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ABSTRACT 

Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa (Xtu), is an 

important disease of wheat worldwide. The best way to control this disease in the field is the use 

of resistant cultivars. Although source of resistance is lacking in wheat, several triticale 

accessions have high levels of resistance. However, resistance in triticale has not be investigated. 

The main objective of this project was to map the BLS-resistance gene in triticale. A high 

density genetic linkage map was constructed in a triticale recombinant inbred line population 

covering all wheat and rye chromosomes. QTL mapping revealed a single locus on the 

chromosome 5R significantly associated with resistance to BLS. The resistance reaction of F1 

hybrids indicated the dominance resistance. This is the first study to map a major resistance gene 

to BLS and will facilitate the introgression of this rye-derived BLS resistance into wheat genome 

through molecular marker-assisted chromosome engineering.  
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GENERAL INTRODUCTION 

Wheat is one of the most important crops in the world, and it serves as the staple food for 

the people in many countries. However, its production can be affected by a number of diseases, 

and bacterial leaf streak (BLS) caused by Xanthomonas translucens is one of them. This disease 

is economically important in many places because the yield losses due to BLS can reach up to 

40% under severe conditions (Forster and Schaad 1988). In recent years, BLS has become 

evident in the upper Midwest regions of the United States including Minnesota, North Dakota, 

and South Dakota (Adhikari et al 2012, Kandel et al. 2012). Because North Dakota is the most 

important state producing hard red spring and durum wheat in US, it is a great need to find ways 

to manage this disease.   

Currently, there are no efficient ways to manage BLS except using clean seeds which 

helps to reduce the disease incidence in the field (Duveiller et al. 1997). Therefore, development 

and deployment of resistant cultivars appears to be the only option to manage this disease. 

Although a number of studies have been carried out to search source of resistant sources in 

wheat, no immune material is found and only partial resistance exists in limited number of lines 

(Tillman et al 1996, Millus et al. 1996, Adhikari et al. 2011). Furthermore, controversial results 

have been obtained for some resistant wheat genotypes from different evaluations (Tillman et al. 

1996, Adhikari et al. 2012). However, a few triticale lines have been shown to highly resistant to 

BLS, and resistance is likely controlled by a single gene (Cunfer and Scolari 1982, Johnson et al. 

1987).  

Because no major resistance gene has been identified in wheat, the resistance gene found 

in these triticale lines will be very useful for developing resistant cultivars and controlling BLS. 

To transfer and utilize the resistance gene from triticale, the genetics and genomic location of 
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resistance gene needs to be determined and the molecular marker linked to the gene needed to be 

identified. Therefore, the objective of my research was to develop a genetic linkage map in a 

triticale population which segregates in the reaction to BLS and determine the genetic locations 

of resistance gene. This research will facilitate the process of developing wheat germplasm with 

high level of resistance to BLS, which in turn can be used in the development of resistant wheat 

cultivars. 
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LITERATURE REVIEW 

Wheat: classification, evolution, and production 

Wheat is a group of grass species that are classified in the genus Triticum. In a broader 

view, they belong to Poaceae family (grass family), a huge family of monocots also containing 

other important cereal crops, such as rice, maize, barley, rye, and millet. The goatgrass species, 

which played important roles in Triticum evolution (see below), are in Aegilops, another genus in 

Poaceae. Because wheat, goatgrass, barley, rye and some other grass species are closely related, 

they are usually collectively called Triticeae, a tribe of grass family (Clayton and Renvoize 

1986). Currently, there are six Triticum species recognized, which are at one of the three 

polyploidy levels (diploid, tetraploid or hexaploid), and either cultivated or grown in nature as 

wild species (Feldman and Levy 2012).  

Wheat is believed to first evolve in the Near East, particularly in Fertile Crescent region 

according to archeological evidences (Matsuoka 2011). It was believed that the earliest 

progenitors of Triticum and Aegilops were evolved from a common diploid ancestor (2n=2x=14) 

(Faris 2014). Research evidences strongly suggest that the evolution of wheat occurred from 

lower to higher polyploidy levels via natural hybridization with Aegilops species followed by 

spontaneous chromosome doubling of hybrids (Tsunewaki 2009, Matsuoka 2011). Studies also 

showed that the cultivated species were derived from their wild relatives at each level through 

domestication along with human civilization (Faris 2014). Two Triticum species are at the 

diploid level (2n=2x=14), including T. monococcum (genome: AA) and T. urartu (AA).  T. 

monococcum has two subspecies: ssp. monococcum (AmAm) and ssp. aegilopoides with the 

former as the cultivated species having non-brittle rachis (Faris 2014). About half a Million 

Years Ago (MYA), T. uratu (AA) hybridized with a goatgrass, A. speltoides (SS) or a close 
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relative thereof which has disappeared, to give rise to the wild tetraploid wheat (AABB), T. 

turgidum ssp. dicoccoides or ssp. araraticum. It is around 10,000 years ago that domestication 

was taken place in wild tetraploid wheat resulting in the formation of the modern cultivated 

tetraploid wheat, such as emmer wheat (T. turgidum ssp. dicoccum) and durum (T. turgidum ssp. 

durum) (Dvorak et al. 1993, Matsuoka 2011, Kihara 1944, McFadden and Sears 1944). 

Hexapliod wheat appeared around 8000 years ago when wild tetraploid wheat crossed with 

another goatgrass A. tauschii (2n=2x=14 DD genome) followed by chromosome doubling 

(Monte et al. 1993, Kihara 1944, McFadden and Sears 1944, Matsuoka 2011). Similarly, the first 

hexaploid wheat underwent mutations and domestication to become the modern cultivated 

hexaploid wheat (T. aestivum, 2n=6x=42, AABBDD) after acquiring non-brittle rachis and free 

threshing traits, also known as common or bread wheat (Faris 2014). Common wheat (T. 

aestivum) and durum (T. turgidum ssp. durum) are two commonly cultivated wheat crops with 

common wheat taking up 95% wheat production worldwide.  

Wheat is one of the major food crops in the world providing one fifth of calorie need for 

the world population. In 2016, the harvested areas and production of wheat in the world were 

above 200 million hectares and 700 million tons, respectively (Economic Research Service, 

USDA, updated on 9/20/2017). There are five major classes of wheat grown in the United States, 

including hard red winter (HRW), hard red spring (HRS), soft red winter (SRW), white and 

durum. Wheat ranks the third among crops cultivated in the United States in term of production. 

In 2016, wheat was cultivated over 50.2 million acres across 42 states in the United States with 

the total production over 820 million bushels, about 8% of world production (Economic 

Research Service, USDA, updated on 8/9/2017).  Wheat is the chief agricultural commodity in 

North Dakota contributing a very important share of economic revenue (~$5-7 billions) for the 
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state. North Dakota produces mainly HRS and durum with a small percentage of HRW. In 2016, 

the harvested acreage and total production of wheat in North Dakota were 7 million acres and 

330 million bushels, respectively, ranking No.1 in the United States (NAAS/ USDA, 2016).  

Triticale: evolution, classification and production 

Triticale (× Triticosecale) is a synthetic hybrid between wheat (Triticum spp.) and rye 

(Secale spp.). Rye is a diploid species (2n=2x=14) and belongs to the grass family Poaceae, tribe 

Triticea and genus Secale (Salamini et al. 2002). Rye is closely related to wheat (Triticum 

aestivum L.) and barley (Hordeum vulgare L.) (Bauer et al. 2017, Bushuk 2001, Crespo-Herrera 

et al. 2017). Rye is a versatile crop and can be used as food grain, a livestock pasture, and green 

manure in crop rotation. Furthermore, rye is a good source of many useful genes for wheat 

breeding regarding disease resistance, higher vigor, and high tolerance to abiotic stresses. The 

useful genes in rye can be transferred into wheat background by using triticale as a bridge and 

then developing wheat-rye chromosome translocation lines (Bushuk 2001, Saulescu et al. 2011, 

Crespo-Herreditas 2017).  

The development of fertile triticale was first reported in 1884 (Carman 1884). However, 

it has not been realized for a long time that the purpose of developing triticale is to combine the 

valuable qualities of wheat and rye, and the triticale has not started gaining popularity until the 

last 50 years (Ammar et al. 2004). Triticale is an amphiploid developed by hybridizing wheat 

and rye species followed by chromosome doubling with colchicine treatment (Ma and Gustafson 

2008). Triticale is either octaploid (2n=56=AABBDDRR) or hexaploid (2n=42= AABBRR) 

dependent on the use of hexaploid wheat (AABBDD) or tetraploid wheat (AABB) during the 

crossing. Although both types of triticale have been successfully developed, hexaploid triticale is 
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cultivated in more widely areas and often used in wheat improvement due to its more genetic 

stability and less numbers of chromosomes to handle (Ammar et al. 2004).   

Triticale is mainly cultivated for animal feeds today, to less degree for human food in the 

regions with less fertile soil and dry climates which are not suitable for wheat. Recently, triticale 

has also been proposed to use as a biomass source for fuel production (Hills et al. 2007, Badea et 

al. 2011). In 2014, the world production of triticale was over 16 million tons, and Poland, 

Germany, Belarus, France and Russia are the leading countries for triticale production (Food and 

Agriculture Organization, USA). In the United States, triticale is usually grown in Southern 

Great Plains and West Coast as a forage crop (Blount et al. 2013). However, diverse triticale 

accessions have been created not for cultivation but for transferring useful genes from rye to 

wheat (Mergoum and Gomez-Macpherson 2004, Zeller and Hsam 1983). 

The disease: bacterial leaf streak (BLS) 

Bacterial leaf streak (BLS) or bacterial blight was first reported on barley in 1917 (Jones 

et al. 1917), and later, it was reported on wheat in Indiana (Smith et al. 1919). The similar 

diseases were then found on a number of other small grain crops including triticale, barley, rye, 

oat as well as some grasses including brome grass (Bamberg 1936, Hagborg 1942, Wallin 1946, 

Fang et al. 1950, Cunfer and Scolari 1982). Recently, it has been identified on genetically distant 

Liliaceae family species including asparagus (Rademaker et al. 2006). These diseases are caused 

by genetically related Xanthomonas bacterial group named as “translucens group” and there are 

different pathovars under this group based on their host range.  Xanthomonas translucens pv. 

undulosa is the causative agent on wheat and triticale (Vauterin et al.1992).  
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Symptoms 

The bacterial pathogen can infect leaves and the spikes causing distinctive symptoms. On 

leaves, the initial symptoms are characteristic of translucent water soaking streaks with several 

centimeters long along and between the leaf veins. Under humid conditions, milky bacterial 

exudates can appear on the water-soaking streaks (McMullen and Adhikari 2011, Milus and 

Chalkley 1994). Later, the streaks become larger and coalesce to form large brown necrotic areas 

(McMullen and Adhikari 2011). When the pathogen infects the spikes, the symptoms appeared 

as dark purple to black lesions on the glume, making the disease to be called black chaff. 

However, black chaff is not easy to differentiate from Stagonospora nodorum glume blotch 

symptoms in the field (McMullen and Adhikari 2011). 

Distribution and economic importance 

Before the BLS was formally reported, it had been noticed in several places in the United 

States (Jones et al. 1917). By 1917, eight states in US had been observed to have BLS on barley. 

Smith et al. (1919) reported the occurrences of wheat BLS in all the wheat states of the Middle 

West. Later, BLS was reported from almost all wheat and barley growing regions in US with 

outbreaks often being occurred in warm and semi-tropic regions (Milus and Mirlohi 1994, 

Tubajika et al. 1999). Recently, wheat BLS has become increasingly evident in the Upper 

Midwest of the United States, including North Dakota, South Dakota, and Minnesota, which is 

likely due to the favorable environmental conditions, buildup of primary inoculum and high 

susceptibility of current major cultivars (Adhikari et al. 2012). Wheat BLS has also reported in 

many other places of the world, and now it is considered to be a major disease of wheat in the 

world (Duvellier et al. 1997). However, in some parts of Western Europe and Australia, the 
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disease has not been observed; therefore, the causal bacterium is recommended as a regulation 

pest for these areas.   

The importance of BLS varies in regions depends on the levels of susceptibility in 

cultivars and environmental conditions. Studies have showed that the yield losses due to BLS 

can range from negligible to as much as 40% (McMullen and Adhikari 2011). Generally, the 

yield loss is correlated with the disease severity on flag leaf where the photosynthesis takes 

place. It was estimated that 50% of diseased leaf area can lead to from 11%-29% yield losses 

dependent on the cultivars tested (Tillman et al. 1999). Under the wet and irrigation conditions, 

highly susceptible could suffer as much as 40% of yield loss (Froster 1982, Froster and Shaad 

1998). Yield losses are usually due to the reduction of grain test weight per spike and/or the 

number of grains per spike (Tillman et al. 1999, Froster 1982, Froster and Shaad 1998). In North 

Dakota, reduction in grain test weight by 10.5% on spring wheat cultivars has been reported 

(Waldron 1923). The disease is also capable of affecting the grain quality by altering protein 

content, which is a problem for the malting barley (Shane et al. 1987). In addition, infection on 

spike may also lead to discoloration of kernels, thus reducing grain quality in wheat and barley 

(McMullen and Adhikari 2011, Shane et al. 1987).  

Epidemiology 

In most areas, the epidemics of BLS have been reported to be sporadic over years and it 

was difficult to connect the climate conditions and other factors to the development of BLS in 

the fields (Tubajika et al. 1998, 1999). Seed has been implicated as the most important primary 

inoculum because the bacterial pathogen is readily detected in the seeds which were harvested 

from infected plants (Boosalis 1952, Timmer et al. 1987, Milus and Mirlohi 1995, Tubajika et al. 

1998, Rashid et al. 2013). However, it was shown that the period of the bacterium surviving in 
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the seeds is short and dependent on the storage conditions, and also the transmission of the 

bacterium from seeds to seedling was relatively low (Milus and Mirlohi 1995, Tubajika et al. 

1998). It was estimated that if the bacterial population is lower than 1,000 colony-forming units 

(CFU) in the seeds, no foliar symptom would be developed in the following seedling plants 

(Duvellier et al. 1997). Although studies have reported that the bacterium can survive on crop 

residues, in the soil and weedy hosts, it is still not well documented that these sources of 

inoculum play an important role in disease (Milus and Mirlohi 1995, Wegulo 2012, Stromberg et 

al. 2000).   

The bacterium enters plant tissues using natural openings, for example, stomata or 

through wounds created by insects, storms and frost damage. The bacterium has been shown to 

have an ice-nucleation activity, which makes plants amiable to frost damage, thus creating 

wounds for the bacterial entry (Kim et al. 1987, Azad and Schaad 1988). It is generally believed 

that warm and humid environmental conditions favor the development of BLS in the fields 

(Duveiller et al. 1997). In a BLS epidemics study, rainfall, temperature and wind speed have 

been found significantly related to disease development at the local scales (Tubajika et al. 1999). 

It was observed that disease is usually severe in the fields under wet or irrigation conditions 

(Froster and Shaad 1988). The exchange of germplasm with infected seeds allows the disease to 

spread to other countries or continents.  

Management of BLS 

Controlling and management of BLS is very difficult or impossible due to the lack of 

effective chemicals. Because infected seeds are the foremost primary inoculum, it is important to 

avoid using infected seeds when planting and using pathogen-free seeds can reduce disease 

incidence (Forster and Schaad 1988, Duveiller et al. 1997). Because the pathogen has been found 
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to survive in residues or soil, it is not enough just to use clean seeds (McMullen and Adhikari 

2011, Mew and Natural 1993). There are several methods that have been developed to detect the 

bacterial pathogen in seeds, such as dilution plating on selective media, and serodiagnostic 

assays (Forster and Schaad 1985, Duveiller 1990, Duveiller and Bragard 1992, Bragard and 

Verhoyen 1993). For dilution plating method, seeds can be washed with a NaCl plus tween 20 

solution, which is then diluted up to 10-3 and spread onto semi selective agar medium (XTS). The 

number of bacterial colony can be counted and calculated as colony forming units (cfu) (Forster 

and Schaad 1985). Duveiller (1990) developed Wilbrink’s boric acid-cephalexin agar (WBC) 

semi-selective medium and showed it was better than XTS for using in dilution planting method. 

Immunofluorescence and dot immunobinding assays were later developed to detect the X. 

translucens pathogens in seeds in a more specific and sensitive way. For this method, the rabbit 

or rat monoclonal antibodies are needed to first generate using a reference Xanthomonas strain 

(Bragard and Verhoyen 1993). The immunology-based method is easier to perform and less time 

consuming than dilution plate analysis (Duveiller and Bragard 1992, Bragard and Verhoyen 

1993).  

If the seeds are detected for the pathogen, several seed treatment methods can be tried to 

eliminate the bacteria from the seeds. Soaking infected seeds with acidified cupric acetate 

solution for 20 minutes has been shown to be an effective way (Schaad et al. 1980, Duveiller 

1990). Fourest et al. (1990) found heating seeds at 70-85 °C for 11 days could be used to 

significantly reduce pathogen in heavily infected barley seeds. However, the efficiency of these 

methods needs to be further tested.  

Antibiotics can effectively inhibit bacterial growth in plate and the application of 

antibiotics in the field helped to reduce the disease in spring wheat, the results were inconsistent 
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(McMullan and Adhikari 2011). Furthermore, using antibiotics is very expensive and impractical 

due to the persistent nature of the pathogen (McMullan and Adhikari 2011, Kandel et al. 2012).  

Mercury-based chemicals have been shown to be quite effective in seed treatment for this 

disease, but these chemicals have been banned since 1970s (Duveiller et al. 1997). There is also 

a minor effect on control the disease from cultural practices such as crop rotation because the 

bacterial pathogen does not survive well in crop debris and soil (Milus and Malhori 1995). 

Therefore, development of resistant genotypes is the most efficient, practical and economical 

way to control BLS (McMullan and Adhikari 2011, Kandel et al. 2012).   

The pathogen 

The causal agent of BLS was first identified in barley by Jones et al. (1917) as a 

bacterium, and later this bacterium was also confirmed to leaf streak on wheat (Smith et al. 

1919). The bacterium is a small, rod shape cell with a single flagellum in the end and actively 

motile as a single cell, but forms a mucous, yellow color colonies on nutrient agar plates. Later, 

the similar bacteria were found to cause leaf streak disease on other cereal crops and grass 

species. Due to the lack of morphological, biochemical difference as well as the overlapping host 

range, classification and taxonomy for these bacteria were very confusing in the history and has 

undergone several major changes (Vauterin et al. 1992). Recently, DNA marker, genome 

sequencing and molecular manipulations have provided powerful tools to classify these bacterial 

strains and investigate bacterial pathogenesis.    

Host range 

The bacterial pathogen was first reported on barley, and then on wheat (Jones et al.1917, 

Smith et al. 1919). However, it was found that the bacterial strains isolated from wheat could 

cause disease on both wheat and barley whereas the strain from barley only caused disease on 



12 

 

barley not on wheat (Smith et al. 1919).  Later, the bacterial pathogens were also isolated from 

other crops, such as triticale, rye, oat, and grass species: timothy, brome grass, quack grass and 

sudan grass (Reddy et al. 1924, Hagborg 1942, Wallin and Reddy 1945, Fang et al. 1947). 

Similarly, some bacterial strains caused disease not only on the host where they were isolated, 

but also on one or more other hosts. Therefore, the bacterial pathogens were given different 

pathovar names based on host (s) they can cause disease (Hagborg 1942, Fang et al. 1947). 

Crossing infection and overlapping host range were also reported after 1950s causing a great 

confusion in bacterial classification and taxonomy (summarized in Vauterin et al. 1992). 

Although some issues still remain in the classification, all bacterial pathogens are currently 

classified in a single species Xanthomonas translucens with different pathovars (Vauterin et al. 

1995, see below). The ‘translucens group’ in this species has three pathovars including 

Xanthomonas translucens. pv. translucens (Xtt) causes BLS only on barley while Xanthomonas 

translucens. pv. undulosa (Xtu) infects barley, wheat, triticale and pv. cerealis (Xtc) causes BLS 

on wheat, barley, rye, oat triticale and bromegrass. X. translucens has another group, known as 

‘graminis group’ which can cause the bacterial wilt on forage and pasture grasses (Vauterin et al. 

1995). Recently, some bacterial strains were isolated from the water-soaking lesions on stems of 

ornamental asparagus tree fern (Asparagus virgatus) and identified as X. t. undulosa (Rademaker 

et al. 2006). These strains were able to infect wheat and barley, and vice-verse, the Xtu strains 

from wheat could also infect asparagus (Rademaker et al. 2006). It is very surprising because the 

host range of X. translucens has been thought to be within Gramineae and Poaceae, but A. 

virgatus belongs to the unrelated Liliaceae family.  

Genetically, host range is determined by two possible sets of genes 1) genes having 

positive functions on pathogenicity and 2) genes recognized by host for avirulence functions 
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(Loper and Kado 1979, Thomashow et al. 1980). In Xanthomonas translucens, the co-inoculation 

of the strain having wide host range strain with the narrow host range strain resulted in a wide 

host range reaction (Waney et al. 1991). This strongly suggested that the system involves 

positive factors allowing some bacteria to infect more hosts, rather than being determined 

avirulence gene-resistance gene interactions. This speculation was further confirmed by the study 

where it was found that gene mutations (loss of gene function) leads to the reduction of host 

range (Waney et al. 1991, Mellano and Cooksey 1988). This was very similar to that in 

Agrobacterium system (Loper and Kado 1979, Thomashow et al 1980).   

Nomenclature history and the current classification 

When the bacterial pathogen was first isolated from barley, it was named as Bacterium 

translucens. Later, the same pathogen was identified from wheat and rye which were named as 

Bacterium translucens var. undulosa and Bacterium translucens var. secalis, respectively (Smith 

et al. 1919, Reddy et al. 1924). Dowson (1939) created the genus of Xanthomonas and ranked X. 

translucens as a species. Hagborg (1942) accepted Xanthomonas translucens species but 

established five forma specialis (f. sp.) based on their pathogenicity on different hosts, including 

f. sp. hordei (barley), f. sp. undulosa (wheat, barley and rye), f. sp. secalis (rye), hordei-avenae 

(barley and oat), and f. sp. cerealis (wheat, barley, rye and oat).  

In the classification and nomenclature of Xanthomonas done by Dye et al. (1980) all 

Xanthomonas species were grouped into a single species X. campestris. The bacteria causing 

BLS in small grains were named as different pathovars of X. campestris, including pv. hordei, 

undulosa, secalis, cerealis and translucens, largely corresponding to f. sp. described by Hagborg 

(1942). However, the newly established pv. translucens was not clearly defined in this 

nomenclature system. The genus of Xanthomonas was later reclassified and the bacteria causing 
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BLS in small grains were placed in the species of X. translucens (Xanthomonas campestris pv. 

hordei, cerealis, secalis, translucens and undulosa), which is commonly known as ‘translucens 

group’ (Vauterin et al. 1992). Later in 1995, a common species name, X. translucens was given 

to all pathovars in ‘translucens group’ (Vauterin et al. 1995). Stead (1989) has done the fatty acid 

fingerprints for 14 Xanthomonas campestris species and it gave rise another group related to 

‘translucens group’ named as ‘graminis group’ which can cause the bacterial wilt on forage and 

pasture grasses. Later in 1992, it was found that the ‘graminis group’ is phylogenetically related 

to ‘translucens group’ (Vauterin et al. 1992). Using pathogenicity test and protein, fatty acid and 

Amplified Fragment Length polymorphism (AFLP) marker analysis, Braggard et al. (1997) 

conducted the classification and grouping the ‘translucens group’ and recognized three true 

biological entities (pv.), including pv. translucens, pv. undulosa, and pv. cerealis. X. t. pv. 

cerealis was not grouped with pv. undulosa because they have distinctive AFLP marker patterns.   

Virulence and host-pathogen interactions 

The overall virulence mechanism of this bacterial pathogen remains largely unknown but 

molecular and genomic tools have started revealing the genes underlying bacterial pathogenesis 

and virulence regarding to X. translucens. As mentioned above, some genes determining the 

wide host range have been identified and are likely to have a function analogous to the host 

specific nodulation genes of Rhizobium (Mellano and Cooksey 1988, Waney et al. 1991). 

However, the functional characterization of these genes has not been published. Many Gram- 

negative phytopathogenic bacteria, for example, Pseudomonas syringae, are known to produce 

an arsenal of effector proteins as important pathogenicity or virulence factors. These effector 

proteins are usually delivered through bacterial type III secretion system (T3SS) directly into 

plant cells to take action; therefore, these proteins are called T3SS effectors (He et al. 2000). 
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Genomic sequencing of several X. translucens have revealed that the bacterial pathogen has 

functional T3SS and 20-30 T3SS effectors like other Gram-negative bacteria (Wichmann et al. 

2013, Gardiner et al. 2014, Peng et al. 2016).  

Many Xanthomonas pathogens, such as X. oryzae pv. oryzae (causal agent of rice 

bacterial leaf blight), X. oryzae pv. oryzicola (causal agent of rice bacterial leaf streak), X. citri 

ssp. (the causal agent of citrus canker) were shown to have a unique set of T3SS effectors, 

known as transcription activator like effectors (TALEs). Once TALEs are delivered inside plant 

cells through T3SS, they are localized to nucleus and bind to specific DNA sequences of a 

particular host gene and then activate its transcription (Bogdanove et al. 2010). The upregulation 

of some host genes, for example, sugar transport gene, benefits the bacterial growth thus leading 

to susceptibility. A typical TALE consists of T3SS secretion signal in N terminus, the nuclear 

localization signal (NLS), an acidic activation domain (AAD) in C terminus, mostly important, 

the central repeat region (Bogdanove et al. 2010). All TALEs are similar in N and C-terminus 

sequences, but differ in the central repeat region which is used to bind host DNA (Mahfouz et al. 

2010, Mak et al. 2012). The TALE central region usually has 17-18 repeats with each repeat 

typically containing 33-34 amino acid (aa). The amino acids for each repeat are almost identical 

except the 12th and 13th aa, known as repeat variable diresidue (RVD) which dictate the DNA 

binding specificity of each TALE (Bogdanove et al. 2010, Mak et al. 2012). Recently, the crystal 

structure of PthXo1, one of TALE from X. oryzae pv. oryzae, has been revealed through high-

throughput computational structure (Mak et al. 2012). Genome sequencing have shown the 

presence of several copies of TALEs in X. translucens strains and gene knockout of individual 

TALE indicated some play a significant role in virulence (Peng et al. 2016, Falahi-Charkabhi et 

al. 2017). 
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Genomics of Xanthomonas translucens 

The genome sequences of several Xanthomonas pathovars and strains from different 

origins have been reported, which has provided us with a better understanding of biology, 

virulence mechanism and genetic relationships of this important bacterial pathogen (Table 1). 

Wichmann et al. (2013) reported the first draft genome sequence of Xanthomonas translucens 

pv. graminis (Xtg29) using illumina sequencing, which identified a complete T3SS system and 

putative 35 T3SS effector genes, but no TALEs like due to the short reads which is hard for 

repetitive sequence assembling. Since then, genome sequences of more than 25 different X. 

translucens strains representing three pathovars have been reported (Gardiner et al. 2014, Pesce 

et al. 2015, Jenicke et al. 2016, Peng et al. 2016, Falahi Charkhabi et al. 2017, Table 1). Because 

illumina short-read sequencing technology was used for most studies, no or incomplete set of 

TALE genes were identified. However, two X.t. pv. undulosa strains: Xt4699 (from Kansas, 

USA, Peng et al. 2016) and ICMP11055 (from Iran, Falahi Charkhabi et al. 2017) were 

published with a complete circular genome  by using both high coverage of illumina short reads 

and single molecule real time (SMRT) sequencing method.  Eight and seven TALEs were 

identified from Xt4699 and ICMP11055, respectively, and four of them are identical (Falahi 

Charkhabi et al. 2017). In the study done by Peng et al. (2016) several X.t. pv. translucens (Xtt), 

X.t. undolusa (Xtu) from different regions were sequenced with illumina sequencing and 

compared to each other and to Xt4699. The phylogenetic analysis reveals that Xtu strains can be 

clearly separated from Xtt strains and XT4699 is closer to LG48, a strain from North Dakota. 

Falahi Charkhabi et al. (2017) also compared ICMP11055 sequence to those of XT4699 and 

other available Xtu and Xtt strains, and it was found that ICMP11055 harbors unique two-major 

rearrangements and nine genomic regions and is close to other Xtu strains, but is separated from 
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North American strains. More recently, Langlois et al. (2017) reported the genome sequence of 

15 Xanthomonas translucens strains representing 6 pathovars. The genome based phylogeny of 

the sequenced Xanthomonas strains reveals that there are three main clusters among 

Xanthomonas where cluster 1 contains Xanthomonas translucens pv. cerealis, cluster 2 has both 

X. t. pv. undulosa and translucens whereas cluster 3 comprises the combination of pathovars 

arrhenatheri, graminis, phlei, and poae.  
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Table 1. List of different Xanthomonas translucens pathovars or strains that have been sequenced for their genome 

Xanthomonas 

strain 

Isolation Sequencing 

method 

Number of T3SS/ 

TALEs identified 

Genome size 

(bp) 

Reference 

Year Host origin Place 

CFBP2541 1941 Bromegrass USA Illumina  24 T3SS effectors 

and 2 TALEs 

4,515,938 Pesce et al. 2015 

DSM18974 1933 Barley MN, USA Illumina 25 T3SS effectors 4,463,577 Jaenicke et al. 2012 

DAR61454 1988 Wheat Australia Illumina 26 T3SS effectors 4,452,091 Gardiner et al. 2014 

Xtg29 NA Forage grass Switzerland Illumina  35 T3SS effectors 4,100,864 Wichmann et al. 2013 

XT4699 1999 Wheat KS,USA Illumina 

and SMR   

T 

25 T3SS effectors 

and 8 TALEs 

4,561,137 Peng et al. 2016 

XT-Rocky 2009 Wheat KS,USA Illumina 26 T3SS effectors 

and > 7 TALEs 

4,459,068 Peng et al. 2016 

XT8 1942 Barley Canada Illumina 25 T3SS effectors 4,617,556 Peng et al. 2016 

XT123 1952 Barley Canada Illumina 24 T3SS effectors 

and 2 TALEs 

4,284,749 Peng et al. 2016 

XT130 1939 NA Canada Illumina 25 T3SS effectors 4,654,290 Peng et al. 2016 

XT5523 1966 Wheat Canada Illumina 26 T3SS effectors 4,665,768 Peng et al. 2016 

XT5770 NA NA Canada Illumina 26 T3SS effectors 4,617,837 Peng et al. 2016 

XT5791 1969 Wheat Canada Illumina 25 T3SS effectors 4,719,363 Peng et al. 2016 

B1 2013 Barley ND,USA Illumina 25 T3SS effectors 4,824,098 Peng et al. 2016 

B2 2013 Barley ND,USA Illumina 25 T3SS effectors 4,503,259 Peng et al. 2016 

P3 2009 Wheat ND,USA Illumina 25 T3SS effectors 4,522,131 Peng et al. 2016 
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Table 1. List of different Xanthomonas translucens pathovars or strains that have been sequenced for their genome (continued) 

Xanthomonas 

strain 

Isolation Sequencing 

method 

Number of T3SS/ 

TALEs identified 

Genome size 

(bp) 

Reference 

Year Host 

origin 

Place 

LW16 2009 Wheat ND,USA Illumina 25 T3SS effectors 

and >4 TALEs 

4,600,125 Peng et al. 2016 

LB5 2009 Wheat ND,USA Illumina 26 T3SS effectors 4,766,161 Peng et al. 2016 

LB10 2009 Wheat ND,USA Illumina 26 T3SS effectors 4,543,985 Peng et al. 2016 

LG48 2009 Wheat ND,USA Illumina 25 T3SS effectors 4,486,555 Peng et al. 2016 

LG54 2009 Wheat ND,USA Illumina 26 T3SS effectors 4,623,672 Peng et al. 2016 

CS2 2009 Wheat ND,USA Illumina 26 T3SS effectors 4,722,832 Peng et al. 2016 

CS22 2009 Wheat ND,USA Illumina 26 T3SS effectors 4,605,395 Peng et al. 2016 

CR31 2009 Wheat ND,USA Illumina 26 T3SS effectors 4,720,715 Peng et al. 2016 

CS4 2009 Wheat ND,USA Illumina 26 T3SS effectors 4,779,534 Peng et al. 2016 

ICMP11055 1983 NA Iran SMRT 25 T3SS effectors 

and 7 TALEs 

4,561,583 Falahi Charkhabi et 

al. 2017 

NA means not available.     
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Molecular marker development, genetic linkage map and QTL analysis 

DNA marker development 

Genetic markers can be used to map and track a trait of interest, which is highly desirable 

to genetic study and breeding programs. The first generation of genetic marker is morphological 

markers that usually obtained from a mutation (dwarfing, albeno needles) in the seedlings 

(Franklin 1970, White et al. 2007). The first genetic map was developed in 1913 containing six 

morphological markers in Drosophila melanogaster. Although morphological markers can be 

easily monitored, they can be affected by environment and/or an epistatic effect from another 

morphological marker, and also the number of marker available is very limited (Adresen and 

Lubberstedt 2003). Biochemical markers based on allozymes was the first type of molecular 

markers showing much better stability than traditional morphological markers. However, number 

of biochemical markers was still very limited. DNA-based markers were then developed and due 

to its abundance, they have been widely used in genetic mapping. The first DNA-based marker 

was restriction fragment length polymorphisms (RFLP) that was introduced in 1960 by Smith 

and Nathans (Schlötterer 2004). After that, several DNA marker systems without using 

radioactive isotope were developed, including random amplified polymorphic DNA (RAPD), 

and amplified fragment length polymorphism (AFLP), microsatellites or simple sequence repeats 

(SSR), diversity arrays technology (DArT) and single nucleotide polymorphism (SNP). At 

present, SSRs, DArTs and SNP marker systems are the most commonly used in development of 

genetic maps (Mason 2015).  

RFLP, AFLP and RAPD 

RFLP needs a single or low copy DNA as a radioactive probe to hybridize the completely 

digested fragments of genomic DNA (separated on gels) to view polymorphism among different 
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individuals (Tanksley et al. 1989). RFLP method is very robust, but involves multiple steps as 

well as radioactivity. RAPD is the first PCR based molecular markers that were generated by 

using a pair of short DNA oligo primers to randomly amplify genomic regions of different 

individual (Kumar and Gurusubramanian 2011). Due to the short oligo primer used, the 

repeatability is not very high. AFLP is another PCR-based marker system, but requires the pre-

digestion of the template DNA with restriction enzymes and ligation of the adaptors to both ends, 

which are then used as template for amplification with different sets of primer homologous to 

adaptor denaturing using gel electrophoresis (Vos et al. 1995, Meudt and Clarke 2007). 

Compared to RAPD, AFLP is more reproducible with much better high-throughput ability, thus 

it had been widely used before SNP-based marker method to generate large number of marker 

for mapping. 

SSR markers 

SSRs/microsatellites are a piece of DNA containing mono, di, tri, tetra and penta 

nucleotide units which are arranged as tandemly repeats and they are widely distributed in the 

eukaryotic organism genome (Tautz and Renz 1984, Powell et al. 1996). The traditional method 

to isolate SSRs from genomic DNA involves several sequential steps, including construction of a 

small insert genomic library, screening of the library by hybridization, sequencing positive 

clones, PCR analysis and detection of polymorphism (Powel et al. 1996). Since it is time 

consuming and labor intensive, new SSR method was developed by taking advantage of the 

availability of a large number of expressed sequence tags (ESTs) for many eukaryotic organisms. 

Because these SSRs are derived from transcribed regions of the genome, they tend to be more 

conserved (site specific) (Powell et al. 1996, Li et al. 2008). Because SSRs are site-specific, they 
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have been used as anchor points for different genetic maps in the same species (Bell and Ecker 

1993, Akkaya et al. 1995, Powell et al. 1996).  

In wheat, SSR marker development has used both methods. The development of genomic 

SSR markers was first reported by Devos et al. (1995) and Röder et al. (1998) in  hexaploid 

wheat, ‘Chinese Spring’ and they were distributed on all linkage groups of all A, B and D 

genomes. Pestsova et al. (2000) developed wheat D genome specific SSR markers from diploid, 

Aegilops tauschii. At present, more than 2,500 genomic SSRs have been mapped in wheat 

genome (Gupta et al. 2008). Nicot et al. (2004) developed 3,530 EST-SSRs from 46,510 contigs 

for hexaploid wheat lines CS. More EST-derived SSR markers were reported later for both 

durum wheat and bread wheat in several studies (Eujayl et al. 2002, Kantety et al. 2002, Li et al. 

2008). Some wheat genomic or EST SSR markers have been shown to be transferable to their 

closely related species such as rye and triticale (Kelung et al. 2004, Tams et al. 2004, 2005, 

Kelung et al. 2006).  

Saal and Wricke (1999) developed 27 specific SSR markers from rye (Secale cereale L.) 

by sequencing 74 positive clones which have (GT/CA)n. Because rye chromosome 1R has many 

useful genes, many studies placed more efforts to develop 1R specific SSR markers.  By 2004, 

only 9 SSR markers were available for 1R with the majority of them mapped to the distal end of 

chromosome 1R (Korzun et al. 2001, Ma et al. 2001, Khlestkina et al. 2004). In contrast, Kofler 

et al. (2008) reported the development of 74 polymorphic SSRs for short arm of rye chromosome 

1R. The development of rye SSR markers started before 10 years ago (Saal and Wricke 1999). 

Since the genomic SSR development causes some problems on transferring among different 

genomes, labor intensive, new method of EST based SSR marker development was initiated. 

Hackauf and Wehling (2002) developed 528 EST- SSRs which have di, tri and tetra nucleotide 



 

23 
 

motifs. Recently, a significant amount of EST-SSR markers (1,385 SSRs) were developed for 

rye by Haseneyer et al. (2011). These SSR markers will be useful for genetic diversity assays, 

transferring SSR markers among related species such as wheat and triticale, etc.  

Diversity array technology (DArT) markers 

DArT is a high throughput marker development system and it mainly is based on 

microarray hybridization to detect the presence versus absence of thousands and thousands DNA 

fragments selected for representing a genome (Jaccoud et al. 2001, Wenzl et al. 2004). DArT 

markers were first developed for a variety of dicot plant species such as Arabidopsis, cassava 

(Wittenberg et al. 2005, Xia et al. 2005). Akbari et al. (2006) reported the development of 339 

DArT markers for the hexaploid wheat genome and genetic linkage map assembled using these 

DArT markers covered all 21 chromosomes except 4D. Mantovani et al. (2008) developed 500 

DArT markers using 56 durum accessions and incorporated the obtained DArT makers with 162 

SSR markers in a genetic map of RIL population of durum wheat. Peleng et al. (2008) developed 

493 DArT markers and mapped them in a tetraploid mapping population derived from a cross 

between durum wheat and emmer wheat. Bolibok-Bragoszewska et al. (2009) reported 1,818 

DArT markers in rye using 16 rye varieties and 15 rye RIL lines of a RIL mapping population. 

DArT markers have been successfully used in genetic mapping of triticale populations. Badea et 

al. (2011) used three arrays composed of 25,720, 13,056 and 3,072 wheat, rye and newly 

synthesized triticale probes, respectively, leading to identification of 6,042 DArT markers.  

SNP markers 

SNP is defined as single nucleotide polymorphism which is the most abundant source for 

marker development in a given genome. For most species, SNP can be identified every as short 

as 100-200 bp and theoretically can provide unlimited number of markers for genetic mapping. 
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The development of SNP markers relies on the availability of corresponding DNA sequences 

from two or more genotypes to identify the nucleotide polymorphism between genotypes. In 

beginning, many SNP markers were developed from the large amount of EST sequences 

generated from different individuals. Recently, SNP marker has been developed by directly 

sequencing the whole genome as sequencing power is increasing and cost is reducing (see 

below). Compared to SSR markers, SNP analysis can be automated in high-throughput assay 

format without the need to do DNA separation by size (Raman et al. 2014, Fay and Bender 2005, 

Kumar et al. 2012). Genome wide SNP discovery and the corresponding microarray-based 

genotyping platform have been successfully developed in many crops such as maize, oilseed 

rape, rice, soybean, Brassica, and alfalfa and they have been successfully used in genetic 

mapping (Kumar et al. 2012). In wheat, the Illumina GoldenGate chips containing 9,000 genes 

and 90,000 genes have been developed and available for wheat genome mapping (Akhunov et al. 

2009, Cavanagh et al. 2012, Wang et al. 2015). Wang et al. (2014) used 90k gene chip to map 

46,977 SNPs in wheat genomes using eight different mapping populations, which provides an 

important reference for genetic mapping in tetraploid and hexaploid wheat. In rye, Haseneyer et 

al. (2011) developed 5,234 polymorphic SNP markers using RNA sequencing data.  

Recently, genotyping based on next generation sequencing technology has become more 

popular to develop SNP markers because it is easier, has increased levels of high throughput, and 

very importantly, costs much less compared to array-based assay (Elshire et al. 2011). 

Genotyping-by-sequencing (GBS) usually involves the digestion of genomic DNA from different 

individuals with restriction enzymes which usually target gene-rich regions followed by library 

construction and high throughput genome sequencing. The sequence data has to be called using a 

SNP calling pipeline with the help of reference genome sequence (Huang et al. 2009, Kim et al. 
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2016).The application of GBS has been extended to population studies, germplasm 

characterization, genetic mapping and genomic-based breeding in almost important crops 

(Poland et al. 2012).    

Genetic mapping of wheat, rye and triticale 

The first effort to construct the genetic map of wheat started in 1990s by the organization 

of International Triticeae Mapping Initiative (ITMI). The genetic linkage map was reported for 

each chromosome group by the individual research group. Later, reports of wheat genetic maps 

contained all wheat chromosomes are available (Gupta 2008, Messmer et al. 1999, Lotti et al. 

2000). The first generation of genetic maps were usually based on RFLP markers, but later, 

composite maps were constructed by using more than one type of molecular markers. The 

examples were the genetic map of Einkorn wheat, which was developed mainly by using RFLPs 

and SSR markers (Dubcovsky et al. 1996, Singh et al. 2007), and several durum wheat and bread 

wheat genetic maps with AFLPs, SSRs and RFLPs (Lotti et al. 2000, Nachit et al. 2001, 

Messmer et al. 1999, Gupta et al. 2008). From different genetic maps, consensus map can be 

constructed by using the common markers mapped and special mapping software. The first 

linkage genetic map specific for Aegilops tauschii was developed from AFLP markers (Gill et al. 

1991, Boyko et al. 1999). 

The first rye genetic map was developed in a DS2 x RXL10 F2 population covered all the 

seven rye chromosomes with RFLP markers (Devos et al. 1993). Masojc et al. (2001) saturated 

this genetic map by adding 69 RAPD and 12 isozyme markers and the total genetic distance of 

the map was 1,140 cM. In 2003, the same genetic map was more saturated by 480 markers with 

179 AFLPs, 200 RFLPs, 88 RAPDs and 12 isozymes and the total genetic distance was 

expanded from 1,140 cM to 1,386 cM by increasing the coverage of chromosomes 1R, 2R and 
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5R (Bednarek et al. 2003). Korzun et al. (1998) developed a genetic map of two F2 populations 

derived from reciprocally crossing of two rye inbred lines, P83 and P105. The genetic map 

covers all the seven rye chromosomes and it consists of 91 loci including 88 RFLPs, 2 

morphological markers and 1 isozyme marker. To map agronomical important traits in rye 

genome, Börner and Korzun (1998) developed a consensus map of rye covering all seven 

chromosomes with 413 markers including RFLPs, isozymes and the range of the markers per 

chromosome was from 41 to 83. The valuable genes for traits such as reduced plant height, self-

fertility, male sterility, resistance for powdery mildew etc. have been mapped using this 

population and genetic maps. Philipp et al. (1994) constructed a genetic map of rye consisting 60 

markers with RFLP, RADP, isozymes, morphological and physiological markers. Senft and 

Wricke (1996) developed an extended genetic map of F2 population consisting 137 individuals 

using isozymes, RFLPs and RAPDs by integrating the genetic map developed in Philipp et al. 

(1994). Korzun et al. (2001) constructed another genetic map of pooled F2 mapping population 

of 275 individuals with 139 RFLPs, 19 isozymes, 13 SSRs and 10 known function sequences. 

Ma et al. (2001) constructed a genetic map covering all 7 chromosomes, containing 184 markers 

including clones from wheat, rye, barley, oat and rice genomic and cDNA libraries and it spans 

727.3 cM. Hackauf and Wehling (2002) constructed a genetic map using a back cross population 

including EST derived SSR markers, AFLP markers and the total genetic distance for all 7 rye 

chromosomes was 685 cM. Khlestkina et al. (2004) constructed a saturated genetic map of rye 

by using RFLPs and 99 SSR markers. They have used four mapping populations and the genetic 

distance was expanded 1,111 cM, 1,087 cM, 1,109 cM and 1,111 cM for P87 x P105, N6 x N2, 

N7 x N2, and N7 x N6 respectively. A F2 population of rye consisting 94 individuals was used by 

Milczarski et al. (2007) to construct a genetic map. This map was constructed using 148 markers 
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with 99 RAPDs, 7 ISSRs, 41 STS, 14 RFLPs, 9 SCARs and 1 isozyme marker. The resulting 8 

linkage groups were aligned with reference map of 7 rye chromosomes and the total genetic 

distance was obtained as 1,401.4 cM. Bolibok-Bragoszewska et al. (2009) constructed high 

resolution map of rye (L13 x L9) covering all the 7 chromosomes which consists 1,818 DArT 

loci. The total genetic distance of the map was 3,144.6 cM and the map density was 2.68 cM per 

marker. The shortest chromosome was 1R (301.9 cM) and the largest chromosome was 6R 

(578.7 cM). Milczarski et al. (2011) developed another high density consensus genetic map by 

using 9,703 segregating markers. This consensus map was constructed by five rye RIL 

populations. The total genetic distance of the genetic map was 1,593.0 cM and the total marker 

density was 1.1 marker per cM, which is much saturated with molecular markers compared to 

the previously published genetic maps. 

Recently few research studies have been published on genetic mapping of triticale. Tyrka 

et al. (2015) constructed a genetic map of triticale using 50 microsatellite, 842 DArT and 16,888 

SNP markers with 4,907 cM in total genetic distance and the mean distance between two bins 

was 3.0 cM per marker. They used 92 double haploid (DH) lines derived from two hexaploid 

winter triticale cultivars, ‘Hewo’ and ‘Magnat’. Another study constructed the genetic map of 

triticale (90 DH lines) deriving from two unrelated hexaploid triticale lines, ‘Saka3006’ and 

‘Modus’ with the use of 155 SSRs, 28 RFLPs and 2397 DArT markers. The total genetic 

distance of the map was 2,397 cM and the mean distance between two markers was 4.1 cM 

(Tyrka et al. 2011).  

Genomics of wheat and rye 

Different draft and good quality of reference genome sequences have been available for 

wheat and rye which have large size of genome and high amount of repetitive DNA. In 2014, 
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individual chromosomal draft sequence of the hexaploid bread wheat, Chinese Spring was 

released. Very recently a pretty good reference genome sequence of Chinese Spring has released 

covering all 21 chromosomes (IWSC 2017). This released sequence contains the physical maps 

of all the 21 chromosomes, the sequenced BACs for 8 chromosomes including 1A, 1B, 3B, 3D, 

6B, 7A, 7B and 7D and the partial sequence for chromosome arms 4AL and 5BS (IWSC 2017). 

Since rye has many useful genes on chromosome 1R, the sequencing of 1RS was first done with 

the construction of BAC libraries and shot-gun sequencing. This sequencing results represents 

0.5% of 1RS arm and majority (84%) of the sequences represents the repetitive DNA (Bartos et 

al. 2008). The draft whole genome sequence of rye was obtained later by using whole genome 

shot gun sequencing, Illumina Hiseq2000 platform (Bauer et al. 2017). This genome was used to 

predict 27,784 rye genes. Moreover, the resequencing of 10 inbred lines of rye lines revealed 

more than 90 million single nucleotide variants. This rye draft genome sequence will be very 

useful in development of more markers to saturate the current genetic maps.  

QTL mapping 

In plants, many traits are controlled by multiple genes, located in different regions in the 

genome, and those genome loci are called quantitative trait loci (QTL). The genomic regions 

controlling quantitatively inherited traits can be identified by QTL mapping method, which is 

basically detection of the significant association of a trait with individual marker. QTL mapping 

consists of several steps, including development of the segregation population, genotyping of the 

population and construction of the genetic map of that population, phenotyping and statistical 

analysis of the marker data and phenotypic association (Young 1996, Doerge 2002, Sehgal et al. 

2016). Currently, there are many software available to detect QTLs mainly including, MQTL 

(Tinker and Mather 1995), PLABQTL (Utz and Melchinger 1996), QTL Cartographer (Wang et 
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al. 2012), Qgene (Joehanes and Nelson 2008), etc. To detect QTLs, there are several mapping 

functions (algorithm). The traditional way to find the QTL is the single marker analysis (point 

analysis) where the trait data was analyzed with a single genetic marker one at a time. The most 

common method to detect QTLs is the interval mapping where the detection of QTL is conducted 

by testing a model at many positions between two marker loci (Lander and Bostein 1989). 

However, interval mapping cannot resolve two QTLs that are very close and also the 

confounding effect from the major QTL for other small QTLs. These problems were solved later 

by the introduction of composite interval mapping (CIM) function (Zeng 1994). In CIM, the 

effect of other QTLs are not present as residual variance, therefore CIM is more precise and 

powerful than simple interval mapping (Sehgal et al. 2016). Later, another method, multiple 

interval mapping (MIM) was developed which is more precise and powerful than CIM, where 

multiple intervals are used concurrently to fit numerous putative QTL directly in the model (Kao 

et al. 1999).  

QTL mapping has been conducted in wheat to map disease resistance to Fusarium head 

blight, tan spot, and powdery mildew (Buerstmayr et al. 2009, Huang et al. 2004, Faris et al. 

1999). Moreover, QTL mapping has also been used to map QTL controlling many wheat 

agronomical important traits such as yield, ear emergence time, plant height, grain filling rate 

(Kumar et al. 2007, Kato et al. 1999, Ramya et al. 2010). In triticale, QTL mapping has been 

used to identify regions associated with different traits such as biomass yield, plant height, 

Aluminum tolerance, biomass accumulation (Alheit et al. 2014, Niedziela et al. 2012, Wurschum 

et al. 2014, Busemeyer et al. 2013). Association mapping (AM) is another way to map QTL in 

eukaryotic organisms, which is based on linkage disequilibrium (LD). For AM, genetically 

diverse lines from a natural population are used in analysis compared to bi-parental mapping. 
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Because mapping lines are obtained from diverse backgrounds and from different time of 

history, it is more likely to detect marker and trait association, which is QTL (Abdurakhmonov 

and Abdukarimov 2008).  

Identification and genetics of host resistance to BLS 

To identify source of resistance, studies have been conducted to evaluate wheat cultivars 

and breeding lines, landraces for resistance to BLS under field or greenhouse conditions 

(Duveiller et al. 1993, El Attari et al. 1996, Milus et al. 1996, Tillman et al. 1996, Adhikari et al. 

2011, Kandel et al. 2012, Adhikari et al. 2012).  Duveiller et al. (1993) conducted a field 

evaluation of 327 CIMMYT bread wheat lines and reported that only three lines, including 

‘Pavon 76’, ‘Mochis T88’ and ‘Angostura F88’, were moderately resistant. From a collection of 

50 CIMMYT spring wheat genotypes and 24 local winter wheat cultivars, Milus et al. (1996) 

identified few lines, such as ‘Magnum’, ‘Bayles’, and ‘Terral 101’, as being resistant based on 

the size of  water-soaking area developed around the inoculation sites. Only two lines were found 

to be partially resistant to BLS from a collection of 64 winter wheat breeding lines from France 

(El Attari et al. 1996). The field evaluation conducted by Tillman et al. (1996) on 5,000 

accessions of worldwide bread wheat collection revealed only 26 resistant genotypes. The study 

also revealed a negative correlation between BLS resistance and plant maturity. Among the 605 

winter wheat accessions, only 8.3% were found to be resistant or moderately resistant under 

greenhouse condition (Adhikari et al. 2011). Adhikari et al. (2012) conducted greenhouse disease 

evaluation on 566 accession of spring wheat landraces and identified relative higher percentage 

of lines with partial resistance in landraces. Kandel et al. (2012) evaluated 45 spring wheat 

cultivars and breeding lines from the upper Great Plain region under field conditions and 

identified only one genotype was less susceptible. Therefore, sources of resistance to BLS are 
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limited and only partial resistance is available in wheat adapted germplasm. In addition, 

controversial results have been obtained for some resistant wheat genotypes from different 

evaluations, and even within one study (Tillman et al. 1996). It was also demonstrated that 

reaction to BLS and black chaff (head infection) is likely dependent from each other in wheat 

materials (Tillman et al. 1996).  

By using wheat lines with partial resistance, few studies were carried out on heritability 

and genetic mapping of resistance to BLS (Duveiller et al. 1993, El Attari et al. 1996a, b, 

Tillman and Harrison, 1996, Adhikari et al. 2012, Kandel et al. 2015). Heritability of resistance 

to BLS in wheat varies from low to very high dependent on the lines used and both additive and 

dominance effect of different resistance genes are presented (El Attari et al. 1996a, b; Tillman 

and Harrison, 1996). The genotype x environment (G x E) interaction often occurs in the 

expression of resistance (Tillman and Harrison, 1996). Using diallelic crosses from three 

partially resistant (Mochis T88, Pavon 76 and Angostura F88) and two susceptible lines 

(Alondra, Turaco), Duveiller et al. (1993) identified five resistance genes (Bls1, Bls2, Bls3, Bls4 

and Bls5) in the resistant lines with each harboring two to three of these genes. Among them, 

Bls1 has the highest effect on resistance.  

Using RFLP marker map, El Attari et al. (1998) mapped QTLs in barley ‘Morex’ 

conditioning partial resistance to BLS on 3H and 7H chromosomes. Adhikari et al. (2012) 

employed association mapping and DArT markers for mapping BLS resistance in 566 spring 

wheat landraces leading to identification of five genomic regions on chromosome 1A, 4A, 4B, 

6B and 7D. Gurung et al. (2014) conducted the association mapping of BLS resistance in spring 

wheat landraces again using the same phenotypic data as Adhikari et al. (2012), but with a large 

number of SNP markers. Four genomic regions on chromosomes 1A, 5A, 5D and 6B were 
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identified to significantly associate with BLS. Among 4 of them, two genomic regions were 

same as described in Adhikari et al. (2012). Kandel et al. (2015) identified two genomic 

locations, one on chromosome 2A (Xwmc522) and the other on 6B (Xbarc134), for BLS partial 

resistance in spring wheat breeding lines using the identity by descent mapping method.  

In the evaluation of 35 triticale lines, Cunfer and Scolari (1982) reported that four of 

them, including UP 7th ITSN#20, UPT 72142, M2A-Bgc, and ‘Siskiyou’, possess high levels of 

resistance to BLS under both field and greenhouse conditions. Resistance in Siskiyou and M2A-

Bgc has been also used to successfully develop elite resistant triticale lines in Georgia, US 

(Johnson et al. 1987). Classic genetic analysis on F2 populations has indicated Siskiyou and 

M2A-Bgc as well as another resistant triticale OK 77842 carry single dominant resistance gene 

and the resistance genes in three lines are either the same or closely linked (Johnson et al. 1987). 

The genetic locus has been designated as Xct1, (Johnson et al. 1987). However, the gene locus 

has not been mapped. This gene will be very useful in breeding BLS resistant wheat germplasm 

in future. Our preliminary data has shown several triticale accessions including Siskiyou, are 

highly resistant to BLS caused by the strains from North Dakota (Sapkota et al. 2017). 
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GENETIC MAPPING OF A MAJOR GENE IN TRITICALE CONFERRING 

RESISTANCE TO BACTERIAL LEAF STREAK 

Abstract 

Bacterial leaf streak (BLS), caused by Xanthomonas translucens pv. undulosa (Xtu), is an 

important disease of wheat and triticale around the world. Although resistance to BLS is limited 

in wheat, several triticale accessions have high levels of resistance. To characterize the genetic 

basis of this resistance, we developed triticale mapping populations using resistant and a 

susceptible accession. Our initial mapping using results in a F2 population derived from the cross 

of Siskiyou (R) × UC38 (S) suggested the resistance gene is likely located on rye chromosome 

5R. In this study, we developed the cross of a F2:5 recombinant inbred line (RIL) population from 

the cross of Siskiyou × Villax St. Jose for resistance QTL mapping. This population was 

genotyped by genotyping-by-sequencing (GBS) and a few 5R SSR markers and evaluated for 

reactions to BLS. QTL mapping revealed a single major QTL on chromosome 5R, which was 

underlined by the same SSR as in the Siskiyou × UC38 population and a GBS marker. The F1 

hybrids of the two crosses were highly resistant to BLS, indicating that resistance is largely 

dominant. This is the first study to map a major resistance for BLS and will facilitate 

introgression of this rye-derived BLS resistance gene into the wheat genome through molecular 

marker-mediated chromosome engineering. 

Introduction 

Bacterial leaf streak (BLS) can occur on a wide range of small grain crops as well as 

grass species. The diseases are caused by several Xanthomonas bacterial pathogens, which have 

been collectively designated as the ‘translucens group’ (Vauterin et al. 1992, 1995). Based on 

pathogenicity tests on small grains and bromegrass, three main pathovars have been defined, 
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including pv. translucens, which is pathogenic only on barley, pv. undulosa, pathogenic on 

wheat, barley, triticale and rye, and pv. cerealis, pathogenic on all species tested (Bragard et al. 

1997). A recent phylogenetic analysis using whole genome sequence data also supported the 

existence of three clades related to host specificity (Langlois et al. 2017). 

BLS, also known as black chaff when it occurs on floral spikes, caused by X. translucens 

pv. undulosa (Xtu), is the most common bacterial disease of wheat (Triticum spp.) and triticale 

(X Triticosecale Wittmack) (Cunfer and Scolari 1982, Duveiller et al. 1997). Outbreaks have 

been sporadic and often occur in warm and humid regions (Milus and Mirlohi 1995, Duveiller et 

al. 1997). In recent years, BLS has re-emerged as a threat to wheat production in many places, 

including the northern Great Plains of the United States (Adhikari et al. 2011, Kandel et al. 

2012). The disease can cause yield losses of up to 40% by reducing kernel weight and/or number 

of kernels per spike (Waldron et al. 1929, Shane et al. 1987, Forster and Schaad 1988, Tillman et 

al. 1999). The disease also can affect protein content, degrading the grain quality (Shane et al. 

1987). Seeds are believed to be the major source of primary inoculum, and planting clean seed 

can reduce disease incidence (Milus and Mirlohi 1995). However, no chemical or cultural 

practice is currently available to manage the disease in the field, and use of resistant cultivars is 

the only practical means of control.  

A large assortment of wheat germplasm, including cultivars, breeding lines, and 

landraces, have been evaluated for reaction to BLS in the field and/or under greenhouse 

conditions (Milus and Mirlohi 1994, Tillman et al. 1996, Kandel et al. 2012, Adhikari et al. 

2011, 2012). Although a wide range of genetic variation was observed among wheat accessions, 

only partial resistance has been observed. No immunity or high levels of resistance has been 

found in wheat. In some cases, partial resistance was shown to be environment-dependent and 
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associated with late maturity (Tillman et al. 1996, Kandel et al. 2012, El Attari et al. 1996, 

Tillman and Harrison 1996). Five genes were reported, namely Bls1, Bls2, Bls3, Bls4, and Bls5, 

to condition resistance in three wheat cultivars (Duveiller et al. 1993). In addition, Adhikari et al. 

(2012) identified five genomic regions on five chromosomes (1A, 4A, 4B, 6B, and 7D) 

associated with BLS resistance in spring wheat. Also, two genomic regions (2A and 6B) were 

identified to be associated with partial resistance in a collection of South Dakota spring wheat 

breeding lines (Kandel et al. 2015).   

In the evaluation of 35 triticale lines, Cunfer and Scolari (1982) identified four lines, 

including UP 7th ITSN#20, UPT 72142, M2A-Bgc, and ‘Siskiyou’, with high levels of resistance 

to BLS under both field and greenhouse conditions. In addition, two elite triticale germplasm 

lines were developed in Georgia, USA with resistance derived from Siskiyou and M2A-Bgc 

(Johnson et al. 1989). Further genetic analyses suggested that resistance in the triticale 

accessions Siskiyou, M2A-Bgc, and OK 77842 is governed by a single dominant gene or tightly 

linked genes, designated Xct1 (Johnson et al. 1987). Using Xtu strains from North Dakota, USA, 

we previously evaluated a worldwide triticale collection and also found several triticale lines, 

including Siskiyou, that were highly resistant (Sapkota et al. 2017).  We have done an initial 

work to map the resistance gene using a F2 population derived from the Siskiyou x UC38 cross. 

The bulked segregation analysis revealed that the resistant loci is likely located on the 

chromosome 5R because the tightly linked SSR marker, XSCM138 is on this chromosome. In 

this work, we conducted QTL mapping of resistance in a recombinant inbred line population of 

Siskiyou x Villax St. Jose which has the same resistant parent as Siskiyou x UC38. The 

objectives of this study were to construct a high density genetic linkage map and to map QTL 

associated with BLS resistance in Siskiyou x Villax St. Jose RIL population. In addition, 
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molecular markers tightly linked to resistance QTL will be identified, which can be used in the 

assist in the transfer of this gene to wheat germplasm.  

Materials and methods 

Plant materials 

The materials include a recombinant inbred line (RIL) triticale population, designated 

LTC0918, which was derived from the cross between highly resistant accession ‘Siskiyou’ 

(L12G09) and highly susceptible accession Villax St. Jose (L12G18). Siskiyou (CI 17603) was 

jointly developed by the International Maize and Wheat Improvement Center, Mexico, and the 

University of California, Davis, USA and released as a cultivar in California (Qualset et al. 

1985). Villax St. Jose (PI 428848) is a cultivar from Morocco (see Kuleung et al. 2006). Our 

preliminary evaluation of over 500 triticale accessions in the greenhouse indicated Siskiyou is 

highly resistant to BLS while Villax St. Jose is highly susceptible (Sapkota et al. 2013). From the 

cross of Siskiyou/Villax St. Jose, we have developed a recombinant inbred line (RIL) population 

with a total of 141 F2:5 individuals through single seed descent (SSD) during 2014 and 2015, and 

the F2:5 recombinant inbred (RI) line population was used for genotyping by sequencing, disease 

evaluation and QTL mapping.  

Disease evaluation 

Disease evaluation was conducted in North Dakota State University (NDSU) Agricultural 

Experiment Station greenhouse which has a temperature setting from 15°C-21°C with a sixteen 

hours light. The plants were grown in racks which can hold 98 cones (4×13 cm). The cones were 

filled with Promix soil and two seeds were planted per cone with the border line (‘Grandin'). The 

fertilizer which was used is Osmocotte (15-9-12). Then the plants were grown under greenhouse 

conditions for two weeks until three-leaf stage. Experiments were carried out by using 
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randomized complete block design (RCBD) with three replicates and two plants for each RIL 

were evaluated in one replicate. 

The inoculum (Xtu) was applied to the three leaf stage plants by spray inoculation. The 

two bacterium strains, BLS-LB10 from North Dakota and Xt4699 (sequenced strain) from 

Kansas were used for disease evaluation and mapping. The bacteria were streaked from the 

stocks on WBA (Wilbrink’s agar) plates and were incubated at 28°C for 48 h. Then, the bacterial 

cells were gently scratched and suspended in 1×PBS buffer (Phosphate buffer), and the solution 

was adjusted for the cell concentration to optical density of 0.4 at 600 nm followed by the adding 

of surfactant reagent tween 20 at two drops per 100 ml. The prepared inoculum was inoculated 

onto the plants by direct spraying at the rate of 100 ml per rack with an air-pressured (20 Psi) 

spray gun. The inoculated plants were kept in misting chambers for 48 h under 12 h photoperiod 

every day and with the humidity settings at every 2 minutes misting 10 seconds. Then, plants 

were moved to a greenhouse room for growth and disease development. The plants with the 

racks were placed in a water-filled pan to avoid being watered from the top. The disease was 

recorded at 5th day after inoculation (DAI) by estimating the percentage of water-soaking area 

developed in the secondary leaf after five days of inoculation. The percentage of diseased area 

was directly used in the QTL mapping. 

Genotyping by GBS (genotyping by sequencing) method 

LTC0918 population was genotyped using genotyping by sequencing (GBS) method. 

Genotyping was carried out with the collaboration of Dr. Xuehui Li’s laboratory, Department of 

Plant Sciences. The leaf tissues from each RIL were collected from one week old seedling plants 

and genomic DNA were extracted from the tissues with the Wizard Genomic DNA purification 

kit (A11125; Promega). The concentration of DNA sample was quantified with a Quant-iT 
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PicoGreen dsDNA assay kit. Then, the GBS library was constructed with a double digest using 

PstI and MseI enzymes following routine protocols and was sequenced on a single lane of 

illumina HiSeq2000. TASSEL-GBS software (Glaubitz et al. 2014) was used for SNP discovery 

and genotype calling.  

Genotyping with simple sequence repeats (SSR) markers 

In our preliminary study, bulked segregant analysis between the resistant parent, 

Siskiyou, susceptible parent, UC38 and the resistant and susceptible pools in F2 population of 

Siskiyou x UC38 revealed that the resistance gene is likely located on chromosome 5R (work 

done by Dr. Aimin Wen). Thus, a total of 20 SSR markers on the chromosome 5R were also 

tested between Siskiyou and Villax St. Jose for polymorphism and the polymorphic primers were 

genotyped in the whole population LTC0918. In order to run SSR on 4300 DNA analyzer (LI-

COR Bioscience, Lincoln, NE), the reverse complementary sequence of M13 (-21) primer (5′- 

TGTAAAACGACGGCCAGT-3’) was added to the 5′ end of each forward primer. All SSR 

primers and DY682 or DY782 fluorescently labeled M13 (-21) primers were synthesized by 

Eurofins MWG Operon LLC (Louisville, KY). Each PCR reaction consisted of 1× buffer, 200 

μM dNTPs, 1.5 mM MgCl2, 0.05 μM of each SSR forward primer (tagged with M13 reverse 

complementary sequence) and reverse primers, 0.1 μM of DY682 or DY782 fluorescently-

labeled M13 primer, 50 ng DNA, and 1 U Bulleseye Taq DNA polymerase (MidSci, Valley 

Park, MO) in a 10 μL volume. PCR program and gel electrophoresis were the same as the 

descriptions by Zhong et al. (2009). SSR bands were manually scored as 1 for Siskiyou allele, 0 

for Villax St Jose and 3 for missing data. 
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Linkage map development 

The SNPs and SSR markers were used to construct the linkage map of LTC0918 

population. MapDisto software (version 1.7.7, Lorieux 2012) was used for constructing the 

linkage groups of the mapping population. The mapping function was chosen as Kosambi (1944) 

and the data was grouped in to separate linkage groups by using ‘Find group’ command with the 

logarithm of odds (LOD) as 3 and maximum recombination frequency were set as 0.3. Serriation 

II and sum of adjacent recombination frequencies (SARF) were used for ordering the loci.  The 

linkage groups were assigned to specific chromosomes based on the physical locations of the 

GBS SNP markers, which were obtained by BLAST the tag sequences of GBS SNP markers 

against the wheat and rye reference genome sequences.  

QTL analysis 

QTL mapping was performed by using QGENE 4.3.10v (Joehanes and Nelson 2008) 

with the simple interval mapping (SIM), composite interval mapping (CIM) and multiple interval 

mapping (MIM) function. A permutation test consisting of 1000 permutations were used to 

determine an LOD threshold for CIM at an experiment-wise significance level of 0.05. The 

coefficient of determination (R2) was determined for each QTL using Qgene software which 

provides an estimate of the amount of phenotypic variation explained by each QTL.   

Results 

Reaction of lines and the Siskiyou x Villax St. Jose recombinant inbred line (LTC0918) 

population to Xtu strains (BLS LB-10, Xt4699) 

The parent, Siskiyou gave the resistant reaction (0-10% water-soaking) when it was 

inoculated with both Xtu strains whereas Villax St. Jose gave the susceptible reaction (>50% 

water soaking). UC38 is another susceptible parent for LTC0908 population which is derived by 
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crossing Siskiyou which is the resistant parent and UC38 which is the susceptible parent. 

Therefore UC38 also showed susceptible reaction (>50% water soaking) against both Xtu strains. 

The hard red winter wheat cultivar “RB07” also showed susceptible reaction by extensive water 

soaking similar to Villax St. Jose and UC38. The F1 plants from both Siskiyou x Villax St. Jose 

and Siskiyou x UC38 were shown resistant reaction indicating that resistance is largely dominant 

(Figure 1). 

 

Figure 1. Reaction of the parental triticale lines and their F1 progeny to bacterial leaf streak 

caused by Xanthomonas translucens pv. undulosa (BLS-LB10) 

Development of SNP markers by genotyping by sequencing (GBS) in LTC0918 population  

Library screening generated 120M raw sequencing reads and 10M were resulted as 

mapped reads. Universal Network Enabled Analysis Kit (UNEAK) identified 111,288 raw SNPs 

in the population of 143 individuals (2 parents + 141 RILs). Wells devoid of any genomic 

material were included to control for cross-contamination during library preparations. These 

blank wells resulted in only 37 total tag sequences and 28 genotype calls, suggesting high-

RB07 

F1 of Siskiyou x Villax St. Jose 

F1 of Siskiyou x UC38 

Villax St. Jose 

Jose 

UC38 

Siskiyou 
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fidelity in sample preparation, and processing. After filtering the SNPs for presence of at least 

half the genotypes in the population, 14,099 remained. After filtering these subsequent SNPs for 

the presence of polymorphic genotype calls between Siskiyou and Villax St. Jose, 3,589 SNP 

remained.  

Genotyping of SSR markers in LTC0918 population  

Our preliminary results (Bulked segregant analysis) suggested that the resistance gene is 

located on rye chromosome 5R in Siskiyou (Figure 2); therefore, the 5R SSR primers were first 

tested on the parental lines of the LTC0918. Out of 20 primer pairs from the 5R chromosome, 

seven were found to be polymorphic between two parental lines, Siskiyou and Villax St. Jose 

(Figure 3), including SCM138, SCM151, REMS1174, REMS1205, REMS1237, REMS1264 and 

REMS1266. The rest of primers were either did not amplify any bands or amplified bands, but 

with no polymorphism. For these SSR markers, eight were polymorphic between Siskiyou and 

UC38, including SCM138, SCM151, SCM 159, Z2995, Z3057, REMS1218, REMS1237 and 

REMS1266 (work done by Dr. Aimin Wen). Thus, four SSR markers were common for both 

populations and they are SCM138, SCM151, REMS1237 and REMS1266 (Table 2). All the 7 

polymorphic markers were then mapped in the Siskiyou x Villax St. Jose F5 population using 

141 individuals (Figure 4).  
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Figure 2. Bulked segregant analysis of BLS resistance in the Siskiyou / UC-38 F2 population. A. 

Gel image of two SSR primers, SCM05 (3RL) and SCM138 (5RS) run on the parental lines and 

DNA pools of highly resistant and highly susceptible lines. SCM138 is polymorphic between 

resistant and susceptible pools. B. Linkage map of chromosome 5R developed in the Siskiyou / 

UC-38 F2 population with 5R SSR markers. The BLS resistance locus co-segregates with the 

SSR marker XSCM138. Markers marked with stars indicate distorted segregation at P < 0.01. 

This work is done by Dr. Aimin Wen. 
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Figure 3. A LICOR gel image showing SSR Primer screenings in the three triticale parental 

lines, including Siskiyou, Villax St. Jose and UC38. In each primer, 1st lane indicates the 

Siskiyou allele, 2nd lane indicates Villax St. Jose and 3rd lane indicates UC38 allele. 
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Table 2. List of SSR markers on chromosome 5R that were tested in three triticale parental lines including Siskiyou, UC38 and Villax 

St. Jose 

Primers Sequences Sizea (bp) Reference Polymorphicb 

SCM138 ATAGCCGCAGATGGTTGAGGAC  GAGAAGTCTACAAATCAAGGGGGC  188 Saal and Wricke 1999 A, B 

SCM140 CCCCTCCGAAATCGTTC GGAGGAGTTCTTCATCACACC 120 Hackauf and Wehling 2002 - 

SCM141 ACTGCCGTGTGGTGAA TGGGAAACATCAAACTAACTG 128 Hackauf and Wehling 2002 - 

SCM151 CGGAAACTTAACAGGACACGA GCAGGGGAAGGAAAAGAAGAG 148 Hackauf and Wehling 2002 A, B 

SCM159 CGGGCCGGAAACACAAAA GGCGGGAAGGAAAAACAGAAA 115 Hackauf and Wehling 2002 A 

Z3512 AAATGCCTGCACACAAGCTA GGAAAATAACCCCCTTGTTG 245 Sun et al. 2016 - 

Z2064 TTTGCTCCACGTAGGGATCT GTTGGGTGTGAGGCTTGTTT 153 Sun et al. 2016 - 

Z2076 TGGATGCAAGTGACTCTTCG GAATTCCTGCTTCAGCTTGC 109 Sun et al. 2016 - 

Z2995 CATGCATGGGAGAGTGAGTG GCAGCGAACTGACTGACTGA 230 Sun et al. 2016 A 

Z3005 AGAATGTGTGCTCGACAACG ATGGTGATGTTGTAGGGGGA 83 Sun et al. 2016 - 

Z3010 TCCATCGAGGTGGAAGAATC GCTCTCTCCTCTCCCCTCAT 158 Sun et al. 2016 - 

Z3057 TCCCCAGGATTTCATTTCAC AATATGACGACTGAAGCCGC 191 Sun et al. 2016 A 

REMS1167 ATTGGAAGATCCGCCACC ATCAGGCCACACAATCACCT 247 Khleskina et al. 2004 - 

REMS1174 AGAACATCCAGGTGGTGGAC TAACAATGCAGATGGCGAAC 302 Khleskina et al. 2004 B 

REMS1186 CGTCTCGTCGCGTAAAAACT ACCTACCCACCCACCGAT 221 Khleskina et al. 2004 - 

REMS1205 TTGTTTTGCCAAAGAAGGCT TCACATCATGGAGGAACCAA 281 Khleskina et al. 2004 B 

REMS1218 CGCACAAACAAAAACACGAC CAAACAAACCCATTGACACG 230 Khleskina et al. 2004 A 

REMS1237 GCAATCTCAGATCCTACGGC GCTTCTGACTGAGCGAACCT 288 Khleskina et al. 2004 A, B 

REMS1264 AAAACCATCCACACATCCGT GAACTCGCTCTTCATCCTCG 282 Khleskina et al. 2004 B 

REMS1266 AAAGGAAAACCACCTCAGGG GCATTTTGCAGGAGAAGCAT 202 Khleskina et al. 2004 A, B 

 a Information on the size is obtained from references. 

b A indicates that the primers produce a polymorphic band between Siskiyou and UC38, B indicates the primers produce a 

polymorphic band between Siskiyou and Villax St. Jose, and “–“ indicates the primers yield no product or a monomorphic band.
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Construction of the genetic linkage map in LTC0918 population  

The 3,589 SNP markers from GBS and seven chromosome 5R–specific SSR markers 

were used to construct linkage map in the Siskiyou × Villax St. Jose F2:5 RIL population (Table 

3). The map consisted of 21 major linkage groups corresponding to 14 wheat and 7 rye 

chromosomes covering 2,890.33 cM in genetic distance (Figure 4, Table 3). The identity of each 

linkage group was determined by searching sequences of each GBS tag from the wheat and rye 

reference genome sequence (https://wheat-urgi.versailles.inra.fr/Seq-Repository/ and 

http://pgsb.helmholtz-muenchen.de/plant/rye/gz/searchjsp/). For wheat and rye, the majority of 

mapped markers were found to have good hits on the designated A and B and R chromosomes. 

Some of the markers mapped on rye chromosomes had hits on the corresponding homoeologous 

wheat A and B chromosomes (Table 3). The genetic distance for each chromosome ranged from 

79.95 (6A) to 206.56 cM (3A), and marker density for each chromosome ranged from 1.68 (4R) 

to 3.36 cM/marker (4B) (Table 3). Chromosome 5R contained 43 SNPs and 7 SSR markers 

spanning 136.72 cM (Table 3).  

 

 

 

 

https://wheat-urgi.versailles.inra.fr/Seq-Repository/
http://pgsb.helmholtz-muenchen.de/plant/rye/gz/searchjsp/
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Table 3. Summary of genetic linkage maps of triticale developed in the recombinant inbred line 

population derived from the cross between Siskiyou and Villax St. Jose 

Chromosome Marker mappeda Genetic distance (cM) Marker density (cM/marker) 

1A 73 (64) 152.68 2.09 

2A 66 (64) 152.09 2.30 

3A 87 (59) 206.56 2.37 

4A 48 (38) 116.63 2.43 

5A 52 (37) 166.92 3.21 

6A 24 (21) 79.95 3.33 

7A 72 (58) 194.43 2.70 

1B 53 (45) 147.79 2.79 

2B 84 (71) 150.92 1.80 

3B 83 (72) 160.17 1.93 

4B 34 (28) 114.44 3.36 

5B 83 (72) 183.08 2.20 

6B 66 (41) 140.49 2.13 

7B 47 (38) 105.41 2.24 

1R 43 (32+6) 90.24 2.10 

2R 38 (29+3) 83.87 2.21 

3R 57 (42+1) 110.73 1.94 

4R 91 (67+3) 153.00 1.68 

5R 50 (41+1+7) 136.72 2.73 

6R              81 (40) 136.76 1.69 

7R 43 (25+4) 107.45 2.50 

A genome 422 1069.26 2.53 

B genome 450 1002.30 2.23 

R genome 403 818.77 2.03 

Total 1275 2890.33 2.27 

a Numbers in brackets, in order, indicate the number of markers having a strong hit to the 

corresponding chromosome from blast searching of the tag sequence against the wheat and rye 

reference genome sequences (wheat: https://wheat-urgi.versailles.inra.fr/Seq-Repository/; rye: 

(http://pgsb.helmholtz-muenchen.de/plant/rye/gz/searchjsp/), the numbers of markers mapping to 

an R genome chromosome that have hits to corresponding homoeologous wheat chromosomes, 

and (for 5R) the number of SSR markers mapped. 

 

https://wheat-urgi.versailles.inra.fr/Seq-Repository/
http://pgsb.helmholtz-muenchen.de/plant/rye/gz/searchjsp/
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Figure 4. Genetic linkage maps (1A-7A) developed in a recombinant inbred line population derived from the cross between 

in Siskiyou and Villax St. Jose  
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Figure 4. Genetic linkage maps (1B-7B) developed in a recombinant inbred line population derived from the cross between 

in Siskiyou and Villax St. Jose (continued) 
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Figure 4. Genetic linkage maps (1R-7R) developed in a recombinant inbred line population derived from the cross between 

in Siskiyou and Villax St. Jose (continued) 
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QTL mapping of BLS resistance in the LTC0918 population  

In the evaluations with either strains BLS-LB10 or XT4699, the Siskiyou × Villax St. 

Jose RIL population segregated for the reaction to BLS from resistant to susceptible as Villax St. 

Jose (Figure 5). Trait analysis with Qgene software indicated the deviation of the population 

from a normal distribution (P<0.05), suggesting the presence of a major gene (Figure 5). Using 

the composite interval mapping (CIM) function, a single and major QTL was identified on 

chromosome 5R for resistance to BLS for all three replicates with both strains. The QTL was 

delimited to a 4.9 cM genetic region by the SNP markers TP95917 and TP79929 (Table 4). The 

LOD cutoff value for significance was obtained as α0.01 = 4.322. All QTLs had very higher LOD 

values ranging from 11.237 to 16.982 for BLS-LB10 and 10.22 to 12.399 for XT4699. The 

phenotypic variation for the QTLs ranged from 0.383 to 0.46, 0.331 to 0.391 for BLS-LB10 and 

XT4699 respectively (Table 4). The SSR marker XSCM138 and SNP marker, TP4965, underlie 

the peak of all the QTL identified (Figure 6).  
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Figure 5. Histograms of the segregation of Siskiyou x Villax St. Jose F2:5 recombinant inbred 

line population in reaction to two Xanthomonas translucens pv. undulosa strains BLS-LB10 

and XT4699. 
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Figure 6. Composite interval mapping of the major QTLs for resistance to BLS on chromosome 

5R in the Siskiyou x Villax St. Jose F2:5 recombinant inbred line population. The marker loci and 

their genetic positions are shown below and above respectively, the chromosome. A line 

indicates a LOD cutoff of 4.322 for composite interval mapping. 

Table 4. Summary of the significant quantitative trait locus associated with resistance to bacterial 

leaf streak caused by two Xanthamonas translucens strains 

Strain Flanking markers LOD R2 

BLS-LB10 – rep 1 TP95917 – TP79929 16.982 0.46 

BLS-LB10 – rep 2 TP95917 – TP79929 16.568 0.45 

BLS-LB10 – rep 3 TP95917 – TP79929 11.237 0.383 

XT4699 – rep 1 TP95917 – TP79929 11.814 0.377 

XT4699 – rep 2 TP95917 – TP79929 12.399 0.391 

XT4699 – rep 3 TP95917 – TP79929 10.22 0.331 

LOD means logarithm of the odds and R2 means the phenotypic variation explains by each QTL 

Discussion 

Disease evaluations have shown that resistance to bacterial leaf streak (BLS) caused by 

X. translucens pv. undulosa (Xtu) in wheat is partial, whereas some triticale lines are highly 
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resistant (Cunfer and Scolar, 1982, Johnson et al. 1987). Triticale lines, or similar rye lines, 

therefore, could serve as a source of resistance for developing highly resistant wheat cultivars. 

However, resistance in triticale had not been further studied until now. From the evaluation of a 

worldwide collection of triticale accessions, one of the previous study done by our lab confirmed 

high levels of resistance in some triticale accessions and showed their resistance is also effective 

against North Dakota strains (Sapkota et al. 2017). Here, we developed segregating triticale 

populations to map the resistance locus by using Siskiyou (resistant) and two highly susceptible 

triticale accessions. In both populations, Siskiyou x UC38 which has been done by Dr. Aimin 

Wen and Siskiyou x Villax St. Jose resistance (my research) was shown to be conferred by a 

major gene (or tightly linked genes) on rye chromosome 5R. This locus was tightly linked to a 

SSR marker along with a few SNP markers (Fig. 2 and 6). To our knowledge, this is the first 

study to map a major locus conferring resistance to BLS caused by Xtu. Knowledge of the 

chromosomal location of the resistance locus and the identified molecular markers will be useful 

in the development of resistant triticale cultivars and, most importantly, in moving the resistance 

locus into wheat. 

Previous studies suggested that partial resistance in wheat is complex and likely 

conferred by multiple genes, each one having a minor effect (Duveiller et al. 1993, Adhikari et 

al. 2012). In contrast, a single gene was suggested by Johnson et al. (1987) to condition complete 

or a high level of resistance in three triticale lines, which was designated as Xct1 (Johnson et al. 

1987). However, the location of Xct1 was not determined. Siskiyou triticale was used in the 

study by Johnson et al. (1987). Therefore, the resistance locus mapped here is most likely Xct1, 

and, hereafter, we refer to the locus associated with XSCM138 and SNP marker TP4965 as Xct1. 

The fact that the resistance locus mapped to the rye genome, not the wheat genome, aligns with 



 

76 
 

expectations that complete or high levels of resistance to BLS have been identified only in 

triticale and rye lines and not wheat lines (El Attari et al. 1996, Kandel et al. 2012, Cunfer and 

Scolar, 1982, Charkhabi et al. 2015, Sapkota et al. 2017).  

We hypothesize that Xct1 in Siskiyou is a single dominant gene (or tightly linked genes) 

based on the reactions of F1 individuals from both crosses (Siskiyou × UC-38 and Siskiyou × 

Villax St Jose), which were similar to that of Siskiyou parent. Second, our preliminary studies 

done by Dr. Wen obtained the ratio of homozygous to heterozygous for Siskiyou × UC-38 F3 

families also fits perfectly to 1:2:1, indicating the presence of a single gene. We did not calculate 

the goodness of fit to a 3:1 ratio in the Siskiyou × UC-38 F2 population because we feel it is 

relatively arbitrary to define a cutoff value for the resistant vs. susceptible reaction. Third, we 

only detected one genomic region that was associated with BLS resistance with a major effect in 

the Siskiyou × Villax St. Jose RIL population using a high-density genetic linkage map. 

Nonetheless, we did observe that some lines had an intermediate reaction in the Siskiyou × 

Villax St. Jose RIL populations (Fig. 5). This may be due to low penetrance of the Siskiyou 

allele or poor expression of rye genes in triticale. It is also possible that small differences in 

environmental conditions or other minor genetic factors could modify the effect of Xct1. 

The population of Siskiyou x Villax St. Jose and the F2 population of Siskiyou x UC38, 

Xct1 was shown to be tightly linked to the SSR marker XSCM138.  This marker was mapped to 

chromosome 5R in several rye or triticale populations at positions ranging from 0 cM to 52.9 cM 

dependent on the coverage of the genetic map used (Saal and Wricke 1999, Korzun et al. 2001, 

Hackauf and Wehling 2003, Matos et al. 2007, Gustafson et al. 2009, Tenhola-Roininen et al. 

2011). Two genetic maps indicate that the marker is probably close to the centromere (Korzun et 

al. 2001, Gustafson et al. 2009). In our map, developed from the Siskiyou × Villax St. Jose RIL 



 

77 
 

population, XSCM138 mapped to the 46.1 cM position, which falls within the range of the 

genetic regions previously described. A rye consensus map, using several different rye 

populations, found that the genome structure of chromosome 5R is highly conserved in terms of 

the marker order between rye and triticale (Gustafson et al. 2009). Four of the SSRs are common 

in the two populations we developed, including XSCM138, XSCM151, REMS1266, REMS1237 

and had similar mapping orders on 5R (Fig. 2 and 6). The genetic order of the mapped SSR 

markers in both of two populations agrees well with the previously published maps (Saal and 

Wricke 1999, Khlestkina et al. 2004).   

Rye is not only an important food and feed crops, but also serves as an important source 

of genes for improving wheat genetic diversity. Many useful rye genes have been transferred into 

wheat using triticale as a bridge followed by the development of wheat-rye chromosome 

translocation lines carrying a small rye chromosomal segment (Zellar and Hsam 1983). In 

particular, the wheat-rye 1A/1R or 1B/1R translocations have been incorporated into many wheat 

cultivars for resistance to leaf rust, stripe rust, powdery mildew and/or insects (Rabinovich 1998, 

Kumar et al.  2003).We have confirmed Siskiyou is a hexploid triticale, containing 14 pairs of 

wheat chromosomes and 7 pairs of rye chromosomes (Sapkota et al. 2017). Transfer of Xct1 can 

be facilitated by using the Chinese Spring ph1b mutant (Sears 1982) along with the Xct1-

associated molecular markers identified in this study. XSCM138 can be directly used in the 

selection because of tight linkage with Xct1. The GBS marker TP4965, which is only 0.5 cM 

away from XSCM138 is also under the peak of the QTL (Fig. 6) and may be useful after being 

converted into a semi-thermal asymmetric reverse PCR marker (Long et al. 2017). 

The genetic linkage map we developed in the LTC0918 triticale population covered all 

21 chromosomes with a total genetic distance of 2890.33 cM. The map contained a total 1,275 
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(SNP+SSR) markers with a marker density of 2.27 cM per marker. For the majority of SNP 

marker, the tag sequence had a strong hit to the corresponding chromosome where it mapped to 

when being blasted against the reference genome sequences of wheat and rye indicating the 

robustness of the genetic linkage map. The rest of the markers which do not have a blast hit are 

likely due to incomplete coverage of the reference genome, particularly for the rye genome. Our 

map had a similar total genetic distance and marker density as the one published by Tyrka et al. 

(2011). However, Tyrka et al. (2015) reported a genetic map of triticale which spanned 4,907.4 

cM in genetic distance with a coverage of only 20 chromosomes. The significant longer genetic 

distance is likely due to the usage of much more DNA markers and an intervarietal population.  

The host-pathogen interaction in BLS remains largely uncharacterized at the molecular 

level, but the genome sequences of several X. translucens strains have been published 

(Wichmann et al. 2013, Gardiner et al. 2014, Pesce et al. 2015, Jaenicke et al. 2016, Peng et al. 

2016, Langlois et al. 2017), and these sequences have provided some insight into pathogen 

virulence and enabled the development of pathovar-specific markers. Many Xanthomonas 

pathogens, such as X. oryzae pv. oryzae (causal agent of rice bacterial leaf blight), X. oryzae pv. 

oryzicola (causal agent of rice bacterial leaf streak), and X. citri ssp. (the causal agents of citrus 

canker), inject transcription activator-like effectors (TALEs) into host cells through the bacterial 

type III secretion system. After entering plant cells, TALEs may act as virulence factors that 

activate host genes important for disease development, or in some host genotypes, as avirulence 

factors that activate a host “executor” resistance gene or that are recognized by a canonical NLR-

type resistance protein (Bogdanove et al. 2010, White and Yang 2009). Several TALEs have 

been identified in the published X. translucens genomes, and some evidence has shown that 

some of these TALEs play a role as virulence factors in BLS of wheat (Peng et al. 2016, Falahi-
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Charkhabi et al. 2017 in review). It is unknown whether any functions as an avirulence factor to 

trigger Xct1-mediated resistance. If a TALE acts as the avirulence factor by upregulating Xct1 

expression, identifying it could hasten the molecular cloning of Xct1.   

In conclusion, we mapped a major gene conferring high levels of resistance to BLS in 

triticale and identified SSR and GBS markers that co-segregate with it. This work not only 

provides important information and tools for developing resistant triticale and transferring the 

resistance gene into wheat germplasm, but also provides a foundation for cloning the resistance 

gene and studying cereal-X. translucens interactions.  
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APPENDIX: PHENOTYPIC DATA FOR THE BACTERIAL LEAF STREAK 

CAUSED BY XANTHOMONAS TRANSLUCENS PV. UNDULOSA STRAINS 

(BLS-LB10, XT4669) ON ‘SISKIYOU × VILLAX ST. JOSE RECOMBINANT 

INBRED LINE POPULATION 

RIL No BLS LB10 Xt4699 

 Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 

1 0 - 5 - 2 5 

2 30 0 0 0 0 2 

3 0 2 50 0 0 0 

4 50 20 20 20 20 30 

6 15 5 5 20 5 2 

7 5 0 0 2 10 2 

8 - - - - - - 

9 - 50 - 50 10 30 

10 80 40 50 40 60 60 

11 5 0 0 2 0 5 

12 15 10 10 50 5 50 

13 60 50 5 40 40 40 

14 15 30 15 20 2 30 

15 15 0 0 0 0 0 

16 70 40 40 5 - 40 

17 - - - - - - 

18 40 5 60 30 5 5 

19 - 40 - - - - 

21 0 2 0 2 0 5 

22 40 50 70 30 30 30 

23 50 10 20 - 2 40 

24 5 2 40 2 0 15 

25 - 0 0 0 0 5 

26 10 5 0 0 0 0 

27 0 0 0 2 0 0 

28 30 10 40 2 20 60 

30 5 0 0 0 0 20 

32 0 0 0 0 0 5 

33 15 0 0 0 0 2 

34 5 2 0 0 0 0 

36 15 2 0 0 0 20 

37 - 50 50 30 2 0 
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RIL No BLS LB10 Xt4699 

Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 

38 40 40 20 40 - - 

39 20 0 2 1 0 10 

40 5 5 10 5 0 2 

41 - 30 30 5 20 30 

42 40 5 5 0 10 0 

43 30 5 5 10 15 40 

44 80 30 20 30 50 50 

45 5 0 0 15 20 5 

46 1 0 0 0 0 2 

47 20 2 10 10 5 5 

48 50 40 40 20 50 70 

49 1 0 0 0 5 0 

50 70 20 20 50 40 40 

52 80 40 60 30 50 60 

53 20 0 0 0 2 0 

54 - - - - - - 

56 5 0 - 5 - 20 

57 30 10 20 30 5 40 

58 80 10 20 50 10 50 

59 60 20 30 20 20 10 

60 60 - - - - - 

61 - - - - - - 

62 40 40 30 - 30 60 

63 - - - - - - 

64 10 2 0 10 1 20 

66 80 50 - - - - 

67 15 0 0 0 2 2 

69 5 30 0 40 40 50 

70 40 - - - - - 

71 60 40 30 60 20 50 

72 5 5 0 20 0 40 

73 - - - - - - 

74 - 0 5 - - 0 

75 5 10 20 15 5 15 

76 1 0 0 2 0 0 

78 0 0 0 0 0 0 

80 - - 30 - 40 - 

81 15 20 5 1 20 40 

82 5 0 5 - - - 

83 5 0 0 - - - 

84 - - - - - 15 
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RIL No BLS LB10 Xt4699 

Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 

86 5 0 0 1 0 0 

87 30 40 60 50 40 40 

88 70 5 20 20 40 40 

89 100 30 40 30 30 60 

90 60 30 20 20 30 5 

91 0 0 - - 5 0 

92 80 10 20 5 2 2 

93 - - - - - - 

95 10 5 5 0 - - 

96 60 2 30 2 2 40 

100 20 - 0 0 2 2 

101 - 5 - - - 30 

102 70 10 10 10 0 20 

104 - - 20 - - - 

105 60 50 30 50 30 50 

106 - 0 - 1 - 0 

107 20 2 50 30 5 30 

108 50 10 20 5 20 30 

109 90 40 30 - 10 50 

110 80 2 20 5 10 40 

111 60 5 40 20 30 30 

112 5 2 - 5 2 5 

113 80 50 15 60 40 60 

114 10 10 30 20 10 20 

115 - 20 40 - 2 60 

116 80 5 40 80 40 20 

117 0 0 - 0 0 0 

118 2 0 0 30 0 5 

121 50 50 50 50 30 30 

122 20 30 20 50 20 60 

125 5 0 0 0 0 0 

126 5 0 0 0 0 0 

127 - 2 0 0 0 5 

128 5 0 0 0 0 0 

129 90 60 60 50 60 60 

132 0 0 0 0 0 0 

134 80 20 40 40 20 50 

135 5 50 40 10 20 60 

136 50 20 70 5 40 60 

137 0 2 0 10 0 0 

138 - 0 0 0 0 5 
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RIL No BLS LB10 Xt4699 

Rep1 Rep2 Rep3 Rep1 Rep2 Rep3 

139 40 20 60 40 10 50 

140 5 5 2 0 5 15 

141 5 20 5 5 10 15 

142 80 50 40 40 20 50 

143 80 20 50 30 10 0 

144 90 50 60 - 60 70 

145 70 15 60 50 50 - 

146 - - 5 - - - 

147 5 0 5 10 1 5 

148 50 20 2 70 2 60 

149 30 5 20 20 10 20 

150 40 20 20 20 40 80 

151 0 0 0 2 0 30 

152 50 30 50 30 50 60 

153 - 5 0 2 0 10 

154 30 10 30 50 0 50 

155 - 5 30 0 0 20 

157 70 40 50 30 10 50 

158 70 30 20 10 40 60 

159 2 10 30 - - - 

160 50 20 20 20 10 20 

163 5 50 2 40 20 60 

164 0 0 0 0 0 0 

167 0 0 10 0 10 10 

168 80 50 50 40 30 60 

169 0 0 0 1 0 0 

170 0 0 0 0 0 0 

 


