
1

Comparison of LVG and MetaMap
Functionality

Alan R. Aronson

November 14, 1994

The Lexical Variant Generator (LVG) and MetaMap are two computer modules which
generate lexical variants for words occurring in free text. These notes characterize the similarities
and differences between the two. Section 1 compares LVG and MetaMap at a general level;
Section 2 describes variant generation, itself; and Section 3 summarizes the findings.

1. Introduction

LVG and MetaMap both compute lexical variants but were developed for quite different
purposes: LVG’s raison d’être is lexical variant generation whereas MetaMap’s main purpose is to
map text to corresponding concepts in the UMLS® Metathesaurus (Meta), one of the UMLS
knowledge sources. Besides generating lexical variants, LVG has the subsumed ability to normal-
ize words and the supplementary ability to produce tokens suitable for use as a word index. Gen-
erating lexical variants is one of four major components of MetaMap. The other three components
parse text, search for and evaluate Meta terms, and combine the best Meta terms into a coherent
mapping from text to Meta concepts.

Both LVG and MetaMap were developed in a Unix environment on Sun Workstations.
LVG is entirely written in C, and MetaMap is mostly written in Prolog using C modules to imple-
ment some of its basic functions. LVG is implemented as a main command, lvg, and two second-
ary commands, norm (for normalization) and wordind (for word index). The LVG commands
are filters and can be used in combination with other Unix filters. MetaMap is implemented as a
single command, metamap. It has both interactive and batch modes of operation but is not a fil-
ter.

2. Variant Generation

The most striking difference in the way that LVG and MetaMap generate variants is that
LVG consists of a collection of independent submodules which can be combined in any way in
order to generate the variants desired by the user. MetaMap’s variant generation algorithm is com-
pletely fixed. LVG provides complete flexibility with no guidance on creating a complete variant

Comparison of LVG and MetaMap Functionality 2

generation strategy. MetaMap provides no flexibility but engenders a variant generation strategy
developed iteratively and with attention to the linguistic and domain-specific consequences of
alternative substrategies. The rest of this section describes the LVG submodules (2.1); the
MetaMap variant generation algorithm (2.2), and an LVG approximation to the MetaMap algo-
rithm (2.3).

2.1 LVG Variant Generation

LVG’s functionality is determined by that of its submodules which are listed below1 along with
examples of their usage. Each submodule acts as a filter by performing its function on its input
producing its output. Designing a compound variant generation strategy consists of constructing
one or more sequences of the filters called flows.

• l—Lowercase

• u—Uninvert

• w—Sort the words in ascending order

• g—Remove Genitive markers

1. Two submodules, Generate Spelling Variants and Remove Stop Words have not been implemented yet.

lan@nls3> echo ’NLS’ | lvg -fl

NLS|nls|2047|255|l|1

lan@nls3> echo ’red blood cells’ | lvg -fu

red blood cells|red blood cells|2047|255|u|1

lan@nls3> echo ’cells, blood, red’ | lvg -fu

cells, blood, red|red blood cells|2047|255|u|1

lan@nls3> echo ’red blood cells’ | lvg -fw

red blood cells|blood cells red|2047|255|w|1

lan@nls3> echo ”Paget’s Disease of Bone” | lvg -fg

Paget’s Disease of Bone|Paget Disease of Bone|2047|255|g|1

Comparison of LVG and MetaMap Functionality 3

• p—Remove punctuation (non-alphanumeric) characters

• b—Generate the base form (using rules of inflection)

• B—Generate the base form for each word in the term

lan@nls3> echo ’(normal 4000-10,800/cu mm)’ | lvg -fp

(normal 4000-10,800/cu mm)|normal 400010800cu mm|2047|255|p|1

lan@nls3> echo ’1.5 to 8.0’ | lvg -fp

1.5 to 8.0|15 to 80|2047|255|p|1

lan@nls3> echo ’veiled’ | lvg -fb

veiled|veil|1024|1|b|1

lan@nls3> echo ’cells’ | lvg -fb

cells|cell|128|1|b|1

cells|cell|1024|1|b|1

lan@nls3> echo ’veiled cells’ | lvg -fb

veiled cells|veiled cells|2047|255|b|1

lan@nls3> echo ’veiled cells’ | lvg -fB

veiled cells|veil cell|2047|1|B|1

Comparison of LVG and MetaMap Functionality 4

• i—Generate inflectional variants

• d—Generate derivational variants

lan@nls3> echo ’veiled cells’ | lvg -fi

veiled cells|veiled cell|128|1|i|1

veiled cells|veiled cellses|1024|128|i|1

veiled cells|veiled cellses|128|8|i|1

veiled cells|veiled cell|1024|1|i|1

veiled cells|veiled cellser|1|2|i|1

veiled cells|veiled cellsest|1|4|i|1

veiled cells|veiled cellsed|1024|32|i|1

veiled cells|veiled cellsing|1024|16|i|1

veiled cells|veiled cellser|2|2|i|1

veiled cells|veiled cellsest|2|4|i|1

veiled cells|veiled cellss|128|8|i|1

veiled cells|veiled cellss|1024|128|i|1

lan@nls3> echo ’veiled cell’ | lvg -fd

lan@nls3> echo ’cell’ | lvg -fd

cell|cellular|1|255|d|1

lan@nls3> echo ’cellular’ | lvg -fd

cellular|cell|128|255|d|1

cellular|cellula|128|255|d|1

cellular|cellula|128|255|d|1

cellular|cellularity|128|255|d|1

lan@nls3> echo ’cell’ | lvg -fdd

cell|cell|128|255|dd|1

cell|cellula|128|255|dd|1

cell|cellula|128|255|dd|1

cell|cellularity|128|255|dd|1

Comparison of LVG and MetaMap Functionality 5

2.2 MetaMap Variant Generation1

MetaMap variant generation begins by computing a set of variant generators for a given
phrase. A variant generator is any meaningful subsequence of words in the phrase where a subse-
quence is meaningful if it either occurs in the SPECIALIST lexicon or is a single word. For exam-
ple, the variant generators for the noun phrase “of liquid crystal thermography” are liquid crystal
thermography, liquid crystal, liquid, crystal and thermography (prepositions, determiners, con-
junctions and punctuation are ignored). Note the multi-word generators. A simpler example is the
phrase “ocular complications” which has only two generators, ocular and complications.

Variants are computed for each of the variant generators according to the scheme pictured
in Figure 1.

1. This section is a minor revision of Section 0.1.3 Noun Phrase Variants of the report Mapping Noun Phrases in Free
Text to Meta Terms (June 8, 1993).

Acronyms/
Abbreviations

Inflectional
Variants+

Synonyms
Inflectional

Variants+

Synonyms+

Acronyms/
Abbreviations

Synonyms

+

Spelling
Variants

Inflectional
Variants

Derivational
Variants

Inflectional
Variants

Synonyms+ +

Inflectional
Variants

Derivational
Variants

Inflectional
Variants

Synonyms+ +

Inflectional
Variants

Derivational
Variants

Inflectional
Variants

Generator

Figure 1. MetaMap Variant Generation

Comparison of LVG and MetaMap Functionality 6

The computation for each generator proceeds as follows:

1. Compute all acronyms, abbreviations and synonyms of the generator. This results in the three
sets Generator, Acronyms/Abbreviations and Synonyms which are highlighted with boxes in
the figure;

2. The elements of the three sets are augmented by computing the inflectional and derivational
variants (and spelling variants for the generator, itself). In addition, the derivational variants are
augmented with their synonyms, and then both are inflected;

3. For each member of the Acronyms/Abbreviations set, compute synonyms and their inflections;
and

4. For each member of the Synonyms set, compute acronyms/abbreviations and their inflections.
The issue of whether to recursively generate variants of a given type is handled as follows:

• Inflectional variants are not recursively generated since any inflectional variant of an inflectional
variant is already an inflectional variant of the original variant;

• Acronyms and abbreviations are not recursively generated since doing so almost always pro-
duces incorrect results. For example, the abbreviation na of sodium has expansions “nurse’s
aide” and “nuclear antigen” both of which are unrelated to sodium; and

• Derivational variants and synonyms are recursively generated since this often produces useful
variants.

Comparison of LVG and MetaMap Functionality 7

The variants computed for the generator ocular are shown in Figure 2. Following each

variant is its variant distance score (a rough measure of how much it varies from its generator) and
the history of how it was computed. For example,

• oculus (with variant distance 3 and history “d”) is simply a derivational variant of the generator
ocular;

• optical (with variant distance 7 and history “ssd”) is a derivational variant of a synonym (optic)
of a synonym (eye) of ocular; and

• vision (with variant distance 9 and history “ssds”) is a synonym of the derivational variant opti-
cal described above.

eye [2=“s”]

eyed [3=“si”]

eyeing [3=“si”]

eyepiece [2=“s”]

eyepieces [3=“si”]

eyes [3=“si”]

eying [3=“si”]

ocular [0=“”]

oculars [1=“i”]

oculi [4=“di”]oculus [3=“d”]

opthalmia [7=“ssd”]

ophthalmiac [7=“ssd”] opthalmiacs [8=“ssdi”]

ophthalmic [4=“ss”]

optic [4=“ss”]

optical [7=“ssd”]

optically [10=“ssdd”]

vision [9=“ssds”]

optics [5=“ssi”]

Figure 2. Variants for the generator ocular

Comparison of LVG and MetaMap Functionality 8

2.3 An LVG Approximation of the MetaMap Variant Generation Algorithm

Referring to Figure 1 it is a simple matter to construct a set of LVG flows roughly corre-
sponding to the MetaMap variant generationalgorithm. It is important to note that flow options a
(Generate acronyms/abbreviations) and y (Generate synonyms) are not part of LVG. In order to
implement MetaMap’s variant generation algorithm using LVG, such capabilities would have to
be provided either by LVG or independently.

The three lines of flows above correspond to the variants generated by the Generator, Acronyms/
Abbreviations and Synonyms, respectively, of Figure 1. In addition to the flow options, it is neces-
sary to use lvg’s k option to restrict inflectional and derivational variation to produce actual
words. Ignoring the flows which do not yet exist, the currently available LVG approximation to
MetaMap’s variants for the generator ocular is:

The LVG results are the same as those generated by Generator in the MetaMap algorithm.

-fn -fs -fi -fbd -fbdy -fbdi -fbdyi

-fba -fbay -fbayi -fbai -fbad -fbady -fbadi -fbadyi

-fby -fbya -fbyai -fbyi -fbyd -fbydy -fbydi -fbydyi

lan@nls3> echo ’ocular’ | lvg -fn -fi -fbd -fbdi -k i:1 -k d:1

ocular|ocular|2047|255|n|1

ocular|oculars|1024|128|i|2

ocular|oculars|128|8|i|2

ocular|oculars|1024|128|i|2

ocular|oculus|128|255|bd|3

ocular|oculi|128|8|bdi|4

Comparison of LVG and MetaMap Functionality 9

Simulating the generation of variants for the synonym optic of the synonym eye of the
generator ocular produces:

In this case, LVG produces incorrect variants such as opt. MetaMap avoids generating opt by
remembering the possible parts of speech for each variant generated and restricting subsequent
generation accordingly.1 In addition LVG does not generate optically since it does not recurse in
generating variants, and it does not generate vision since it does not support synonyms.

3. Conclusion

LVG’s current variant generation functionality is not sufficient to support MetaMap’s vari-
ant generation algorithm. However, the following modifications would make it able to do so:

• the ability to access LVG submodules programmatically;2

• the implementation of the spelling variant and stop word3 submodules;
• the addition of acronym/abbreviation and synonym submodules;
• the ability to specify recursion for a flow with corresponding changes to the flow type output

field;4 and
• the ability to compute parts of speech for eliminating incorrect variants during the generation

process.5

1. Although it seemed possible that some combination of LVG options would prevent the generation of opt, Allen
assures me that this is not the case because LVG does not use the inflectional information available from the SPE-
CIALIST lexicon.

2. This modification is necessary only to achieve adequate performance and to shield users from the complex LVG
interface; it does not affect functionality.

3. The stop word submodule would be used to approximate MetaMap’s use of parsing information to ignore lexical
items with little information content: prepositions, determiners, conjunctions and punctuation.

4. This modification is not essential but would relieve LVG users of controlling recursion themselves and also
enhance performance.

5. This modification subsumes the need for a stop word submodule.

lan@nls3> echo ’optic’ | lvg -fn -fi -fbd -fbdi

optic|optic|2047|255|n|1

optic|optics|1024|128|i|2

optic|optics|1024|128|i|2

optic|optics|128|8|i|2

optic|optical|1|255|bd|3

optic|opt|128|255|bd|3

optic|optical|1|255|bd|3

optic|opts|128|8|bdi|4

Comparison of LVG and MetaMap Functionality 10

Despite LVG’s current inability to support MetaMap’s variant generation algorithm, its
generality gives it the ability to support the development of many variant generation strategies.1

The modifications suggested above would enhance that ability to develop realistic variant genera-
tion strategies similar to that of MetaMap.

1. A variant strategy development tool providing knowledgeable access to LVG would facilitate the development
process by freeing the developer from knowing LVG interface details.

	Comparison of LVG and MetaMap Functionality
	Alan R. Aronson
	November 14, 1994
	1. Introduction
	2. Variant Generation
	2.1 LVG Variant Generation
	2.2 MetaMap Variant Generation
	Figure 1. MetaMap Variant Generation
	1. Compute all acronyms, abbreviations and synonyms of the generator. This results in the three s...
	2. The elements of the three sets are augmented by computing the inflectional and derivational va...
	3. For each member of the Acronyms/Abbreviations set, compute synonyms and their inflections; and
	4. For each member of the Synonyms set, compute acronyms/abbreviations and their inflections.

	Figure 2. Variants for the generator ocular

	2.3 An LVG Approximation of the MetaMap Variant Generation Algorithm

	3. Conclusion

