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This study investigated how humans process probabilistic-associated information when encountering varying levels of un-

certainty during implicit visual statistical learning. A novel probabilistic cueing validation paradigm was developed to probe

the representation of cues with high (75% probability), medium (50%), low (25%), or zero levels of predictiveness in re-

sponse to preceding targets that appeared with high (75%), medium (50%), or low (25%) transitional probabilities (TPs).

Experiments 1 and 2 demonstrated a significant negative association between cue probe identification accuracy and cue pre-

dictiveness when these cues appeared after high-TP but not medium-TP or low-TP targets, establishing exploration-like cue

processing triggered by lower-uncertainty rather than high-uncertainty inputs. Experiment 3 ruled out the confounding

factor of probe repetition and extended this finding by demonstrating (1) enhanced representation of low-predictive and

zero-predictive but not high-predictive cues across blocks after high-TP targets and (2) enhanced representation of high-

predictive but not low-predictive and zero-predictive cues across blocks after low-TP targets for learners who exhibited

above-chance awareness of cue–target transition. These results suggest that during implicit statistical learning, input char-

acteristics alter cue-processing mechanisms, such that exploration-like and exploitation-like mechanisms are triggered by

lower-uncertainty and higher-uncertainty cue–target sequences, respectively.

[Supplemental material is available for this article.]

When walking on the beach, we see boats more often than cars.
When crossing a city street, we are more likely to see cars than
boats. Thus, the prediction of beach to boats is high, while the pre-
diction of a city street to boats is low. Such variation in the level of
cue predictiveness (e.g., beach or city street) of the occurrence of an
object (e.g., boat or car) can influence the cognitive processing of
cues through exploitation or explorationmechanisms inmany ex-
plicit associative learning tasks that require participants to deter-
mine the predictive relationships between cues and outcomes
(e.g., Beesley et al. 2015). Meanwhile, increasing evidence shows
that statistical learning (i.e., the involuntary extraction of environ-
mental patterns) (Batterink et al. 2019; Christiansen 2019) is
subserved bymultiple neurocognitivemechanismswhose involve-
ment is regulated by input uncertainty (Conway 2020; Tong et al.
2023). However, whether input uncertainty regulates the opera-
tion of different cue-processing mechanisms (i.e., exploitation
and exploration) during statistical learning remains unknown. To
address this issue, the present study used a novel probabilistic cue-
ing validation paradigm to examine the impacts of cue predictive-
ness on cue representation when objects appear with different
transitional probabilities (TPs) during visual statistical learning.

To date, two mechanisms—exploitation and exploration—
have been proposed to explain two opposite patterns of cue pro-
cessing with different levels of cue predictiveness (Beesley et al.
2015). Specifically, the exploitation mechanism posits that more
cognitive resources are allocated to higher-predictive cues than
lower-predictive cues because higher ones are more reliable for an-
ticipating subsequent events (Mackintosh 1975). For example, in
an explicit, cue–outcome associative learning study, Le Pelley
et al. (2011) instructed participants to learn the associative predic-

tions between cue compounds and two outcome sounds (i.e., O1
or O2). Each cue compound (e.g., AX) comprised one predictive
cue (e.g., A = appeared before a specific outcome 100% of the
time) and one nonpredictive cue (e.g., X= appeared before O1
and O2 50% of the time each). Eye movement results demonstrat-
ed longer dwell times on predictive cues than nonpredictive ones,
which indicates greater overt attention on higher-predictive cues,
suggesting that humans exploit learned cue predictiveness when
making predictions.

In contrast, the exploration mechanism assumes that
less-predictive cues attract more cognitive resources than high-
predictive cues because increased sensitivity to unlearned rules
over perfectly acquired ones promotes a comprehensive under-
standing of the whole system (Pearce and Hall 1980). For example,
using a similar associative learning paradigm, Hogarth et al. (2008)
assigned three types of cue compounds (i.e., AX+, BX+/−, and CX−)
to predict the presence or absence of an auditory outcome. Each
cue compound comprised one control cue (i.e., X) and one predic-
tive cue (i.e., A+, B+/−, or C−) that anticipated the outcome either
congruently (i.e., A+ = 100% ahead of present outcomes and C−=
100% ahead of absent outcomes) or incongruently (i.e., B+/−=
50% ahead of present outcomes and 50% ahead of absent out-
comes). The results demonstrated a significantly larger difference
in viewing time between predictive and control cues in incongru-
ent cue compounds (i.e., BX+/−) compared with congruent cue
compounds (i.e., AX+ and CX−), indicating greater attention to
lower-predictive cues rather than higher-predictive cues, thereby
supporting the exploration mechanism.

More recently, Beesley et al. (2015) integrated the manipula-
tions from previous studies and demonstrated that both
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attentional exploration between cue compounds and attentional ex-
ploitation within cue compounds occurred in the same experiment.
For their study, each cue compound (e.g., AX or BY) comprised one
nonpredictive cue (e.g., X or Y) and one predictive cue (e.g., A or B)
that appeared ahead of outcomes at a higher (e.g., A=100% ahead of
one outcome) or lower (e.g., B=70%aheadof one outcome and30%
ahead of the other) consistency. The results demonstrated a longer
fixation time on the cues in less-consistent cue compounds (i.e.,
BY) comparedwith those in consistent cue compounds (i.e., AX), in-
dicating attentional exploration on the cue providing invalid predic-
tions. However, during the follow-up training stage when learning
new associative predictions between these cues and novel outcomes,
participants demonstrated attentional exploitation by spending
more time viewing prior predictive cues (e.g., A and B) than prior
nonpredictive cues (e.g., X and Y).

Furthermore, other studies demonstrated that in addition to
the period before outcome occurrences, cue processing after
outcomes is also influenced by exploration or exploitation mecha-
nisms. For example, Don et al. (2019) manipulated the outcome’s
frequency (i.e., common [appeared in 75% of trials] and rare [ap-
peared in 25% of trials]) and examined its impacts on attentional
bias toward imperfect cues (i.e., predicted both common and rare
outcomes) and perfect cues (i.e., always predicted one specific out-
come). The results demonstrated that the fixation time difference
between perfect and imperfect cues was higher when comparing
rare outcomes with common outcomes, suggesting enhanced ex-
ploitation cue processing after less-frequent outcomes. These find-
ings point to the plausibility that the characteristics of learning
exemplars, such as frequency, may influence subsequent cue-
processingmechanismswhen participants are explicitly instructed
to learn the associative regularities.

Unlike explicit associative learning, humans can incidentally
acquire underlying associative patterns among sensory inputs
(Thiessen 2017). This ability, termed statistical learning, has been
recognized as a composite of multiple memory and cognitive pro-
cesses whose activations are regulated by input characteristics,
such as uncertainty (Conway 2020; Lee et al. 2022). For example,
in a positional regularity learning experiment, Tong et al. (2023)
demonstrated that compared with low-consistency (60%) pseudo-
characters, high-consistency (100%) ones elicited a lower N170
component but a higher P1 component, suggesting that input un-
certainty influences the engagement of a neural adaptation process
and attentional processing during statistical learning. However,
the neural response differences observed between high- and low-
uncertainty inputs cannot indicate which mechanism is particu-
larly associated with higher- or lower-uncertainty inputs (Feuerrie-
gel et al. 2021). For example, the attenuated N170 component
elicited by high-consistency compared with low-consistency pseu-
docharacters could be interpreted as either an adaptation process
associated with low-uncertainty inputs or enhanced processing
triggered by high-uncertainty inputs.

The exploitation versus exploration cue-processing mecha-
nism provides a unique avenue to investigate the specific cognitive
mechanisms triggered by higher or lower uncertainty. This can be
empirically tested by analyzing how cue-processing patterns
change in relation to preceding input uncertainty during statistical
learning. Current statistical learning evidence suggests the poten-
tial existence of exploitation-like and exploration-like cue process-
ing before outcome occurrences (Beesley and Le Pelley 2010; Zhao
et al. 2013; Forest et al. 2022). For example, in visual statistical
learning experiments (Jost et al. 2015; Singh et al. 2018), partici-
pants were asked to respond as quickly and accurately as possible
to a target color that appeared after different visual cues in high
(90%), low (20%), or zero probabilities. The high-probability cues
elicited a larger P300-like amplitude compared with low- and zero-
probability cues, which could be viewed as an exploitation of cue–

target associative regularities for effective target detection. Con-
versely, as observed in an fMRI study (Sherman and Turk-Browne
2020), exploration-like cue processing could be implied by weaker
memory encoding of predictive cue images than nonpredictive cue
images. However, to date, there is no research examining the ques-
tions of whether exploitation-like and exploration-like cue pro-
cessing can simultaneously exist in statistical learning and, if so,
which factor determines the activation of these two mechanisms.
Based on themultiplemechanism viewof statistical learning (Con-
way 2020; Tong et al. 2023) and previous empirical findings (e.g.,
Jost et al. 2015; Singh et al. 2018; Sherman and Turk-Browne
2020), we hypothesize that exploitation-like and exploration-like
cue processing coexist during statistical learning, and its operation
is regulated by input uncertainty.

To test our hypotheses, we developed a novel probabilistic cue-
ing validation paradigm derived from previous visual statistical
learning tasks (Jost et al. 2015; Sherman and Turk-Browne 2020).
Our aim was to explore the representation patterns of predictive
cues specifically in response to the preceding targets with varying
levels of transitional probabilities (TPs). In experiment 1, wemanip-
ulated the probability of a specific target (target X or target M) fol-
lowing a given cue into three distinct levels: high (75%), medium
(50%), and low (25%), as shown in Figure 1A. As illustrated in Figure
1B, participants performed a target detection task in which they
identified two targets by pressing the corresponding keys. A higher
accuracy rate and faster reaction time on detecting higher-TP com-
pared with lower-TP targets would indicate successful statistical
learning,which suggests that learners could anticipate the following
stimuli based on the acquired cue–target associative patterns.

As shown in Figure 1B, after high-TP, medium-TP, and low-TP
targets, a probewas presented to examine the representation of var-
ious predictive cues whose shapes predicted the preceding targets
with high (75%), medium (50%), or low (25%) probability. Partic-
ipants were asked to identify the shape of the probes. The probe
identification accuracy rates indexed the strength of cue represen-
tation. Through the positive or negative impact of cue predictive-
ness on cue representation, exploitation-like or exploration-like
cue processing was inferred. Given that the previous evidence sug-
gests enhanced exploitation cue processing after less-frequent out-
comes (Don et al. 2019), we expected (1) a positive association
between cue predictiveness and cue representation after low-TP
targets, suggesting an exploitation-like cue processing after high-
uncertainty inputs, and (2) a negative association between cue pre-
dictiveness and cue representation after high-TP targets, indicating
an exploration-like cue processing after low-uncertainty inputs.

Results

Experiment 1

Target detection

Figure 1D shows the mean accuracy rates and reaction times (RTs)
for detecting high-TP, medium-TP, and low-TP targets in the target
detection task (the exact descriptive statistics are also in the
Supplemental Material). As summarized in Table 1, the
mixed-effect logistic regressionmodel for target detection accuracy
[AIC=15,715, R2 = 0.17, χ²(3) = 522.98, P<0.001] and the
mixed-effect linear regression model for RTs [AIC=94,674, R2 =
0.26, χ²(3) = 800.05, P<0.001] significantly outperformed the
null model (AICaccuracy = 16,232, AICRT = 95,468). Significant inter-
action effects between target TPs and blocks are shown for both ac-
curacy (β=0.39, 95%CI [0.16, 0.63], P=0.001) and RTs (β=−23.68,
95% CI [−30.62, −16.74], P<0.001). The estimated marginal ef-
fects revealed that the increase of target TPs improved the odds
of accurately detecting the target (Ps < 0.001) and reduced the
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Figure 1. Schematic of experiment 1. (A) The transitional probability (TP) of targets (i.e., high [75%], medium [50%], and low [25%]) was decided by
the conditional probability of each target following a cue. In terms of individual targets, the predictiveness of cues (i.e., high [75%], medium [50%], and
low [25%]) was determined by the levels of probability in which the cue predicted that target. (B) An example trial with a low-TP target and a probe ex-
amining the representation of a high-predictive cue. (3AFC) Three-alternative forced choices. (C) The distribution of trial numbers in different preceding
target TP ([red shading] high, [blue shading] medium, [green shading] low) and cue predictiveness ([red border] high, [blue border] medium, [green
border] low) conditions for each block. (D) Mean accuracy rates (bar chart) and mean reaction times (line chart) for detecting high-TP, medium-TP,
and low-TP targets in the target detection task. Error bars indicate standard errors. (E) Mean accuracy rates (bar chart) and mean reaction times (line
chart) for identifying high-predictive cue, medium-predictive cue, and low-predictive cue probes after high-TP, medium-TP, and low-TP targets in the
probe identification task. Error bars indicate standard errors.
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RTs (Ps < 0.001) of target detection across all three blocks. These re-
sults indicate that participants were able to learn the association
between cues and targets through various TPs.

Probe identification

Figure 1E depictsmean accuracy rates and RTs for identifying high-
predictive, medium-predictive, and low-predictive cue probes after
varying levels of TP targets in the probe identification task (the ex-
act descriptive statistics are also in the Supplemental Material).
Table 2 summarizes the results of the mixed-effect logistic regres-
sion model for probe identification accuracy [AIC=5895, R2 =
0.25, χ²(7) = 83.13, P<0.001], which outperformed the null model
(AIC=5964). The interaction effect between the preceding target
TP and cue predictiveness (β=−2.46, 95% CI [−4.16, −0.75], P=
0.005) was significant. The marginal effect estimation revealed
that the increase of cue predictiveness reduced the odds of accu-
rately identifying probes only when the preceding target TP was
high (P<0.001) but not medium (P=0.334) or low (P=0.181).
Similarly, the mixed-effect linear regression model (AIC=89,920,
R2 = 0.16) on probe identification RT significantly outperformed
the null model [AIC=90,138, χ²(7) = 232.12, P<0.001]. However,
no significant main effects or interaction effects were found (Ps >
0.05). These results indicate that high-TP but not lower-TP targets
triggered exploration-like cue processing.

Summary

Our experiment 1 results showed that individuals detected
higher-TP targets more accurately and rapidly than low-TP targets,
suggesting that peoplewere able to not only extract the underlying

patterns from environmental exposure but also use the learned as-
sociation to guide their motor responses (Jost et al. 2015; Singh
et al. 2018). However, unlike the previous studies that focused on
cue processing before target occurrences (Jost et al. 2015; Singh
et al. 2018; Boettcher et al. 2020), our study demonstrated that
cue processing after outcomes is influenced by the preceding target
TP during statistical learning. Specifically, our results suggest that
input uncertainty alters cue-processing mechanisms during statis-
tical learning, with higher-predictive cues exhibiting weaker repre-
sentation than lower-predictive ones after high-TP but not
medium-TP or low-TP targets, which indicates the occurrence
of an exploration-like cue-processing mechanism after low-
uncertatinty but not higher-uncertainty inputs.

Nevertheless, it should be noted that such cue predictiveness
effect might be confounded to some extent by the lower informa-
tiveness of medium-predictive cues (i.e., randomly predicting two
targets) compared with high-predictive and low-predictive cues
(i.e., preferentially predicting one target over the other). To elimi-
nate this confounding factor, experiment 2 used three equally in-
formative cues to further investigate how uncertainty alters the
effect of cue predictiveness on cue representation during visual
statistical learning.

Experiment 2
Experiment 2 replaced the noninformative, medium-predictive cue
with an informative but zero-predictive cue, as shown in Figure 2A,
and examined how the representation of cues was interactively in-
fluenced by the preceding target TP (i.e., high=75% and low=
25%) and cue predictiveness (i.e., high=75%, low=25%, and zero).

Table 1. Mixed-effect regression models for target detection accuracy and reaction time in experiment 1 with target TP and blocks as
predictors

Variables

Accuracy Reaction time

b SE z P 95% CI b SE t P 95% CI

Intercept −0.03 0.17 −0.15 0.877 −0.36 0.31 464.56 7.78 59.72 <0.001a 447.09 482.03
Target TP 1.29 0.12 10.69 <0.001 1.05 1.52 −84.00 3.58 −23.47 <0.001a −91.02 −76.98
Blocks 0.16 0.07 2.11 0.035b 0.01 0.30 5.79 2.24 2.58 0.010b 1.39 10.18
Target TP ×blocks 0.39 0.12 3.26 0.001c 0.16 0.63 −23.68 3.54 −6.69 <0.001a −30.62 −16.74

(95% CI) 95% confidence interval, (TP) transitional probability.
aP< 0.001
bP<0.05
cP< 0.01

Table 2. Mixed-effect regression models for probe identification accuracy and reaction time in experiment 1 with preceding target TP, cue
predictiveness, and blocks as predictors

Variables

Accuracy Reaction time

b SE z P 95% CI b SE t P 95% CI

Intercept 1.11 0.39 2.85 0.004a 0.35 1.87 1502.46 145.15 10.35 <0.001b 1214.81 1790.10
Preceding target TP 1.32 0.47 2.80 0.005a 0.40 2.24 −205.43 189.77 −1.08 0.279 −577.46 166.60
Cue predictiveness 1.06 0.53 1.99 0.047c 0.02 2.10 −48.70 214.55 −0.23 0.820 −469.30 371.91
Blocks 0.48 0.29 1.68 0.093 −0.08 1.04 −194.40 116.71 −1.67 0.096 −423.19 34.40
Preceding target TP × cue
predictiveness

−2.46 0.87 −2.83 0.005a −4.16 −0.75 185.95 350.21 0.53 0.595 −500.60 872.49

Preceding target TP ×blocks −0.59 0.47 −1.26 0.206 −1.52 0.33 7.81 189.80 0.04 0.967 −364.27 379.88
Cue predictiveness × blocks −0.20 0.53 −0.38 0.707 −1.24 0.84 −118.87 215.24 −0.55 0.581 −540.82 303.09
Preceding target TP × cue
predictiveness × blocks

0.78 0.87 0.90 0.367 −0.92 2.49 146.97 351.21 0.42 0.676 −541.55 835.48

(95% CI) 95% confidence interval, (TP) transitional probability.
aP< 0.01
bP<0.001
cP< 0.05
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Target detection

Figure 2C showsmean accuracy rates and RTs for detecting high-TP
and low-TP targets in the target detection task (the exact descrip-
tive statistics are also in the Supplemental Material). As summa-
rized in Table 3, the mixed-effect logistic regression model for
target detection accuracy [AIC=17,056, R2 = 0.19, χ²(3) = 216.89,
P<0.001] and the mixed-effect linear regression model for RT
[AIC=101,400, R2 = 0.19, χ²(3) = 177.61, P<0.001] significantly
outperformed the null model (AICaccuracy = 17,267, AICRT =
101,571). A significant interaction between the target TP and
blocks is shown for both accuracy (β=0.19, 95% CI [0.02, 0.35],
P=0.030) and RTs (β=−8.01, 95% CI [−12.23, −3.79], P<0.001).
The estimated marginal effects revealed that the increase in target

TP improved the odds of accurately detecting the target and re-
duced the RT of target detection in the second (Ps = 0.001) and
third (Ps < 0.001) blocks but not in the first block. These results sug-
gest that participants acquired the association between cues and
targets in the last two blocks.

Probe identification

Figure 2D displays mean accuracy rates and RTs for identifying
high-predictive, low-predictive, and zero-predictive cue probes af-
ter varying levels of TP targets in the probe identification task
(the exact descriptive statistics are also in the Supplemental
Material). Table 4 summarizes the results of the mixed-effect

A

B

C D

Figure 2. Schematic of experiment 2. (A) Target transitional probability (TP; i.e., high [75%]) and low [25%]) was decided by the conditional probability
of each target following a cue. In terms of individual targets, the predictiveness of cues (i.e., high [75%], low [25%], and zero [0%]) was determined by the
levels of probability in which each cue predicted that target. (B) The distribution of trial numbers in different preceding target TP ([red shading] high,
[green shading] low) and cue predictiveness ([red border] high, [green border] low, [gray border] zero) conditions for each block. (C ) Mean accuracy
rates (bar chart) and mean reaction times (line chart) for detecting high-TP and low-TP targets in the target detection task. Error bars indicate standard
errors. (D) Mean accuracy rates (bar chart) and mean reaction times (line chart) for identifying high-predictive, low-predictive, and zero-predictive cue
probes after high-TP and low-TP targets in the probe identification task. Error bars indicate standard errors.
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logistic regression model for probe identification accuracy [AIC=
5905, R2 = 0.42, χ²(7) = 36.44, P< 0.001] and themixed-effect linear
regressionmodel for RT [AIC=97,162, R2 = 0.08, χ²(7) = 145.07, P<
0.001], both of which outperformed the null model (AICaccuracy =
5927, AICRT =97,293). A significant main effect of blocks was
found for the probe identification RTs (β=−155.89, 95% CI
[−290.57, −21.21], P=0.023), showing an increasing speed of
identifying cue probes across blocks. Also, a significant interaction
effect was found between preceding target TP and cue predictive-
ness for both accuracy (β=−1.20, 95% CI [−2.16, −0.24], P=
0.015) and RT (β=387.82, 95% CI [24.98, 750.67], P=0.036). The
estimated marginal effects revealed that the increase of cue predic-
tiveness significantly reduced the odds of accurately identifying
probes (P=0.020) but increased the RT (P<0.001) of probe identi-
fication when the target TP was high. However, no such pattern
was found for accuracy (P=0.137) or RT (P=0.703) when the target
TP was low. These results suggest that exploration-like cue process-
ing might be triggered by high-TP but not low-TP targets.

Summary

In experiment 2, the informativeness of high-predictive, low-
predictive, and zero-predictive cues was balanced, and the results
showed that participants displayed higher accuracy and speed in
detecting high-TP targets comparedwith low-TP targets.Moreover,
when compared with cues with lower predictive values, cues with
higher predictive values exhibited weaker representation after
high-TP targets but not low-TP targets. These findings indicate
that processing low-uncertainty inputs rather than high-
uncertainty inputs triggered exploration-like cue processing.

However, it was noted1 that in the high-TP target condition,
the high-predictive cue probes matched the cues that appeared be-
fore the targets. As previous research has shown the repetition of
stimuli can elicit additional effects such as negative priming
(Tipper 1985) or inhibition of return (Dukewich 2009), this raises
the possibility that the suppressed representation of high-
predictive cues after high-TP targets could be due to the repeated
appearance of cue shapes. To eliminate this alternative explana-
tion, experiment 3 analyzed the trials that contained probes that
were mismatched with preceding cues and added a target recogni-
tion task after the learning phase to examine learners’ awareness of
cue–target associations.

Experiment 3
Experiment 3 eliminated the probe repetition by assigning two
high-predictive, low-predictive, and zero-predictive cues for each
specific target, as shown in Figure 3A. Thus, after a subset of

high-TP cue–target sequences (e.g., C1a-T1), the cue probes (e.g.,
C1b) with the shapes different from the preceding cues (C1a)
were used to examine the representation of high-predictive cues
and eliminate the negative priming effect. Additionally, a target
recognition task after the learning phase was added to assess learn-
ers’ awareness of cue–target associations in order to examine
whether exploration-like and exploitation-like cue-processing
mechanisms depend on explicit awareness of regularities.

Target detection

Figure 3C showsmean accuracy rates and RTs for detecting high-TP
and low-TP targets in the target detection task (the exact descrip-
tive statistics are in the Supplemental Material). As summarized
in Table 5, the mixed-effect logistic regression model for target
detection accuracy [AIC=30,899, R2 = 0.20, χ²(3) = 493.97, P<
0.001] and the mixed-effect linear regression model for RT [AIC=
173,075, R2 = 0.14, χ²(3) = 91.69, P<0.001] significantly outper-
formed the null model (AICaccuracy = 31,387, AICRT =173,160).
The main effect of the target TP was significant for both accuracy
(β=0.17, 95% CI [0.04, 0.29], P=0.009) and RTs (β=−11.54, 95%
CI [−15.90, −7.17], P<0.001), indicating that the increase in target
TP improved the odds of accurately detecting the target and re-
duced the RT of target detection. Additionally, the main effect of
blocks was significant for accuracy (β=0.29, 95% CI [0.20, 0.37],
P<0.001), showing improved odds of accurately detecting the tar-
gets as the block increased. These results suggest successful statisti-
cal learning of cue–target associations.

Target recognition

The mean recognition accuracy rate (M=0.37, SD=0.15) was aver-
aged across all trials given the comparable accuracy rates of recog-
nizing most likely (M=0.38, SD=0.22) and most unlikely (M=
0.36, SD=0.15) targets (t(29) = 0.59, P= 0.557). The group-level
mean accuracy rate was not significantly different from the chance
level (0.33; t(29) = 1.52, P=0.140).

Figure 3D shows the histogram of the distribution of mean
target recognition accuracy rate, with half of them (N=15) above
the chance level, while the other half (N=15) did not exceed the
chance level (the exact frequencies of mean target recognition ac-
curacy rate are also in the Supplemental Material). The coefficient
of skewness (M= 0.97, SD=0.43) suggested a significant negative-
skewed distribution (zskewness = 0.97/0.43 =2.26>1.96), so that in-
dividual awareness was submitted as a categorical variable (i.e.,
above or not above the chance level) instead of as a continuous
variable into the regression models of cue probe identification.

Table 3. Mixed-effect regression models for target detection accuracy and reaction time in experiment 2 with target TP and blocks as
predictors

Variables

Accuracy Reaction time

b SE z P 95% CI b SE t P 95% CI

Intercept 0.54 0.18 3.07 0.002a 0.20 0.89 483.69 5.06 95.58 <0.001b 472.72 494.65
Target TP 0.34 0.09 3.94 <0.001b 0.17 0.50 −8.66 2.16 −4.01 <0.001b −12.88 −4.43
Blocks 0.15 0.06 2.62 0.009a 0.04 0.26 −0.60 1.43 −0.42 0.674 −3.41 2.20
Target TP ×blocks 0.19 0.09 2.17 0.030c 0.02 0.35 −8.01 2.15 −3.72 <0.001b −12.23 −3.79

(95% CI) 95% confidence interval, (TP) transitional probability.
aP< 0.01
bP<0.001
cP< 0.05

1We thank two reviewers for raising this possibility.
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Probe identification

To eliminate any potential confounding effect of probe repetition,
the analysis for probe identification performance focused exclu-
sively on the trials in which probes were mismatched with the pre-
ceding cues while excluding the trials with matched cues and
probes.

Figure 4, A and B, depicts the change of probe identification
accuracy rates and RTs across blocks in different preceding target
TP and cue predictiveness conditions for learners with andwithout
above-chance awareness of cue–target associations. Table 6 sum-
marizes the results of the regression analysis. The mixed-effect lo-
gistic regression model (AIC=11,088) for probe identification
accuracy outperformed the null model [AIC=11,089, R2 = 0.33,
χ²(15) = 31.02, P=0.009] and revealed a significant four-way inter-
action effect among preceding target TPs, cue predictiveness,
blocks, and awareness (above chance vs. not above chance; β=
−1.42, 95% CI [−2.75, −0.08], P=0.038). Estimated marginal ef-
fects revealed that for learners who showed above-chance aware-
ness, the increase of blocks improved the odds of accurately
identifying low-predictive cue (P= 0.003), and zero-predictive cue
(P<0.001) probes when the preceding target TP was high but im-
proved the odds of accurately identifying high-predictive cue
probes (P= 0.040) when the preceding target TP was low. Only
the pattern triggered by high-TP, not low-TP, targets was observed
in learners who did not attain above-chance-level awareness.
Specifically, after high-TP targets, the odds of accurately identify-
ing low-predictive cue (P=0.018) and zero-predictive cue (P=
0.032), but not high-predictive cue (P=0.531), probes increased
across blocks, while after low-TP targets, the block effect was not
significant for high-predictive cues (P=0.647), low-predictive
cues (P=0.265), or zero-predictive cues (P=0.334).

The mixed-effect linear regression model (AIC=120,637)
on mismatched probe identification RT [R2 = 0.16, χ²(15) =
225.15, P< 0.001], summarized in Table 6, significantly outper-
formed the null model (AIC=120,833). The main effect of blocks
was significant (β=−104.43, 95% CI [−176.77, −32.10], P=
0.005), indicating faster probe identification RT as blocks
increased.

Discussion

Developing a probabilistic cueing validation paradigm to system-
atically manipulate the uncertainty of inputs (i.e., targets) and
cue predictiveness, this study investigated cue representation after
the occurrence of high-TP (75%), medium-TP (50%), and low-TP
(25%) targets during visual statistical learning. Results demonstrat-

ed that the activation of cue-processingmechanismswas altered by
input uncertainty. After high-TP targets, the association between
cue predictiveness and cue representation was found to be signifi-
cantly negative.Moreover, after high-TP targets, the representation
of lower-predictive but not high-predictive cues enhanced across
blocks regardless of learners’ awareness. In contrast, after low-TP
targets, the representation of high-predictive instead of lower-
predictive cues increased across blocks among learners who exhib-
ited awareness of cue–target associations. These findings suggest
that lower-uncertainty inputs triggered an exploration-like cue
processing, while higher-uncertainty inputs triggered an exploita-
tion-like cue processing.

The finding that low-uncertainty inputs triggered the
exploration-like cue-processing mechanism suggests that humans
can adapt to learned associations (e.g., high-predictive cues) but
prefer unlearned information (e.g., lower-predictive cues) when
the inputs (e.g., high-TP targets) confirm the overarching patterns.
Our result is consistent with a prior statistical learning study show-
ing impairedmemory encoding of 100% predictive cues compared
with nonpredictive cues (Sherman and Turk-Browne 2020).
However, our result also extends this notion by indicating that
adaptive processes of learned associations can occur outside a
cue–target prediction context and are contingent on the reliability
of the established representations.

It is important to note that the adaptive processing of envi-
ronmental patterns found in previous studies is manifested as
attenuated neural activations on high-probability (e.g., repeated
or expected) inputs (i.e., neural adaptation) (Todorovic and De
Lange 2012; Feuerriegel et al. 2021), reflecting the impact of
previous experience on the function of the brain cortex (Gilbert
et al. 2009; Reber 2013). Our results align with previous research
by emphasizing the role of high-probability inputs in activat-
ing adaptive processes. Nevertheless, unlike these prior studies,
our findings clarify that attenuated representation occurred for
high-probability-associated information (i.e., higher-predictive
cues) but not high-TP inputs (i.e., targets). Future studies could
extend these findings by investigating the neural correlates of
different predictive cues when inputs confirm the associative
regularities.

However, unlike high-TP targets, low-TP targets may induce
exploitation-like cue processing, as evidenced by the enhanced
representation of high-predictive rather than lower-predictive
cues after low-TP targets across blocks among learners who were
aware of cue–target associations (see experiment 3). This result
implies that when inputs contain higher uncertainty, in order
to explain or overcome the discrepancy between actual observa-
tions and prior experiences, learners may consciously retrieve

Table 4. Mixed-effect regression models for probe identification accuracy and reaction time in experiment 2 with preceding target TP, cue
predictiveness, and blocks as predictors

Variables

Accuracy Reaction time

b SE z P 95% CI b SE t P 95% CI

Intercept 1.74 0.40 4.33 <0.001 0.95 2.53 1352.83 83.89 16.13 <0.001 1181.93 1523.72
Preceding target TP 0.40 0.22 1.79 0.073 −0.04 0.83 −114.24 84.87 −1.35 0.178 −280.61 52.14
Cue predictiveness 0.62 0.33 1.89 0.058 −0.02 1.26 −127.42 122.16 −1.04 0.297 −366.89 112.06
Blocks 0.27 0.15 1.82 0.069 −0.02 0.55 −155.89 68.70 −2.27 0.023a −290.57 −21.21
Preceding target TP × cue
predictiveness

−1.20 0.49 −2.44 0.015a −2.16 −0.24 387.82 185.09 2.10 0.036a 24.98 750.67

Preceding target TP ×blocks −0.23 0.22 −1.04 0.299 −0.66 0.20 13.83 103.75 0.13 0.894 −189.55 217.22
Cue predictiveness × blocks −0.28 0.33 −0.84 0.399 −0.91 0.36 139.14 148.81 0.94 0.350 −152.58 430.86
Preceding target TP × cue
predictiveness × blocks

0.64 0.49 1.31 0.191 −0.32 1.61 −352.78 225.91 −1.56 0.118 −795.63 90.08

(95% CI) 95% confidence interval, (TP) transitional probability.
aP<0.05
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high-predictive cues, which are supposed to predict the perceiving
inputs (Pinquart et al. 2021). Our explanation is supported by a
previous study showing that an enhanced verbalization of se-
quence rules was observed when unexpected sequences were in-
serted (Rünger and Frensch 2008). Together, these results suggest
that higher uncertainty or unexpectedness during implicit learn-
ing may elicit conscious retrieval of learned regularities.

Furthermore, we observed a change in cue representation
across blocks in experiment 3 but not in experiments 1 and
2. One possible explanation is that the relatively complex cue–tar-
get transitions in experiment 3 prolonged the time courses for
forming sophisticated cue–target associative patterns (i.e., six
cues × three targets). Thus, as learning progressed, exploration-like
cue processing gradually emerged after high-TP targets, which

A

B

C D

Figure 3. Schematic of experiment 3. (A) Target transitional probability (TP; i.e., high [75%] and low [25%]) was decided by the conditional probability
of each target following a cue. In terms of individual targets, the predictiveness of cues (i.e., high [75%], low [25%], and zero [0%]) was determined by the
levels of probability in which each cue predicted that target. (B) The distribution of trial numbers in different preceding target TP ([red shading] high,
[green shading] low) and cue predictiveness ([red border] high, [green border] low, [gray border] zero) conditions. Probes matched with the preceding
cues are bold and underlined. (C) Mean accuracy rates (bar chart) and mean reaction times (line chart) for detecting high-TP and low-TP targets in the
target detection task. Error bars indicate standard errors. (D) Histogram of mean accuracy rate for target recognition using a 0.05 (accuracy rate) bin width.
The area of each block represents the frequency of participants (total number = 30) within that bin.
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manifested as an enhanced cue representation of lower-predictive
cues across blocks. In contrast, exploitation-like cue processing
gradually formed and functioned after low-TP targets, which was
evidenced by an enhanced cue representation of high-predictive
cues across blocks. Our interpretation of cue-processing mecha-
nisms and block effects aligns with a previous study on associative
learning involving eight cues and two targets. The findings re-
vealed that the decrease in overt attention, as measured by propor-
tional dwell time, was evident across blocks for low-consistency
compounds (70% appearing before an outcome) but not for high-
consistency cue compounds (100% appearing before an outcome).
This suggests that participants engaged in cue exploration during
the process of associative learning (Beesley et al. 2015).

Additionally, exploration-like cue processing and exploita-
tion-like cue processing, triggered by high-TP and low-TP targets,
respectively, related differently to the eventual awareness of cue–
target associations in experiment 3. This can be explained in
terms of the relation between the strength of learning and the
utilization of exploration-like and exploitation-like cue process-
ing. Specifically, the participants with above-chance awareness
of cue–target association exhibited stronger learning abilities, al-
lowing them to flexibly switch between exploration and exploita-
tion strategies based on outcome reliability (Domenech et al.
2020). Moreover, the strength of learning may affect the emergen-
cy of exploitation-like cue processing after high-TP targets. In ini-
tial blocks under high-TP preceding target conditions, both

A

B

Figure 4. Results of probe identification in experiment 3. (A) Model prediction of identification accuracy (Y-axis) based on the predictors of blocks
(X-axis). The line color represents various predictive cue probes that are preceded by targets with high and low transitional probability (TP). The data
are presented for learners with and without above-chance awareness of cue–target association. (B) Model prediction of identification reaction time
(Y-axis) based on the predictors of blocks (X-axis). The line color represents various predictive cue probes that are preceded by targets with high and
low transitional probability (TP). The data are presented for learners with and without above-chance awareness of cue–target associations.
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participants with and without above-chance awareness showed
lower probe identification accuracy for high-predictive cues com-
pared with low-predictive and zero-predictive cues (see Fig. 4A).
However, the accuracy improvement for low-predictive and zero-
predictive cues was slower for participants without above-chance
awareness (low: block trend= 0.09; zero: block trend=0.10) com-
pared with participants with above-chance awareness (low: block
trend=0.12; zero: block trend=0.19). These findings suggest that
the transition from implicit learning to conscious awareness may
be related to the speed of adapting to familiar information. This
aligns, in part, with a recent eye-tracking study on visual statistical
learning that found that individuals with greater statistical learn-
ing ability directed attention to more complex sequences earlier
in the learning process (Forest et al. 2022).

Furthermore, the awareness of cue–target associations affects
exploitation-like cue processing more than exploration-like cue

processing. Learners showed exploration-like cue processing after
high-TP targets, as indicated by their increased identification accu-
racy for lower-predictive but not high-predictive cue probes, re-
gardless of their level of awareness. In contrast, exploitation-like
cue processing after low-TP targets, indicated by the increased
identification accuracy for high-predictive but not lower-predictive
cue probes, was only observed among learners with above-chance
awareness. Our primary explanation for these findings is that pro-
cessing mechanisms triggered by high-TP and low-TP targets are
different. When learners encountered inputs that confirm the
overarching pattern, a relatively implicit system that relies less
on conscious awareness may dominate subsequent information
processing. Conversely, when inputs violate regularities and in-
duce uncertainty during visual statistical learning, a more explicit
system that requires conscious awareness becomes more involved.
These findings critically and empirically support the implicit–

Table 6. Mixed-effect regression models for probe (mismatched) identification accuracy and reaction time in experiment 3 with preceding
target TP, cue predictiveness, blocks, and awareness (not above chance as reference) as predictors

Variables

Accuracy Reaction time

b SE z P 95% CI b SE t P 95% CI

Intercept 1.26 0.30 4.26 <0.001a 0.68 1.84 1102.63 70.13 15.72 <0.001a 962.34 1242.92
Preceding target TP −0.14 0.16 −0.91 0.363 −0.45 0.16 91.22 55.60 1.64 0.101 −17.77 200.22
Cue predictiveness −0.14 0.22 −0.67 0.503 −0.57 0.28 73.82 77.40 0.95 0.340 −77.90 225.54
Blocks −0.09 0.10 −0.91 0.363 −0.30 0.11 −104.43 36.90 −2.83 0.005b −176.77 −32.10
Awareness (not above chance) 0.70 0.43 1.62 0.106 −0.15 1.55 −77.42 123.47 −0.63 0.533 −324.00 169.17
Preceding target TP × cue
predictiveness

0.18 0.34 0.53 0.593 −0.49 0.85 −95.64 123.54 −0.77 0.439 −337.81 146.53

Preceding target TP ×blocks 0.32 0.16 2.08 0.037c 0.02 0.63 −12.17 55.34 −0.22 0.826 −120.65 96.31
Cue predictiveness × blocks 0.38 0.21 1.79 0.073 −0.04 0.80 30.90 76.45 0.40 0.686 −118.96 180.76
Preceding target TP × awareness
(not above chance)

0.16 0.31 0.50 0.615 −0.45 0.76 −54.07 111.20 −0.49 0.627 −272.05 163.92

Cue predictiveness × awareness
(not above chance)

0.19 0.43 0.45 0.655 −0.65 1.03 −24.36 154.80 −0.16 0.875 −327.80 279.08

Blocks × awareness (not above
chance)

−0.34 0.21 −1.66 0.097 −0.75 0.06 97.30 73.78 1.32 0.187 −47.33 241.92

Preceding target TP × cue
predictiveness × blocks

−0.75 0.34 −2.19 0.028c −1.42 −0.08 −97.99 122.62 −0.80 0.424 −338.35 142.38

Preceding target TP × cue
predictiveness × awareness (not
above chance)

−0.64 0.68 −0.94 0.350 −1.98 0.70 −131.16 247.08 −0.53 0.596 −615.51 353.19

Preceding target TP ×blocks ×
awareness (not above chance)

0.57 0.31 1.85 0.065 −0.04 1.18 −12.71 110.65 −0.11 0.909 −229.61 204.19

Cue predictiveness × blocks ×
awareness (not above chance)

0.86 0.43 2.01 0.045c 0.02 1.70 −24.46 152.92 −0.16 0.873 −324.23 275.30

Preceding target TP × cue
predictiveness × blocks ×
awareness (not above chance)

−1.42 0.68 −2.07 0.038c −2.75 −0.08 107.42 245.30 0.44 0.661 −373.45 588.28

(95% CI) 95% confidence interval, (TP) transitional probability.
aP< 0.001
bP<0.01
cP< 0.05

Table 5. Mixed-effect regression models for target detection accuracy and reaction time in experiment 3 with target TP and blocks as
predictors

Variables

Accuracy Reaction time

b SE z P 95% CI b SE t P 95% CI

Intercept 0.40 0.18 2.21 0.027a 0.05 0.76 476.41 5.95 80.09 <0.001b 463.79 489.03
Target TP 0.17 0.06 2.60 0.009c 0.04 0.29 −11.54 2.23 −5.18 <0.001b −15.90 −7.17
Blocks 0.29 0.04 6.80 <0.001b 0.20 0.37 −1.71 1.48 −1.15 0.250 −4.62 1.20
Target TP ×blocks 0.03 0.06 0.46 0.642 −0.10 0.15 −3.34 2.23 −1.50 0.135 −7.72 1.04

(95% CI) 95% confidence interval, (TP) transitional probability.
aP< 0.05
bP<0.001
cP< 0.01
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explicit dual-mechanism view of statistical learning (Conway
2020) and clarify that input uncertainty regulates the involvement
of implicit and explicit systems.

While increasing evidence suggests that predictive or associat-
ive history influences attention allocation and stimulus associabil-
ity (Beesley and Le Pelley 2010; Le Pelley et al. 2011; Beesley et al.
2015;Griffiths et al. 2015), our study is the first to examine cue pro-
cessing after the target offset, thereby clarifying how information
is processed after encountering new inputs rather than at the
moment of anticipating subsequent inputs. This is critical, since
human learning is not solely aboutmaking predictions and observ-
ing outcomes but also entails updating knowledge representations
based on the discrepancies between new observations and prior ex-
pectations/beliefs (Bennett et al. 2015). The exploration-like cue
processing and exploitation-like cue processing posterior to
high-TP and low-TP targets, respectively, indicate how learners rep-
resent associative information when new observations confirm or
violate associative rules.

Taken together, the posttarget cue-processing patterns align
well with predictive coding frameworks in perceptual learning,
suggesting that humans tend to conserve “free energy” by expend-
ing less effort on incoming information that fails to provide signif-
icant content beyond what they already know (Friston 2009). This
principle informs our findings by showing that participants con-
served cognitive resources when encountering high-predictive
cues after the appearance of high-TP targets, since high-TP cue–tar-
get sequences were highly anticipated, making the high-predictive
cues less informative. In contrast, when low-TP targets occurred,
participants expended resources to handle the discrepancy be-
tween prior beliefs and actual observations, which produces uncer-
tainty. One possible solution for overcoming the interferences of
this uncertainty is to consciously retrieve learned regularities
(Rünger and Frensch 2008; Haider and Frensch 2009). Thus, en-
hanced representation of high-probability-associated cues was ob-
served only among the participants who exhibited above-
chance-level awareness of cue–target association as the learning
process progressed.

Additionally, exploration-like and exploitation-like cue pro-
cessing triggeredbyhigh-TP and low-TP targets, respectively, partial-
ly align with and may extend the theories of conditional and
instrumental learning. The sometimes opponent processes (SOP)
model suggests that during conditional learning, each conditional
and unconditional stimulus possesses three activation states; name-
ly, inactivity, primary activity, and refractory activity (Vogel et al.
2019). The presence of a stimulus first triggers its activation state
from inactivity to primary activity. However, this primary activation
gradually declines to a state of refractory activity before eventually
returning full circle to its state of inactivity. If the activity of one
stimulus remains in a refractory state, the transition into primary ac-
tivity is hindered. Based on this principle, our finding (i.e., the sup-
pressed representation of higher-predictive cues after high-TP
targets) can be explained by the occupation of the refractory activity
state triggered by thepreceding cues,which is similar to the negative
priming account when applied to the high-TP target condition.

Nevertheless, extending the suppression generated by the
identical preceding stimuli, experiment 3 used the cue probes
that mismatched with preceding cues and showed an enhanced
representation of lower-predictive rather than high-predictive
cues across blocks after high-TP targets. These results suggest that
exploration-like cue processing cannot be attributed simply to
the occupation of refractory activity by the same stimuli. Instead,
exploration-like cue processing is triggered by the high-probability
associations between high-predictive cue objects and the preced-
ing targets. According to the SOP theory, the occurrence of condi-
tional and unconditional stimuli generates associative linkages
between them, whereby the primary activity of the conditional

stimulus triggers the refractory activity of the unconditional stim-
ulus. Experiment 3 extended this principle in a reverse direction by
demonstrating the emergence of exploration-like cue processing
after high-TP targets. Specifically, as learning progresses, the prima-
ry activity of unconditional stimuli (i.e., targets) may elicit the re-
fractory activity of conditional stimuli, especially for higher-
probability-associated cues, resulting in greater prevention of the
primary activity of high-predictive cue objects compared with low-
predictive or zero-predictive cue objects.

Unlike conditional learning, which emphasizes the co-occur-
rence of environmental stimuli in human regularity acquisition,
instrumental learning asserts that humans can actively deduce
the causal relationships between their actions and resulting out-
comes. This goal-directed behavior typically requires an under-
standing of the relationships between causes and outcomes
(belief criteria), as well as a need to evaluate or process outcomes
(i.e., desire criteria) (de Wit and Dickinson 2009). Our finding
that enhanced representation of high-predictive cues occurred
only among participants who exhibited above-chance awareness
of cue–target associations after low-TP targets can also be explained
by the belief criteria of goal-directed behavior. Specifically, during
the later stage of statistical learning, participantswhowere aware of
cue–target associations may have actively anticipated (i.e., action)
the incoming targets according to the preceding visual cues and
evaluated cue–target relationships after perceiving high-TP or
low-TP targets (i.e., outcomes). As previous studies have demon-
strated that the activation of outcomes can prime the actions
(Elsner and Hommel 2004), the occurrence of low-TP targets may
activate the representation of the most probable cause (i.e., the
high-predictive cue) for participants who have established cue–tar-
get associations.

In sum, the patterns of certainty-triggered, awareness-inde-
pendent exploration-like cue processing and uncertainty-
triggered, awareness-dependent exploitation-like cue processing
are in alignment with the principles of automatic conditional
learning and goal-directed instrumental learning, respectively.
These principles extend associative learning to human implicit
learning, reinforcing the mutimechanism view of statistical learn-
ing. Specifically, after high-TP targets, suppressed representation
occurred for cues with higher predictiveness rather than lower pre-
dictiveness. Such exploration-like cue processing emerged as learn-
ing progressed regardless of participants’ awareness of cue–target
associations. However, after low-TP targets, exploitation-like cue
processing, as indexed by the enhanced representation of high-
predictive instead of lower-predictive cue probes across blocks,
was observed only among learners who exhibited above-chance
awareness of cue–target associations. These findings suggest that
input uncertainty alters cue-processing mechanisms during visual
statistical learning, with relatively implicit exploration-like and rel-
atively explicit exploitation-like cue processing triggered by lower-
uncertainty and higher-uncertainty inputs, respectively.

Materials and Methods

Experiment 1

Participants

Thirty-five nativeMandarin-speakingChinese undergraduates and
university staff (Mage = 26.14 yr, SDage = 5.23 yr) participated in this
study. With this sample size, we were able to achieve a 0.50 effect
size at a significant level of 0.05 and a statistical power of 0.80 (Faul
et al. 2009). Written informed consent was obtained from all par-
ticipants, and research protocols were approved by our university’s
Human Research Ethics Committee. Participants were compensat-
ed $50 HKD (≈$6.44 USD).
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Apparatus

All participantswere individually tested in a sound-attended booth
using a Dell laptop (14-in Dell Latitude 5490; resolution, 1920×
1080 pixels; refresh rate, 60 Hz; screen width, 30.5 cm).
Participantswere seated∼35 cm from themonitor. The experiment
was programmed and presented using Python 3.8.1 (Van Rossum
and Drake 2009).

Stimuli

Five black geometric shapes (i.e., , , , , and ) were used in a
probabilistic cueing validation paradigm in which the occurrence
of a target was predicted by a visual cue with a certain probability.
A probe identical to one of the predictive cues was then rapidly pre-
sented after half of the targets to assess the representation of differ-
ent predictive cues. Each shape was presented at a 6.5° × 6.5° visual
angle. Three of these shapes (i.e., , , and ) were used in previ-
ous visual statistical learning studies (Kirkham et al. 2002;
Addyman and Mareschal 2013), while the other two (i.e., and
) were used by Huang (2020). For each participant, two of the

five shapes were randomly assigned as targets, while the other
three served as cues. The assignment of these five shapes as targets
or cues was counterbalanced between participants to eliminate ex-
traneous preference for a specific shape. For each participant, the
assignment remained constant across trials. Additionally, based
on previous studies (Jost et al. 2015; Singh et al. 2018), the shape
“ ”with a visual angle of 6.5° × 6.5° was designated as a filler stim-
ulus to precede cue–target sequences and prevent the participant
from habitually responding to every other stimulus.

As illustrated in Figure 1A, these targets and cues formed three
cue–target transitions in which different visual cues predicted the
occurrence of different targets with high (75%), medium (50%),
and low (25%) transitional probabilities (TPs). Two of the three
cues predicted the occurrence of one target 75% of the time and
the other target 25% of the time. The third cue predicted each of
the two targets 50% of the time. For example, the occurrence of
the visual cue “ ” predicted the subsequent occurrence of the tar-
get “ ” 75% of the time, making “ ” a high-TP target. In contrast,
the same visual cue “ ” predicted the subsequent occurrence of
the target “ ” 25% of the time, making “ ” a low-TP target. In
the third condition, the visual cue “ ” predicted each of the targets
“ ” and “ ” 50% of the time, making them medium-TP targets.

Furthermore, three types of cues were categorized (i.e., high-
predictive [75%], medium-predictive [50%], and low-predictive
[25%]) based on their conditional probability to predict individual
targets (see Fig. 1A). For example, the cues “ ,” “ ,” and “ ” pre-
dicted the target “ ” 75%, 50%, and 25% of the time, respectively,
meaning that “ ” was a high-predictive cue, “ ” was a medium-
predictive cue, and “ ” was a low-predictive cue. Critically, three
probes, identical in shape to the cues, appeared after half of the tar-
gets to assess the representations of the cues. For example, after tar-
get “ ,” the representations of the high-predictive “ ,”
medium-predictive “ ,” and low-predictive “ ” cues were assessed
by the probes “ ,” “ ,” and “ ,” respectively.

Procedure

As depicted in Figure 1B, during the experiment, participants were
asked to perform two tasks: a target detection task, in which they
were asked to identify two targets by pressing the corresponding
“X” or “M” key, and a probe identification task, in which they
were expected to indicate the shape of a cue probe that was present-
ed rapidly by pressing the corresponding “1,” “2,” or “3” key.
Response accuracy and reaction time of both tasks were recorded.
Across the tasks, participantswere not informed of any predictive re-
lations between the visual cues and targets or the assignment and
purpose of the probes. Prior to real testing, participants were famil-
iarized with the experimental procedure by completing 30 practice
trials comprising 24 target detection and six probe identification tri-
als. The stimuli used during the practice task were identical to those
in the test trials but hadnopredictive relations between cues and tar-
gets to minimize any learning effects. The testing trial did not start
until participants reached a target accuracy of 80%.

Each participant completed 432 trials, half of which were cue–
target trials where one to three fillers were presented, followed by
one visual cue and one target. One to three fillers were randomly as-
signedbefore the appearance of cues toprevent ahabituated (i.e., ev-
ery other stimulus) key response pattern (Jost et al. 2015; Singh et al.
2018). The other half were cue–target–probe trials in which a visual
probe was rapidly presented after the appearance of a target.

For cue–target trials, fillers, visual cues, and targets were dis-
played in the center of the screen on a white background for 500
msec, followed by a 250-msec blank screen. For the cue–target–
probe trials, a probe was displayed for 34 msec in the center of
the screen 116 msec after the target disappeared. A mask with a
9.5° × 9.5° visual angle was displayed for 100 msec after the probe.
Following the appearance of a probe and a mask, three potential
probe shapes appeared on the screen with corresponding numbers
“1,” “2,” and “3.” The positions of the three shapes were random-
ized across trials. Each shape had a visual angle of 2.6° × 2.6°, while
each corresponding number had a visual angle of 1.3° × 0.8°. The
distance between two contiguous shapes and two contiguous
numbers was 9.8° of the visual angle.

All trials were assigned to three blocks, with each block con-
sisting of 144 trials for equal distribution of each visual cue, gener-
ating 72 high-TP, 48 medium-TP, and 24 low-TP targets (see Fig.
1C). Half of the trials for each type of target (i.e., 36 high-TP, 24
medium-TP, and 12 low-TP targets) were followed by three types
of equally distributed probes (i.e., one-third for high-predictive,
one-third for medium-predictive, and one-third for low-predictive
cues). Thus, in one block, the representation of each type of predic-
tive cue was examined 12 times after high-TP targets, eight times
after medium-TP targets, and four times after low-TP targets, as il-
lustrated in Figure 2C. The entire experiment lasted ∼45 min
with a 2-min break between blocks.

Data analysis

Data were analyzed using the lme4 package in R. The simple effect
was estimated using the emmeans package in R. All materials, data,
and analysis codes are available through Open Science Framework
(https://osf.io/gzmvr/files). Four participants’ data were excluded
from our analyses because of technological error (one participant)
and outlier performances (i.e., 2.5 SDbelow the groupmean) in tar-
get detection (one participant) and probe identification (two par-
ticipants). Thus, data analyses were conducted based on 31
participants (Mage = 25.77 yr, SDage = 4.51 yr).

To examine the statistical learning effect (i.e., whether target
TP influenced target detection performance), a mixed-effect logistic
regression analysis was performed on each trial’s target detection ac-
curacy. In addition, amixed-effect linear regression analysiswas per-
formed on each trial’s target detection reaction time (RT). Both
models included target TP (numerical coding), blocks (centered
and scaled), and their interaction as fixed effects as well as the inter-
cept of participants and stimuli as random effects. Trials with incor-
rect target responses were excluded from the RT analysis.

To investigate the cue-processing mechanisms when inputs
appeared with various levels of uncertainty, we examined the im-
pact of preceding target TP and cue predictiveness on cue represen-
tation. Amixed-effect logistic regression analysis was performed on
each trial’s probe identification accuracy. Also, a mixed-effect line-
ar regression analysis was performed on each trial’s probe identifi-
cation RT. The fixed effects in both models were preceding target
TP (numerical coding), cue predictiveness (numerical coding),
blocks (centered and scaled), and their interaction effect. The ran-
dom effects were the intercept of participants and stimuli justified
by data convergence. The trials with incorrect probe responses
were excluded from the RT analysis.

Experiment 2

Participants

Thirty-six native Mandarin-speaking Chinese undergraduates and
university staff (Mage = 26.39 yr, SD=5.42 yr) who were not in-
volved in experiment 1 participated in this study. This sample
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size enabled us to achieve a 0.50 effect size at a significant level of
0.05 and a statistical power of 0.80 (Faul et al. 2009). Written in-
formed consent was obtained from all participants, and they
were compensated $50 HKD (≈$6.44 USD).

Apparatus

The apparatus in experiment 2 was the same as in experiment 1.

Stimuli

Stimuli comprised four of the same black geometric shapes (i.e., ,
, , and ) used in experiment 1 plus two new shapes (i.e., and
). As in experiment 1, three of these shapes (i.e., , , and )were

randomly assigned to be targets while the other three (i.e., , ,
and ) served as visual cues. The assignment of these six shapes
as targets and visual cues was counterbalanced between partici-
pants to eliminate extraneous preference for a specific shape. For
each participant, the assignment remained constant across trials.

These targets and cues formed three cue–target transitions in
which different visual cues predicted the appearance of three tar-
getswith high (75%), low (25%), and zero transitional probabilities
(see Fig. 2A). For example, the occurrence of the visual cue “ ” pre-
dicted the subsequent occurrence of the target “ ” 75% of the
time, making “ ” a high-TP target. In contrast, the same visual
cue predicted the subsequent occurrence of the target “ ” 25%
of the time, making “ ” a low-TP target.

Furthermore, three types of cues were categorized (i.e., high
[75%], low [25%], and zero) based on their conditional probability
to predict individual targets (see Fig. 2A). For example, the cues
“ ,” “ ,” and “ ” predicted the target “ ” 75%, 25%, and 0%
of the time, respectively, meaning that “ ” was a high-predictive
cue, “ ” was a low-predictive cue, and “ ” was a zero-predictive
cue. As in experiment 1, the representations of these cues were ex-
amined by the probes appearing after half of the targets. For exam-
ple, after target “ ,” the representations of the high-predictive cue
“ ,” low-predictive cue “ ,” and zero-predictive cue “ ” were as-
sessed by the probes “ ,” “ ,” and “ ,” respectively.

Procedure

The procedure was the same as in experiment 1 except for the fol-
lowing changes. First, for the target detection task, participants
were asked to identify three targets by pressing the keys “G,”
“H,” or “J,” so that the duration of black geometric shapes, fillers,
visual cues, and targets was extended to 550 msec. Second, partic-
ipants were provided with 72 practice trials to familiarize them-
selves with the experimental procedure.

As shown in Figure 2B, the 432 trials were assigned to three
blocks, with each block consisting of 144 trials of equal distribu-
tion for each visual cue, generating 108 high-TP targets and 36
low-TP targets. Half of the trials for each type of target (i.e., 54
high-TP targets and 18 low-TP targets) were followed by three
types of equally distributed probes (i.e., one-third for high-
predictive, one-third for low-predictive, and one-third for
zero-predictive cues). Thus, in one block, each type of probe ap-
peared 18 times after high-TP targets and six times after low-TP
targets.

Data analysis

The data analysis in experiment 2 was identical to experiment
1. All materials, data, and analysis codes are available through
Open Science Framework (https://osf.io/gzmvr/files). Two partici-
pants’ data were excluded from our final analysis because of outlier
performance (i.e., 2.5 SD below the groupmean) in the probe iden-
tification task. Thus, the following analyses were conducted based
on 34 participants (Mage = 25 yr, SDage = 5.42 yr).

Experiment 3

Participants

Thirty Chinese undergraduates and university staff (Mage = 23.30
yr, SDage = 3.65 yr) whowere not involved in experiment 1 or 2 par-
ticipated in this study. This sample size allowed us to achieve a 0.50
effect size at a significant level of 0.05 and a statistical power of 0.80
(Faul et al. 2009). Written informed consent was obtained from all
participants, and they were compensated $50 HKD (≈$6.44 USD).

Apparatus

The apparatus in experiment 3 was identical to experiment 1.

Stimuli

Stimuli comprised six black geometric shapes (i.e., , , , , ,
and ) previously used in experiment 1, aswell as three new shapes
(i.e., , , and ). As in experiment 2, three of these shapes (e.g., ,
, and ) were randomly assigned to be targets while the other six

(e.g., , , , , , and ) served as visual cues. The assignment of
these nine shapes as targets and visual cues was counterbalanced
between participants to eliminate extraneous preference for a spe-
cific shape. For each participant, the assignment remained cons-
tant across trials. As in experiment 2, the cue–target transitions
generated two types of targets (high-TP targets [75%] and low-TP
targets [25%]), and the cues were classified as high-predictive
(75%), low-predictive (25%), and zero-predictive based on the like-
lihood of predicting individual targets, as shown in Figure 3A.

Procedure

The procedure in experiment 3 was the same as in experiment 2 ex-
cept for the following changes. First, the options (i.e., one correct
answer and two selected distractors) in the probe identification
task were selected from six possible cues but carried different pre-
dictiveness. Second, a target recognition task appeared after the vi-
sual statistical learning experiment to assess individuals’ eventual
awareness of cue–target associations. Participants were not in-
formed about the target recognition task and any relations be-
tween visual shapes before the experiment.

During the learning phase, 864 trials were assigned to six
blocks of equal distribution for each visual cue, generating 648
high-TP targets and 216 low-TP targets. Half of the trials for each
type of target (i.e., 324 high-TP targets and 108 low-TP targets)
were followed by three types of equally distributed probes (i.e.,
one-third for high-predictive, one-third for low-predictive, and
one-third for zero-predictive cues). Moreover, as shown in Figure
3B, in two specific conditions (i.e., high-predictive cue probes fol-
lowing high-TP targets and low-predictive cue probes following
low-TP targets), half of the probes were matched with the preced-
ing cues, while the other half weremismatched. Thesemismatched
cue probes were designed to eliminate probe repetition issues,
which was the core improvement of experiment 3 compared
with experiment 2.

During the testing phase, one examined cue and three option-
al targets appeared on the screen. Participants were asked to select
which target was most likely or most unlikely to appear afterward
given the examined cue by pressing the “1,” “2,” or “3” corre-
sponding key, based on their experience during previous learning
blocks. Thirty-six trials were assigned to six examined cues, with
six trials for each cue. Half of these were “most likely” questions
while the other half were “most unlikely” questions, and the order
of questions was counterbalanced between participants. The corre-
sponding keys of optional shapes were randomized across different
trials.

Data analysis

All materials, data, and analysis codes are available through Open
Science Framework (https://osf.io/gzmvr/files). The data analysis
for target detection performance was identical to experiment
2. No data were excluded from our analyses.
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In contrast to experiments 1 and 2, to evaluate the cue-
processing mechanisms after various uncertainty inputs without
the confounding of probe repetition, we performed a mixed-effect
logistic regression analysis on the probe identification accuracy as
well as amixed-effect linear regression analysis on probe identifica-
tion RT for the trials that contained mismatched cue probes. Fixed
effects included preceding target TP (numerical coding), cue pre-
dictiveness (numerical coding), blocks (centered and scaled), and
awareness (simple coding, reference =not above chance). Given
the negative-skewed distribution (see the experiment 3 results), in-
dividuals’ awareness of cue–target associations was submitted as a
categorical rather than continuous variable (above chance or not
above chance). The intercept of participants and stimuli was added
as a random effect. The trials with incorrect probe responses were
excluded from the RT analysis.
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