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Abstract
Disease management is crucial for the global growth of aquaculture. Parasitic monogeneans
present a high risk for finfish aquaculture industries and have been associated with reduced
growth, morbidity and mortality. Monogeneans are extremely fecund and exhibit short
generation times which can result in exponential population growth. Information on the
reproductive biology of specific monogenean species can enable strategically timed treatments
to break parasite life cycles. However, the diversity of reproductive strategies (oviparity,
viviparity and self-fertilisation) presents considerable barriers in disease management. In
addition, environmental conditions such as seasons, water temperature and salinity also
influence parasite life cycles, including generation time, fecundity, egg embryonated period
and age at sexual maturity. This review examines the diversity of reproductive strategies
exhibited by monogenean parasites and the influence of environmental parameters on parasite
life cycles. Various parasite management strategies including mechanical, biological and
chemical treatments are evaluated.

Keywords Reproduction .Monogenea . Parasites . Aquaculture .Management

Introduction

Global aquaculture production has grown tremendously over the six decades, from a produc-
tion of less than one million tonnes in 1950s to 32.4 million tonnes in 2000 and 73.8 million
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tonnes in 2014 (FAO 2011, 2016; Subasinghe et al. 2009). Aquaculture is the fastest-growing
food producing sector and must meet a growing demand for high-quality sea food. Seafood
production for fisheries is at or near its peak (Lucas and Southgate 2012). World aquaculture
production of fish accounted for 44.1% of total production from capture fisheries and
aquaculture in 2014 (FAO 2016).

Confining organisms in aquaculture systems (e.g. ponds, sea cages and tanks) can
create several stressors including overcrowding, oxygen deficiency, aggression and
nutritional deficiency. Moreover, handling, waste products, unfavorable lighting, salin-
ity and temperature may lead to immune compromise and increase susceptibility to
diseases (Bauer et al. 1973; Lucas and Southgate 2012; Thoney and Hargis 1991).
Many disease problems occur in aquaculture and the aquarium industry including
viral, bacterial, fungal and parasitic diseases (Whittington and Chisholm 2008; Woo
and Gregory 2014; Woo 2006). However, metazoan ectoparasites, especially monoge-
neans, often cause considerably more significant losses in finfish aquaculture (Ernst
et al. 2002; Shinn et al. 2015). In Australia, Neobenedenia sp. caused outbreak in the
Hinchinbrook Channel in 2000 resulting in mass mortality (fifty tonnes) of Barra-
mundi, Lates calcarifer, worth AU $500,000 (Deveney et al. 2001). In 2011,
Neobenedenia sp. was associated with a disease outbreak of wild Barramundi in
Gladstone, Horbour, causing the red and cloudy eyes, skin discolouration, loss of
scales, skin damage and lesions (Poiner et al. 2012). The data on economic impacts of
aquatic parasites on global finfish production conducted by Shinn et al. (2015)
revealed that monogenean parasites contributed significantly for production loss and
the economic loss for aquaculture sector in many countries. For example, N. melleni
was reported to cause 40% mortality for Cobia (Rachycentron canadum) cultured in
Taiwan in 2001 and the equivalent production loss was estimated 284 million tons. In
2003, two ectoparasites Benedenia seriolae and Zeuxapta seriolae caused massive
mortalities (39 million tons) for Greater amberjack (Seriola dumerili). In Japan, the
funding for controlling Benedenia seriolae infecting the yellowtail (Seriola
quinqueradiata) in 2001 accounted for more than 20% value of total fish production
(33,637 million tons or $214 million). Currently, Neobenedenia melleni caused high
mortality for this fish and this country has spent over $200 million for control and
management this disease (Shinn et al. 2015).

Monogeneans are common ectoparasitic flatworms of marine, brackish and freshwater
fishes and are the most diverse ectoparasites of fishes (Buchmann and Bresciani 2006;
Whittington and Chisholm 2008). Monogeneans generally live on the external surfaces or
body surfaces such as the skin, fins, head, gills and eyes as well as oral and branchial cavities
(Whittington and Chisholm 2008; Figs. 1 and 2).

Although some monogenean species live in internal sites with openings to the exterior
(urogenital system), very few species infect the digestive tract, heart, kidneys or blood vessels.
The haptor is the main organ that monogeneans use to attach to the fish and is the main
morphological feature of monogeneans to distinguish this class from their wholly parasitic
flatworm relatives, the cestodes and digeneans.Monogeneans are classified into two subclasses:
Monopisthocotylea and Polyopisthocotylea (Fig. 3; Whittington and Chisholm 2008).

The division into two subclasses is primarily based on microhabitat, diet, parasite mobility
and haptor morphology. Monopisthocotyleans are highly mobile and readily move across
epithelial surfaces, feeding on epithelial cells and mucus (Whittington 2005), while
polyopisthocotyleans tend to infect fish gills, consume a diet of blood and generally do not
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move across large distances, especially in the adult phase (Hayward 2005). There are more
than 3500 monogenean species currently described including approximately 1000 marine
polyopisthocotylean species (Hayward 2005) and 2500 monopisthocotylean species
(Whittington 2005). Monogeneans exhibit a direct life cycle, meaning that only a single host
species is required to complete the life cycle. Consequently, monogeneans are widespread in
aquaculture, including closed, semi-closed and open systems. However, the potential for

Fig. 1 Monogenean Benedenia seriolae (Capsalidae) infecting on skin of yellowtail (Seriola quinqueradiata). a
High density of B. seriolae infecting fish. b Affected fish with erosion and haemorrhage on skin. c Adult
B. seriolae separated from affected fish and immersed in freshwater

Fig. 2 Monogenean Neobenedenia sp. (Capsalidae) infecting on skin and eyes of Barramundi (Lates calcarifer).
a High density of Neobenedenia sp. infecting fish. b Affected fish with erosion and haemorrhage on skin and
broken in the eyes. c Adult Neobenedenia sp. separated from affected fish and immersed in freshwater
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expansion of our knowledge about monogeneans is truly in the future because almost
monogeneans investigated up to morphology levels and many others still be lack of repro-
ductive characteristics. Moreover, only small percentage of monogeneans had been investi-
gated, for example, only in the Southeast Asian, 8% of monogenean species are known (Lim
1998). Consequently, many new species await discovery and description.

Fig. 3 Morphology of some monogeneans adapted from Whittington and Chisholm 2008; Monopisthocotylea
(a–f): a Benedenia seriolae (Capsalidae), b Haliotrema abaddon (dactylogyridae), c Diplectanum aequans
(Diplectanidae), d Gyrodactylus salaris (Gyrodactylidae), e Dermophthirius sp. (Microbothriidae), f
Dendromonocotyle sp. (Monocotylidae); Polyopisthocotylea (g, h): g Neoheterobothrium hirame and h Zeuxapta
seriolae (Heterraxinidae)
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This review will examine mechanisms of reproduction of monogeneans infecting fish,
factors effects to reproduction and current methods used to manage epizootics to facilitate
effective management for aquaculture in the future.

Reproduction strategies

Monogeneans are hermaphroditic, with individual worms possessing both male and female
compulatory organs (Whittington and Chisholm 2008). The direct life cycle of monogeneans
is the most important characteristic for the fast development of outbreaks in aquaculture.
Various reproductive strategies have been observed in monogeneans including oviparity,
viviparity and self-fertilisation (Buchmann and Bresciani 2006; Buchmann and Uldal 1997;
Hoai and Hutson 2014; Ogawa 2002; Whittington and Chisholm 2008). Most monogeneans
are oviparous, releasing a large number of eggs into aquatic environment (Fig. 4; Table 1)
while a few species are viviparous (Fig. 5; Table 1), in which adults can give birth to live
young and several generations can occur within an individual parasite (Whittington and
Chisholm 2008). Self-fertilisation is a strategy commonly seen in parasitic platyhelminths
where low parasite burdens occur in host populations or where there may be a high frequency
of single parasite infection (Haag et al. 1999; Jackson and Tinsley 1988; Stunkard 1957). At
least four species of monogeneans in the bladders of amphibians and one infecting fish are
capable of producing viable eggs in isolation (Combes 1972; Hoai and Hutson 2014; Jackson
and Tinsley 1988; Tinsley and Owen 1975). Whittington and Horton (1996) observed the
penis of one N. melleni lodged in its own uterus. Self-insemination has been observed in live
specimens of Neobenedenia girellae (Ogawa et al. 2014) and Heterobothrium okamotoi

Fig. 4 Oviparity. Life cycle of Benedenia seriolae (Monopisthocotylea) (A) and Zeuxapta seriolae
(Polyopishthocotylea) (B). Eggs (e) hatch to release oncomiracidium (o). Eggs may tangle on filamentous or
leafy algae (C). Adapted from Whittington and Chisholm (2008)
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(Monogenea: Diclidophoridae) (Ogawa 2002). Furthermore, Ogawa et al.(2014) suggested
that self-insemination in N. girellae may involve passage of sperm through the tegument from
externally attached spermatophores. While the specific mechanism of self-insemination was
not determined, Hoai and Hutson (2014) provided the first experimental evidence that a
notorious fish monogenean, Neobenedenia sp., can produce viable eggs in isolation for three
consecutive generations.

Fecundity

Parasites that exhibit high fecundity increase the likelihood of offspring successfully locating
and infecting a new host. A large number of eggs can be produced by oviparous monogeneans
which hatch into free-swimming larvae (oncomiracidia) and heavy infections can lead to mass
mortalities (Buchmann and Bresciani 2006; Whittington and Chisholm 2008). Neobenedenia
sp., a marine capsalid monogeneans of critical concern to aquaculture, which was demonstrat-
ed to produce viable eggs in isolation for three consecutive generations and single worm laid
approximately 3300 embryonated eggs over 17 days (Hoai and Hutson 2014). Neobenedenia
girellae laid a mean of 35.4 eggs/h (Bondad-Reantaso et al. 1995). The daily egg laying rate
per worm of Neoheterobothrium hirame could reach to 781 eggs at 20 °C (Tsutsumi et al.
2002). Zeuxapta seriolae from the gills of yellowtail kingfish (Seriola lalandi) in South
Australia laid 803 eggs/day. Daily output of the monogenean Heterobothrium okamotoi
infected tiger puffer throughout the observation period being 51.2–362 egg/parasite. Egg
production of Discocotyle sagittata (Monogenea) infecting rainbow trout was 12
eggs/worm/day at 18 °C (Gannicott and Tinsley 1998). The capsalid monogenean Benedenia
seriolae, a skin parasite of the yellowtail, Seriola quinqueradiata, laid 27 eggs in 1 h at 20 °C

Fig. 5 Viviparity. Diagrammatic representation of viviparity in the Gyrodactylidae. The embryo (E) inside
individual (A) grows and develops an embryo inside it (E1). Adapted from Whittington and Chisholm (2008)

Aquaculture International (2020) 28:421–447432
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(Kearn et al. 1992a). Egg production in the monogenean Entobdella soleae increases as adult
parasites grow and can reach 60 eggs per day (Kearn 1985). Therefore, the knowledge of
specific species’ reproductive biology is crucial to inform integrated strategic parasite man-
agement in aquaculture.

For viviparous monogeneans, Gyrodactylids represent one of the most diverse and wide-
spread taxons of mongenoidea with Gyrodactylus including 402 species worldwide and
parasizing fishes representing 19 teleost orders (Bakke et al. 2002). Although study on the
reproduction of viviparous parasites are inadequate, a study demonstrated that during live
cycle of the viviparous ectoparasite, Gyrodactylus bullatarudis, infecting reared guppies
(Poecilia reticulata), three generations may be represented in one worm and the first daughter
can be born within 24 h of the birth of the parent, and six million offspring can be produced in
just 4 weeks from the parent (Scott 1982). Moreover, viviparous Gyrodactylids are found in
freshwater, brackish water and marine environments and also occur on some cephalopods,
crustaceans and amphibians. Therefore, reproduction strategies of viviparous parasites may
extremely varies.

Egg morphology and distribution

Egg morphology from the diversity of oviparous monogeneans differs considerably between
species. Eggs can be spherical, oval, ovoid, prolate spheroids, fusiform or tetrahedral. For
instance, Benedenia sp. and Neobenedenia sp. produce tetrahedral eggs bearing long filamen-
tous threads 2–4 mm (Kearn et al. 1992b). Eggs are non-motile and follow diffusion laws.
However, the filamentous thread may easily to attach to substrate in aquaria or aquatic habitats
(Deveney et al. 2001; Ernst and Whittington 1996). Other species, such as Heterobothrium
okamotoi and Neoheterobothrium hirame, tend to produce eggs with short or long extensions
(Ogawa 2011). Eggs may be laid singly or may be tethered together in bundles, strings or
chains (Kearn 1986; Ogawa 2002; Ogawa et al. 2005; Whittington and Kearn 1988). In most
species, eggs will embryonate and hatch releasing ciliated larvae while others release non-
ciliated (MacDonald and Llewellyn 1980).

Although most adult monogeneans tend to shed their eggs directly into the water column,
there are some rare exceptions in which parasites and eggs have special strategies or charac-
teristics to enhance survival (Whittington 2005). For instance, adult Acanthocotyle retains their
eggs outside the body until they hatch, while a new Benedenia Species (Monogenea:
Capsalidae) from Diagramma labiosum (Perciformes: Haemulidae) attaches its eggs to host
tissue (Whittington and Deveney 2011).Monocotyle multiparous can store eggs inside its body
until the eggs hatch internally (Whittington and Chisholm 2008).

Egg laying rhythms

Parasite egg–laying rhythms could be predator avoidance behaviour and could also align with
temporal host behaviours. The egg laying rhythm of Diplozoon homoion gracile (Monogenea:
Diplozoidae), a gill parasite of southern barbel, Barbus meridionalis, is also nocturnal
(Macdonald and Jones 1978). Similarly, Mooney et al. (2008) found that Heteraxine
heterocerca (Monogenea: Heteraxinidae) a gill parasite of Japanese yellowtail, Seriola
quinqueradiata, laid eggs continuously, but more eggs (72.9%) were laid during periods of
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darkness, with the majority of eggs released during the first 3-h periods immediately after dark.
Alternatively, some monogenean species store their eggs in utero until releasing at a specific
time of day (Mooney et al. 2006, 2008; Poddubnaya et al. 2017; Tinsley 2017). Neobenedenia
sp. laid eggs continuously, but egg production increased in periods of darkness (64.3%) (Hoai
and Hutson 2014).

Egg hatching strategies

The free-swimming monogenean larvae phase (larvae = oncomiracidia) are typically
short lived (24 to 48 h) (Militz et al. 2014; Whittington and Chisholm 2008;
Whittington and Kearn 2011), and normally less than 24 h at higher temperatures
(Buchmann and Bresciani 2006; Glennon et al. 2006), excepted for Heterobothrium
okamotoi larvae (4–9 days) (Ogawa 1998). Larvae that successfully locate a host will
attach and shed their ciliated cells, whereupon they develop into the adult stage.
Swimming speed of most ciliated larvae is approximately 4 mm/s, and they display
specific behaviours such as phototaxis, geotaxis, rheotaxis and chemotaxis
(Whittington et al. 1999). Hatching rhythms are crucial for infection success because
this could increase the chances of larvae contacting a specific host in situation of
short-time survival, environmental condition which is related to host behaviour and
physiology can also contribute to hatching strategies of monogenean eggs (Ernst and
Whittington 1996; Whittington and Ernst 2002). Different egg hatching strategies,
such as spontaneous hatching, major hatching in darkness or major hatching in light,
have been identified in several studies. For example, Whittington and Kearn (1986)
found that eggs of Rajonchocotyle emarginata from the gills of Raja spp. (Rajidae)
hatch spontaneously. The majority of oncomiracidia (81%) emerged from eggs of
Neobenedenia sp. in the first 3 h of light (Hoai and Hutson 2014). Discocotyle sagittata
displays a clearly defined nocturnal egg hatching rhythm and incubated eggs in alternating
12-h periods of light and darkness at 13 °C hatched mainly within the first 2 h of darkness
(Whittington 1987). Host behaviour and physiology may also have a vital role in the egg
hatching process. For example, mucus extract from fish hosts has been observed to act as an
effective hatching stimulus for several species (Kearn 1974b; Macdonald 1974). Kearn (1973)
had investigated that embryonated eggs of the sole skin parasite Entobdella soleae exposed to
an artificial day/night cycle fully embryonated eggwill hatch spontaneously but larvae emerged
in pulses, not continuously, corresponding to the first 2 or 3 h after ‘dawn’ on each day. This
periodicity is significant because sole (Solea solea) is nocturnally active, feeding mainly on
bottom-dwelling polychaetes, and spending most daylight hours partly buried in sediment.
Hexabothrium appendiculatum, which infects Scyliorhinus canicula (Scyliorhinidae), hatch
only under the stimulation of host skin secretions (Whittington 1987). Similarly,
Squalonchocotyle torpedinis from Torpedo marmorata (Torpedinidae) hatches in the presence
of host gill tissue (Euzet and Raibaut 1960; Glennon et al. 2006). However, the egg of
Neonchocotyle pastinacae from the gills ofDasyatis pastinaca (Dasyatidae) hatches only when
mechanically disturbed (Ktari and Maillard 1972). It is generally assumed that hatching
rhythms of monogeneans have adaptive value related to host behaviour. However, in some
case, it has been demonstrated that predation onmonogenean larvae, especially by filter-feeding
invertebrates, may also influence the time of hatching (Ernst and Whittington 1996;
Whittington and Kearn 1986).
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Factors affected on live cycle of monogeneans

For many monogenean species, reproductive biology parameters are poorly studied or
completely unknown. Compounding this is the huge diversity of monogeneans and their
various reproductive strategies, so it is difficult to make generalisations representative of the
majority of monogenean species and their host interactions (Whittington and Chisholm 2008).
For most monogeneans, the rate of development (embryonation period, larva longevity, age at
sexual maturity and adult life span) is influenced by environmental factors such as water
temperature, light intensity and salinity or host species (Bauer et al. 1973; Buchmann and
Bresciani 2006; Gannicott and Tinsley 1997).

Temperature

Low water temperatures result in slow development of eggs and parasites than that at higher
temperatures. For example, Cone and Burt (1981) demonstrated that Urocleidus adspectus
(Monopisthocotylea) is unable to lay eggs at 4 °C, and larvae are mostly absent in winter fish
samples of the host fish, yellow perch. However, when water temperature increased seasonally,
egg laying activities resumed. Hirazawa et al. (2010) found that the life span of Neobenedenia
girellae after larvae attachment to the host amberjack Seriola dumerili (Carangidae) was
shorter at increased water temperatures. Water temperatures also strongly influence egg
development, which can impact the time taken for a monogenean to complete its life cycle.
In an investigation by Ernst et al. (2005), egg embryonation period of Benedenia sp. was 5
days at 28 °C and 16 days at 14 °C. Similarly, for B. seriolae infecting Seriola lalandi in New
Zealand, egg hatching peaked at 22, 11 and 9 days at 13, 17.5 and 21 °C, respectively.
Therefore, egg embyronation period is shorter for these parasite species in warmer water
temperatures. Age at sexual maturity is also highly influenced by the water temperature and
may differ between host species and locality. In general, parasites often reach sexual maturity
earlier at higher temperatures. For example, Tubbs et al. (2005) reported that B. seriolae
attained sexual maturity at 48, 25 and 20 days at 13, 18 and 21 °C, respectively, on S. lalandi.
Brazenor and Hutson (2015) demonstrated that the life cycle of Neobenedenia sp. was faster in
warm conditions compared with cooler conditions (10–13 days at 26–32 °C compared with
15–16 days at 22–24 °C).

Light intensity

Light intensity is one of the factors influence the egg hatching process, creating hatching
rhythms which may increase the chances of larvae contacting a specific host and minimise
predation on monogeneans by other organisms, especially filter feeders (Euzet and Raibaut
1960; Kearn 1974a). This is crucial for infection success because free-swimming
oncomiracidia are typically short lived (24 to 48 h); thus, hatching rhythms could maximise
their chances of finding a host (Tsutsumi et al. 2002; Ktari and Maillard 1972). Kearn (1963)
reported that Entobdella soleae egg hatching is stimulated by illumination after a period of
darkness. Similarly, rapid hatching of eggs lay from the monogenean Entobdella diadema was
found to induce by light intensity reduction (Kearn 1982). The eggs of the polyopisthocotylean
monogenean Plectanocotyle gurnardi Llewellyn from the gills of gurnards (Triglidae) develop
and hatch readily might be the consequence of inadvertent shadowing (Whittington and Kearn
1989). Gannicott and Tinsley (1997) observed the egg hatching in the monogenean gill
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parasite Discocotyle sagittata from the rainbow trout (Oncorhynchus mykiss) revealed that
Discocotyle sagittata displays a clearly defined nocturnal egg hatching rhythm and the
majority of larvae hatched within the first 2 h of darkness. Mooney et al. (2008) also reported
that 45.4 % of egg production of Heteraxine heterocerca and Benedenia seriolae occurred
during the first 3-h period following darkness. In contract, hatching rhythms have been
documented in other marine monogeneans in the first few hours of light such as Entobdella
solea (Kearn 1973), Diclidophora spp. (Macdonald 1975) and Neobenedenia sp. (Hoai and
Hutson 2014). Other species exhibit more complicated rhythms (see Macdonald and Jones
1978; Euzet and Raibaut 1960; Hirazawa et al. 2010; Ernst et al. 2005).

Salinity

The influence of salinity on hatching rate and larval development of a variety of monogenean
parasites has also been investigated. Salinities higher than 50‰ and lower than 15‰ result in
limited or no egg hatching for marine monogeneans (Ernst et al. 2005). Salinities between 0
and 5‰ caused 100% embryo mortality in the microcotylid Polylabroides multispinosuss,
although no mortality was observed between 10 and 20‰ salinity (Diggles et al. 1993). The
decreases of salinity reduced hatching success and retarded larval development and low
salinities (0–6.7 ppt) were obviously affected to development of embryos of Heterobothrium
okamotoi and Heterobothrium ecuadori, often resulted in apparently inactive or no hatching of
eggs, while the hatching time ranged from 7 to 10 days in standard seawater conditions (35‰
salinity) at 23 ± 1 °C for Heterobothrium ecuadori (Grano-Maldonado et al. 2015; Ogawa
1998). Some other studies have reported that egg hatching is disrupted in 0‰ salinity for a
number of monogenean species (Balasuriya and Leong 1995; Diggles et al. 1993; Mueller
et al. 1992). The egg hatching rates for the monogenean Neobenedenia girellae at 8‰ and
17‰ salinity were found to be significantly lower than that observed at 34‰ salinity (Umeda
and Hirazawa 2004). Brazenor and Hutson (2015) demonstrated that Warm seawater and high
saline conditions (24–32 °C, 35–40‰) improved egg hatching success, reduced time to sexual
maturity and resulted in parasites reaching sexual maturity at a larger size (at 30–32 °C)
compared with cooler conditions (22 °C). In contrast, cool, hypersaline conditions (22 °C,
40‰) increased oncomiracidia longevity and infection success. Experiments with the
oncomiracidia of the diclidophorid Diclidophora denticulata demonstrated that exposure to
low salinity resulted in slowed movements after 15 min and death after 1 h (Frankland 1955).
Exposure of the oncomiracidia of H. okamotoi to 0‰ salinity for 20 min resulted in death
(Ogawa 1998). These results suggest a lack of osmoregulation capability in this ciliated larva,
which is consistent with an organism’s survival depending on the biology of the species or
environmental variables (Ernst et al. 2005; Shirakashi et al. 2010). Although the free-
swimming period is usually short, further studies on swimming activity are essential to
determine the factors responsible for interfering with this mechanism in low-salinity environ-
ments. Typically, a 40–50 ppt saltwater bath or freshwater bath for approximately 5 min is used
to rid marine fish of attached monogeneans (Thoney and Hargis 1991).

Host species

In addition, several studies have demonstrated that the rate development of parasites can be
different between host species, influencing generation time, age at sexual maturity as well as
size of the adult parasite. For example, Hirayama et al. (2009) reported that Neobenedenia
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girellae grow and reach sexual maturity faster on amberjack Seriola dumerili compared with
yellowtail Seriola quinqueradiata or Paralichthys olivaceus. As a result, a relatively larger
number of eggs are laid by parasites infecting S. dumerili (Ohno et al. 2009). Furthermore,
while Kearn et al. (1992b) reported that B. seriolae reached sexual maturity on yellowtail
Seriola quinqueradiata after 14 days at 22 °C, Tubbs et al. (2005) found parasites were
reaching maturity at 20 days at 21 °C on S. lalandi in New Zealand. These studies demonstrate
that generation time of monogeneans may differ in different environmental conditions, hosts
and localities.

Treatments of monogeneans

Limited knowledge on the reproductive strategies of Monogeneas is a considerable barrier for
disease protection. The effects of water conditions on each phase in the life cycle result in many
challenges for management of monogenean outbreaks. There are no methods to prevent mono-
genean infections; most allow only temporary respite by removing parasites, and none provide
any protection against immediate reinfection (Whittington 2012). Culture activities in aquaculture
may have a vital role in whether the disease outbreaks occur because stressed fish tend to have
lowered resistance to monogenean infections (Whittington and Chisholm 2008). As a result,
reducing stressors to fish such as reducing stocking densities and ensuring good water quality
should be initial steps to manage monogenean proliferation. Potential treatment methods for fish
infected bymonogeneans can be divided into fourmajor groups includingmechanical, biological,
chemical and eggs treatments (Cowell et al. 1993; Do Thi Hoa 2007; Whittington 2012).

Mechanical control

Removing eggs from culture systems could effectively reduce infections. This can potentially
be achieved by filtration of inflow and outflow water in recirculation systems (Whittington and
Chisholm 2008). Regular cleaning or replacement of badly fouled sea cages may also
significantly reduce the number of monogenean eggs retained in the system (Ernst and
Whittington 1996; Glennon et al. 2006). However, frequent net changes may not be feasible
in all circumstances and the rapid development of eggs in high temperatures may lead to rapid
recontamination of a location in a short time (Ernst and Whittington 1996; Ernst et al. 2005;
Lin et al. 2008). Reducing egg loads by placing additional fouling substrates within sea cages
and removing them prior to hatching may alleviate the number of larvae in systems (Ogawa
2002; Ogawa et al. 2006). However, the effectiveness of this approach has not been examined.
This practice could perform in experimental work or closed systems, but maybe impractical on
a commercial scale.

Biological control

Biological control of monogeneans using cleaner organisms could be a cost-effective alterna-
tive compared with labour-intensive management methods (Cowell et al. 1993; Whittington
and Chisholm 2008). Cleaner fish species are not particularly selective in their food choice,
and they readily ingest both adult and larval monogeneans (Buchmann and Bresciani 2006).
Various examples using cleaner fish to reduce the effects of monogeneans in aquaculture have
been reported (Grutter et al. 2002; Militz and Hutson 2015; Vaughan et al. 2017). For instance,
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the cleaning goby, Gobiosoma genie, significantly reduced infections of Neobenedenia melleni
on cultured Florida red tilapia (Cowell et al. 1993). Grutter et al. (2002) subjected the capsalid
monogenean, Benedenia lolo, infecting skin of the thick-lipped wrasse (Hemigymnus
melapterus) to predation by the cleaner fish Labroides dimidiatus. These authors found that
cleaner fish selectively removed larger monogeneans. Copepods and other crustaceans can
also reduce monogenean populations by feeding on oncomiracidia in recirculating systems
(Buchmann and Bresciani 2006). Militz and Hutson (2015) demonstrated that cleaner shrimp,
Lysmata amboinensis, consume eggs and larvae of a harmful monogenean parasite,
Neobenedenia sp., in aquaculture. For example, shrimp consumed parasite eggs under diurnal
(63%) and nocturnal (14%) conditions as well as infectious larvae (oncomiracidia) diurnally
(26%). The cleaner shrimp also reduced oncomiracidia infection success of host fish by half
compared with controls.

Chemical control

Chemical treatments can only provide short-term control as they are only effective on attached
parasites stages (Ernst et al. 2005). As a result, coordinated treatments are required to prevent
fecund adult parasites recontaminating an area following an initial treatment. Otherwise, the
untreated eggs and larvae can rapidly reinfect treated fish, resulting in continuous cycles of
treatment (Ernst et al. 2005). Understanding the parasite’s life cycle parameters and the
influences from environmental factors improves the effectiveness of disease management.

Numerous chemicals have been trialled to manage monogenean infections with varying
success. The most widely used are copper sulphate, formaldehyde, sodium chloride, hydrogen
peroxide and other oral treatments (Buchmann and Kristensson 2003; Chisholm and
Whittington 2002; Ellis and Watanabe 1993; Janse and Borgsteede 2003; Kim and Choi
1998; Rach et al. 2000). However, the most important consideration when using chemicals is
the toxicity to the host and the parasite which is dependent on the species as well as biotic and
abiotic conditions (Woo 2006). Therefore, extreme caution must be taken and each parasite-
host system should be examined specifically prior to using a treatment on a large scale.

Formalin is a widely applied and effective method to remove monogeneans from fish skin,
gills and tanks in closed systems. The applied concentrations vary between 25-500 ppm
depending on the duration of treatment (Thoney and Hargis 1991). It can be used to bath fish
for a short time at high concentrations (30-100 ppm) or at low concentrations (25-60 ppm) for
extended periods. However, the use of formalin must be considered carefully because it can be
stressful to fish and harmful to humans.

Hydrogen peroxide is a strong oxidizing agent which is used in bathing treatments to
effectively eliminate monogeneans (Rach et al. 1997). Various concentrations and treatment
durations have been practiced in the management of monogeneans in aquaculture (Table 2).
This chemical has no food safety issues and has been approved for use as a bath treatment in
several countries. Hydrogen peroxide can also be administered in the form of sodium
percarbonate, where hydrogen peroxide is released more slowly and has a prolonged action
in the water. However, high concentrations of hydrogen peroxide can be toxic to fish
(Hirazawa et al. 2017; Roque et al. 2010). As a result, treatment duration and concentration
should be tested carefully (Kiemer and Black 1997). Furthermore, depending on season and
temperature, the toxicity of hydrogen peroxide can be varied. Rach et al. (1997) demonstrated
that toxicity of hydrogen peroxide is higher at higher temperatures and suggested that fish
farms should supply additional oxygenation when treating in summer to reduce fish mortality.
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Mebendazole and praziquantel are two main drugs widely used to treat diseases caused by
monogeneans. Mebendazole-based compounds bind to tubulin monomers in the parasite to
destroy microtubules in cytoskeletons and cell transport functions (Buchmann and Bresciani
2006; Whittington and Chisholm 2008). This chemical group, including albendazole,
fenbendazole, flubendazole, luxabendazonle, mebendazole, oxfendazole, parbendazole,
tricladbendazole and thiabendazole, has been trialled in previous studies to against
monogeneans. Mebendazole was first used by Goven and Amend (1982) to treat Gyrodactylus
elegans from goldfish, in which a 24-h treatment of 0.01mg/l mebendazole effectively removed
all attached parasites. Buchmann and Bjerregaard (1990) also used this drug at 1 ppm to bath
the European eel, Anguilla anguilla, infected with Pseudodactylogyrus bini within 72 h of
treatment, infections were effectively eradicated. However, some parasite species are not
affected by this chemical (Katharios et al. 2006) and the dosage required to effectively treat
against a wide range of parasites is unknown (Whittington and Chisholm 2008). In addition,
studies were also indicated that after prolonged exposure, monogeneans become resistant to
mebendazole (Buchmann et al. 1992) and caused gill injury for fish (Führ et al. 2012).
Praziquantel is a drug of choice in the control of schistosome and cestode infections in humans
and animals. And in the 1970s, it was demonstrated to be effective in eradicating monogeneans
on fish. As a result, this drug has wide application against monogeneans by bathing fish and
also in oral treatments in marine and freshwater fish culture (Table 3).

Egg treatments

The biological and chemical treatments presented above are largely focused on killing adult
parasites and there is limited information on treatments that effectively kill eggs. Several
experiments have been conducted successfully to treat eggs of monogeneans (Fajer-Avila et al.
2007; Umeda et al. 2006). However, it is difficult to apply into field because the accumulation
and distribution of monogenean eggs in ponds, cage culture, was overestimated and could not

Table 2 Hydrogen peroxide treatment for monogenean infection

Concentrations Treatment
duration

Parasites/host Effectiveness References

< 560 mg/l 30 min every
2 days

Gyrodactylus
(Monopisthocotylea)/rainbow

trout

Removes all
parasites

(Rach et al. 2000)

80 ml/l 18 h G. derjavini/rainbow trout Removes all
parasites

(Buchmann and
Kristensson 2003)

300 ppm 10 min Zeuxapta seriolae
(Polyopisthocotylea)/yellowtail

kingfish

Removes all
parasites

(Mansell et al. 2005)

50 mg/l 2–7 days Gyrodactylus salmonis/rainbow
trout

99% reduction of
parasites

(Bowker et al. 2012)

570 mg/l 4 min Ligictaluridus
floridanus/catfish
(Ictalurus punctatus,
Rafinesque)

Removes all
parasites

(Benavides-González
et al. 2015)

75 ppm 30 min Benedenia seriolae,
Neobenedenia
girellae, Zeuxapta
japonica/amberjack
(Seriola dumerili)

Removes all
parasites

(Hirazawa et al. 2016)
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control (Shirakashi and Hirano 2015). In addition, Sharp et al. (2004) and Ernst et al. (2005)
demonstrated that desiccation for 3 min to 3 h is an effective method to prevent egg hatching,
but this strategy is only feasible in closed facilities and ponds that can be dried out over
extended periods.

Conclusion

Monogeneans are flatworms (Platyhelminthes) with representatives in freshwater,
brackish and marine habitats. Monogeneas are also highly diverse, and the vast
majority of species are ectoparasitic. They all have a direct life cycle with a variety
of reproductive strategies including oviparity, viviparity and self-fertilisation. These
are a prerequisite for the fast development of outbreaks. Monogenean biology such as
reproduction, generation time, fecundity and egg laying patterns are mostly unknown
or limited and become the knowledge gap and challenges to control and manage this
disease in wild and farmed fish. Consequently, the severe impact of monogeneans in
both cultured and wild fish populations are apparent and need more attention to

Table 3 Praziquantel treatments for monogeneans

Host Parasite Treatment method dosage/
duration

Effectiveness Reference

Teleosts and
elasmobranchs

‘Skin’ parasites Bath; 10–20 mg/l; 1–3 h Remove
pathogens

(Thoney 1990;
Thoney and
Hargis 1991)

Rockfish Microcotyle
sebastis

Bath 100 ppm for
4 min

Remove all
specimens

(Kim and Cho
2000)

The Rhinobatos typus Monogenean Bath; 5 mg/l; 40 h Remove all gill
and nasal
monogeneans

(Chisholm and
Whittington
2002)

Yellowtail kingfish Benedenia seriolae
and Zeuxapta
seriolae

Bath, 2.5 ppm,
24–48 h

Remove all
parasites

(Sharp et al.
2004)

Benedenia seriolae
and Zeuxapta
seriolae

70 mg kg−1 BW for
3 days

81.6 and 99.4 %
efficacy,
respectively

(Forwood et al.
2016)

Rockfish Microcotyle
sebastis

Oral 200 mg/kg BW Lowered (Kim et al. 1998)

Rockfish Microcotyle
sebastis

Oral; combination of
praziquantel and
cimetidine; 200 mg/kg

Increase ability
against
monogeneans

(Kim et al. 2001)

Spotted eagle ray Dendromonocotyle
torosa

Oral 10–40 mg/kg BM No effect (Janse and
Borgsteede
2003)

Clemacotyle
australis

25 mg/l bath Remove all
parasites

(Janse and
Borgsteede
2003)

Silver perch Bidyanus
bidyanus (Mitchell)

Lepidotrema
bidyana Murray

Oral 10 mg/l for
48 h

75 mg/ kg

99% efficacy
79% efficacy

(Forwood et al.
2013)

Spotted halibut
Verasper variegatus
(Pleuronectidae)

40 mg/kg BW/day
for 11 days

Significant
reduce
parasites

(Hirazawa et al.
2004)
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mitigate the outbreaks and economic loss. Chemical and drug control efforts have
been widely used. However, due to chemical and drug legislation and also their
environmentally unfriendly effects, many of these are not allowed in many countries.
Thus, integrated control should be encouraged to prevent monogenean outbreaks using
feasible methods such as mechanical removal of eggs and larvae by filtration,
reducing entrapment of eggs and larvae in a stationary production system and using
of cleaner fish prior to finally using strategic treatments with chemicals or
anthelmintics.

Future research efforts would be best to focus on the fundamental biology of these
fascinating parasites using live specimens on live hosts. These will assist in revealing data
of intrinsic value to fill up the knowledge gap and also provide critical suggestions for effective
and efficient parasite management in aquaculture. Effective surveys and actions to prevent
introduction of monogeneans into new host populations, the ecological and physiological
studies on the parasite and host-parasite interactions may both contribute to providing new
ways to control diseases caused by monogeneans in the future. Finally, antiparasitic control
programmes should be encouraged and funding provided to find out new effective and
environmentally friendly solutions to prevent the disease outbreaks caused by parasitic
flatworms.
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