. . . George will claim that Mary hit

Bill.
▶ Reading 1: hitting is past of utterance time (therefore past of main clause reference

time).
▶ Reading 2: hitting is future of utterance time, but past of main clause reference time.

▶ And finally. . .
1. A week ago, John decided that in ten days at breakfast he would tell his mother that

they were having their last meal together. (Abusch 1988)
2. John said a week ago that in ten days he would buy a fish that was still alive.

(Ogihara 1996)

Michael Kohlhase: LBS 285 2024-01-20

Sequence of Tense
▶ George will see the woman who is laughing.
▶ How many readings?

▶ Note that in all of the above cases, the predicate in the subordinate clause
describes an event that is extensive in time. Consider readings when subordinate
event is punctual.

▶ George said that Mary fell.
▶ Falling must precede George’s saying.

▶ George saw the woman who fell.
▶ Same three readings as before: falling must be past of utterance time, but could be

past, present or future relative to seeing (i.e main clause reference time).
▶ And just for fun, consider past under present. . . George will claim that Mary hit

Bill.
▶ Reading 1: hitting is past of utterance time (therefore past of main clause reference

time).
▶ Reading 2: hitting is future of utterance time, but past of main clause reference time.

▶ And finally. . .
1. A week ago, John decided that in ten days at breakfast he would tell his mother that

they were having their last meal together. (Abusch 1988)
2. John said a week ago that in ten days he would buy a fish that was still alive.

(Ogihara 1996)

Michael Kohlhase: LBS 285 2024-01-20

Interpreting tense in Discourse

▶ Example 0.6 (Ordering and Overlap). A man walked into the bar. He sat
down and ordered a beer. He was wearing a nice jacket and expensive shoes, but
he asked me if I could spare a buck.

▶ Example 0.7 (Tense as anaphora?).
1. Said while driving down the NJ turnpike: I forgot to turn off the stove.
2. I didn’t turn off the stove.

Michael Kohlhase: LBS 286 2024-01-20

Chapter 15
Conclusion

Michael Kohlhase: LBS 286 2024-01-20

15.1 A Recap in Diagrams

Michael Kohlhase: LBS 286 2024-01-20

NL Semantics as an Intersective Discipline

Michael Kohlhase: LBS 287 2024-01-20

A landscape of formal semantics

Michael Kohlhase: LBS 288 2024-01-20

Modeling Natural Language Semantics

▶ Problem: Find formal (logic) system for the meaning of natural language.
▶ History of ideas
▶ Propositional logic [ancient Greeks like Aristotle]

* Every human is mortal
▶ First-Order Predicate logic [Frege ≤ 1900]

* I believe, that my audience already knows this.
▶ Modal logic [Lewis18, Kripke65]

* A man sleeps. He snores. ((∃X man(X) ∧ sleeps(X))) ∧ snores(X)
▶ Various dynamic approaches (e.g. DRT, DPL)

* Most men wear black
▶ Higher-order Logic, e.g. generalized quantifiers
▶ . . .

Michael Kohlhase: LBS 289 2024-01-20

A Semantic Processing Pipeline based on LF

Syntax Quasi-Logical Form Logical Form

NL Utterance

Syntax
Tree

parsing

Logic
Expression

Semantics
Construction

(compositional) Logic
Expression

Pragmatic
Analysis

(inferential)

Michael Kohlhase: LBS 290 2024-01-20

Natural Language Semantics?

Comp Ling
NL

FL

M = ⟨D, I⟩

|=NL ⊆ NL×NL

⊢C ⊆ FL× FL

|= ⊆ FL× FL

Analysis

Iφ

induces?

induces

choose calculus C

|= ≡ ⊢C?

|=NL ≡ ⊢C?

Logic

Michael Kohlhase: LBS 291 2024-01-20

15.2 Where to From Here

Michael Kohlhase: LBS 291 2024-01-20

Where to from here?

▶ We can continue the exploration of semantics in two different ways:
▶ Look around for additional logical/formal systems and see how they can be applied

to various linguistic problems. (the logician’s approach)
▶ Look around for additional linguistic forms and wonder about their truth conditions,

their logical forms, and how to represent them. (the linguist’s approach)
▶ Here are some possibilities...

Michael Kohlhase: LBS 292 2024-01-20

Semantics of Plurals

1. The dogs were barking.
2. Fido and Chester were barking. (What kind of an object do the subject NPs

denote?)
3. Fido and Chester were barking. They were hungry.
4. Jane and George came to see me. She was upset. (Sometimes we need to look

inside a plural!)
5. Jane and George have two children. (Each? Or together?)
6. Jane and George got married. (To each other? Or to other people?)
7. Jane and George met. (The predicate makes a difference to how we interpret the

plural)

Michael Kohlhase: LBS 293 2024-01-20

Reciprocals

▶ What’s required to make these true?
1. The men all shook hands with one another.
2. The boys are all sitting next to one another on the fence.
3. The students all learn from each other.

Michael Kohlhase: LBS 294 2024-01-20

Presuppositional expressions

▶ What are presuppositions?
▶ What expressions give rise to presuppositions?
▶ Are all apparent presuppositions really the same thing?

1. The window in that office is open.
2. The window in that office isn’t open.
3. George knows that Jane is in town.
4. George doesn’t know that Jane is in town.
5. It was / wasn’t George who upset Jane.
6. Jane stopped / didn’t stop laughing.
7. George is / isn’t late.

Michael Kohlhase: LBS 295 2024-01-20

Presupposition projection

1. George doesn’t know that Jane is in town.
2. Either Jane isn’t in town or George doesn’t know that she is.
3. If Jane is in town, then George doesn’t know that she is.
4. Henry believes that George knows that Jane is in town.

Michael Kohlhase: LBS 296 2024-01-20

Conditionals

▶ What are the truth conditions of conditionals?
1. If Jane goes to the game, George will go.
▶ Intuitively, not made true by falsity of the antecedent or truth of consequent independent

of antecedent.

2. If John is late, he must have missed the bus.
▶ Generally agreed that conditionals are modal in nature. Note presence of modal

in consequent of each conditional above.

Michael Kohlhase: LBS 297 2024-01-20

Counterfactual conditionals

▶ And what about these??
1. If kangaroos didn’t have tails, they’d topple over. (David Lewis)
2. If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon might never

have been caught.
3. If Woodward and Bernstein hadn’t got on the Watergate trail, Nixon would have

been caught by someone else.
▶ Counterfactuals undoubtedly modal, as their evaluation depends on which

alternative world you put yourself in.

Michael Kohlhase: LBS 298 2024-01-20

Before and after

▶ These seem easy. But modality creeps in again...
1. Jane gave up linguistics after she finished her dissertation. (Did she finish?)
2. Jane gave up linguistics before she finished her dissertation. (Did she finish? Did she

start?)

Michael Kohlhase: LBS 299 2024-01-20

References I

[Ari10] Mira Ariel. Defining Pragmatics. Research Surveys in Linguistics.
Cambridge University Press, 2010.

[BB05] Patrick Blackburn and Johan Bos. Representation and Inference for
Natural Language. A First Course in Computational Semantics. CSLI,
2005.

[Ben91] Johan van Benthem. Language in Action, Categories, Lambdas and
Dynamic Logic. Vol. 130. Studies in Logic and Foundation of
Mathematics. North Holland, 1991.

[Bir13] Betty J. Birner. Introduction to Pragmatics. Wiley-Blackwell, 2013.

[Bla+01] Patrick Blackburn et al. “Inference and Computational Semantics”. In:
Computing Meaning (Volume 2). Ed. by Harry Bunt et al. Kluwer
Academic Publishers, 2001, pp. 11–28.

[BRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.
New York, NY, USA: Cambridge University Press, 2001. isbn:
0-521-80200-8.

[Cho65a] Noam Chomsky. Aspects of the Theory of Syntax. MIT Press, 1965.

Michael Kohlhase: LBS 299 2024-01-20

References II

[Cho65b] Noam Chomsky. Syntactic structures. Den Haag: Mouton, 1965.

[Chu40] Alonzo Church. “A Formulation of the Simple Theory of Types”. In:
Journal of Symbolic Logic 5 (1940), pp. 56–68.

[CKG09] Ronnie Cann, Ruth Kempson, and Eleni Gregoromichelaki. Semantics –
An Introduction to Meaning in Language. Cambridge University Press,
2009. isbn: 0521819628.

[Cre82] M. J. Cresswell. “The Autonomy of Semantics”. In: Processes, Beliefs,
and Questions: Essays on Formal Semantics of Natural Language and
Natural Language Processing. Ed. by Stanley Peters and Esa Saarinen.
Springer, 1982, pp. 69–86. doi: 10.1007/978-94-015-7668-0_2.

[Cru11] Alan Cruse. Meaning in Language: An Introduction to Semantics and
Pragmatics. Oxford Textbooks in Linguistics. 2011.

[Dav67a] Donald Davidson. “The logical form of action sentences”. In: The logic
of decision and action. Ed. by N. Rescher. Pittsburgh: Pittsburgh
University Press, 1967, pp. 81–95.

[Dav67b] Donald Davidson. “Truth and Meaning”. In: Synthese 17 (1967).

Michael Kohlhase: LBS 299 2024-01-20

https://doi.org/10.1007/978-94-015-7668-0_2

References III

[de 95] Manuel de Vega. “Backward updating of mental models during
continuous reading of narratives”. In: Journal of Experimental
Psychology: Learning, Memory, and Cognition 21 (1995), pp. 373–385.

[EU10] Jan van Eijck and Christina Unger. Computational Semantics with
Functional Programming. Cambridge University Press, 2010.

[Fre92] Gottlob Frege. “Über Sinn und Bedeutung”. In: Zeitschrift für
Philosophie und philosophische Kritik 100 (1892), pp. 25–50.

[GF] GF - Grammatical Framework. url:
http://www.grammaticalframework.org (visited on 09/27/2017).

[GML87] A. M. Glenberg, M. Meyer, and K. Lindem. “Mental models contribute
to foregrounding during text comprehension”. In: Journal of Memory
and Language 26 (1987), pp. 69–83.

[Göd32] Kurt Gödel. “Zum Intuitionistischen Aussagenkalkül”. In: Anzeiger der
Akademie der Wissenschaften in Wien 69 (1932), pp. 65–66.

Michael Kohlhase: LBS 299 2024-01-20

http://www.grammaticalframework.org

References IV

[Har84] D. Harel. “Dynamic Logic”. In: Handbook of Philosophical Logic.
Ed. by D. Gabbay and F. Günthner. Vol. 2. Reidel, Dordrecht, 1984,
pp. 497–604.

[HC84] G. E. Hughes and M. M. Cresswell. A companion to Modal Logic.
University Paperbacks. Methuen, 1984.

[HHS07] James R. Hurford, Brendan Heasley, and Michael B. Smith. Semantics:
A coursebook. 2nd. Cambridge University Press, 2007.

[Isr93] David J. Israel. “The Very Idea of Dynamic Semantics”. In: Proceedings
of the Ninth Amsterdam Colloquium. 1993. url:
https://arxiv.org/pdf/cmp-lg/9406026.pdf.

[Jac83] Ray Jackendoff. Semantics and Cognition. MIT Press, 1983.

[JL83] P. N. Johnson-Laird. Mental Models. Cambridge University Press, 1983.

[JLB91] P. N. Johnson-Laird and Ruth M. J. Byrne. Deduction. Lawrence
Erlbaum Associates Publishers, 1991.

[Kea11] Kate Kearns. Semantics. 2nd. Palgrave Macmillan, 2011.

Michael Kohlhase: LBS 299 2024-01-20

https://arxiv.org/pdf/cmp-lg/9406026.pdf

References V

[Kon04] Karsten Konrad. Model Generation for Natural Language Interpretation
and Analysis. Vol. 2953. LNCS. Springer, 2004. isbn: 3-540-21069-5.
doi: 10.1007/b95744.

[Kri63] Saul Kripke. “Semantical Considerations on Modal Logic”. In: Acta
Philosophica Fennica (1963), pp. 83–94.

[Lee02] Lillian Lee. “Fast context-free grammar parsing requires fast Boolean
matrix multiplication”. In: Journal of the ACM 49.1 (2002), pp. 1–15.

[Lew18] Clarence Irving Lewis. A Survey of Symbolic Logic. University of
California Press, 1918. url:
http://hdl.handle.net/2027/hvd.32044014355028.

[MBV95] Reinhard Muskens, Johan van Benthem, and Albert Visser. “Dynamics”.
In: ed. by Johan van Benthem and Ter Meulen. Elsevier Science B.V.,
1995.

[MR98] C. Monz and M. de Rijke. “A Resolution Calculus for Dynamic
Semantics”. In: Logics in Artificial Intelligence. European Workshop
JELIA ’98. LNAI 1489. Springer Verlag, 1998.

Michael Kohlhase: LBS 299 2024-01-20

https://doi.org/10.1007/b95744
http://hdl.handle.net/2027/hvd.32044014355028

References VI

[Ohl88] Hans Jürgen Ohlbach. “A Resolution Calculus for Modal Logics”.
PhD thesis. Universität Kaiserslautern, 1988.

[Par90] Terence Parsons. Events in the Semantics of English: A Study in
Subatomic Semantics. Vol. 19. Current Studies in Linguistics. MIT
Press, 1990.

[Por04] Paul Portner. What is Meaning? Fundamentals of Formal Semantics.
Blackwell, 2004.

[Pra76] V. Pratt. “Semantical considerations of Floyd-Hoare logic”. In:
Proceedings of the 17th Symposium on Foundations of Computer
Science. 1976, pp. 109–121.

[Ran04] Aarne Ranta. “Grammatical Framework — A Type-Theoretical
Grammar Formalism”. In: Journal of Functional Programming 14.2
(2004), pp. 145–189.

[Ran11] Aarne Ranta. Grammatical Framework: Programming with Multilingual
Grammars. CSLI Publications, 2011. isbn: 1-57586-626-9.

Michael Kohlhase: LBS 299 2024-01-20

References VII

[RG94] Uwe Reyle and Dov M. Gabbay. “Direct Deductive computation on
Discourse Representation Structures”. In: Linguistics & Philosophy 17
(1994), pp. 343–390.

[Rie10] Nick Riemer. Introducing Semantics. Cambridge Introductions to
Language and Linguistics. Cambridge University Press, 2010.

[Rus91] Stuart J. Russell. “An Architecture for Bounded Rationality”. In:
SIGART Bulletin 2.4 (1991), pp. 146–150.

[Sae03] John I. Saeed. Semantics. 2nd. Blackwell, 2003.

[Sau93] Werner Saurer. “A Natural Deduction System for Discourse
Representation Theory”. In: Journal of Philosophical Logic 22 (1993).

[Sch20] Jan Frederik Schaefer. “Prototyping NLU Pipelines – A
Type-Theoretical Framework”. Master’s Thesis. Informatik, FAU
Erlangen-Nürnberg, 2020. url:
https://gl.kwarc.info/supervision/MSc-
archive/blob/master/2020/Schaefer_Jan_Frederik.pdf.

Michael Kohlhase: LBS 299 2024-01-20

https://gl.kwarc.info/supervision/MSc-archive/blob/master/2020/Schaefer_Jan_Frederik.pdf
https://gl.kwarc.info/supervision/MSc-archive/blob/master/2020/Schaefer_Jan_Frederik.pdf

References VIII

[Sin94] M. Singer. “Discourse Inference Processes”. In: Handbook of
Psycholinguistics. Ed. by M. A. Gernsbacher. Academic Press, 1994,
pp. 479–515.

[Sta14] Robert Stalnaker. Context. Oxford University Press, 2014.

[Ven57] Zeno Vendler. “Verbs and times”. In: Philosophical Review 56 (1957),
pp. 143–160.

[ZR98] R. A. Zwaan and G. A. Radvansky. “Situation models in language
comprehension and memory”. In: Psychological Bulletin 123 (1998),
pp. 162–185.

[ZS13] Thomas Ede Zimmermann and Wolfgang Sternefeld. Introduction to
Semantics. de Gruyter Mouton, 2013.

Michael Kohlhase: LBS 299 2024-01-20

	1 Administrativa
	2 An Introduction to Natural Language Semantics
	2.1 Natural Language and its Meaning
	2.2 Natural Language Understanding as Engineering
	2.3 Looking at Natural Language
	2.4 A Taste of Language Philosophy
	2.4.1 Epistemology: The Philosphy of Science
	2.4.2 Meaning Theories

	2.5 Computational Semantics as a Natural Science

	3 Symbolic Systems for Semantics
	3.1 The Grammatical Framework (GF)
	3.1.1 Recap: (Context-Free) Grammars
	3.1.2 A first GF Grammar
	3.1.3 Inflection and Case in GF
	3.1.4 Engineering Resource Grammars in GF

	3.2 MMT: A Modular Framework for Representing Logics and Domains
	3.2.1 Propositional Logic in MMT: A first Example
	3.2.2 General Functionality of MMT

	3.3 ELPI a Higher-Order Logic Programming Language

	1 English as a Formal Language: The Method of Fragments
	4 Logic as a Tool for Modeling NL Semantics
	4.1 The Method of Fragments
	4.2 What is Logic?
	4.3 Using Logic to Model Meaning of Natural Language

	5 Fragment 1
	5.1 The First Fragment: Setting up the Basics
	5.1.1 Natural Language Syntax (Fragment 1)
	5.1.2 Predicate Logic without Quantifiers
	5.1.3 Natural Language Semantics via Translation

	5.2 Testing Truth Conditions via Inference

	6 Fragment 1: The Grammatical Logical Framework
	6.1 Implementing Fragment 1 in GF
	6.2 Implementing Fragment1 in GF and MMT
	6.3 Implementing Natural Deduction in MMT

	7 Adding Context: Pronouns and World Knowledge
	7.1 Fragment 2: Pronouns and Anaphora
	7.2 A Tableau Calculus for PLNQ with Free Variables
	7.2.1 Calculi for Automated Theorem Proving: Analytical Tableaux
	7.2.2 A Tableau Calculus for PLNQ with Free Variables
	7.2.3 Case Study: Peter loves Fido, even though he sometimes bites him
	7.2.4 The Computational Role of Ambiguities

	7.3 Tableaux and Model Generation
	7.3.1 Tableau Branches and Herbrand Models
	7.3.2 Using Model Generation for Interpretation
	7.3.3 Adding Equality to PLNQ or Fragment 1

	8 Pronouns and World Knowledge in First-Order Logic
	8.1 First-Order Logic
	8.1.1 First-Order Logic: Syntax and Semantics
	8.1.2 First-Order Substitutions
	8.1.3 Alpha-Renaming for First-Order Logic

	8.2 First-Order Inference with Tableaux
	8.2.1 Free Variable Tableaux

	8.3 Model Generation with Quantifiers

	9 Fragment 3: Complex Verb Phrases
	9.1 Fragment 3 (Handling Verb Phrases)
	9.2 Dealing with Functions in Logic and Language
	9.3 Translation for Fragment 3
	9.4 Simply Typed -Calculus

	10 Fragment 4: Noun Phrases and Quantification
	10.1 Fragment 4
	10.2 Inference for Fragment 4
	10.2.1 Quantifiers and Equality in Higher-Order Logic
	10.2.2 Model Generation with Definite Descriptions
	10.2.3 Model Generation with Unique Name Assumptions

	10.3 Davidsonian Semantics: Treating Verb Modifiers

	11 Davidsonian Semantics: Treating Verb Modifiers

	2 Topics in Semantics
	12 Dynamic Approaches to NL Semantics
	12.1 Discourse Representation Theory
	12.2 Dynamic Model Generation

	13 Propositional Attitudes and Modalities
	13.1 Introduction
	13.2 Semantics for Modal Logics
	13.3 A Multiplicity of Modalities Multimodal Logic
	13.4 Dynamic Logic for Imperative Programs

	14 Some Issues in the Semantics of Tense
	15 Conclusion
	15.1 A Recap in Diagrams
	15.2 Where to From Here
	References

