Skip to main content

Restrictive Cardiomyopathy in Children

  • Living reference work entry
  • First Online:
Pediatric Cardiology

Abstract

Restrictive cardiomyopathy (RCM) is one of the rarest and most rapidly lethal forms of childhood cardiomyopathy. RCM is characterized by diastolic dysfunction with restrictive and reduced ventricular filling. The causes of RCM are significantly different in children compared to adults and often differ based on geography. In children, RCM is typically most often classified as idiopathic, although causative genetic mutations are increasingly being identified. Secondary causes of RCM in children are rare. The age and clinical presentation of children with RCM vary significantly. Symptoms range from absent to severe including heart failure, syncope, embolic events, or sudden cardiac death. RCM is usually diagnosed by echocardiogram and confirmed by cardiac catheterization. Medical management is limited and is primarily symptom based with judicious use of diuretics to improve pulmonary and systemic venous congestion. No current medical or mechanical therapies improve diastolic dysfunction or improve transplant-free survival, which remains poor. This is likely due to the many different underlying mechanisms that can lead to the restrictive physiology phenotype. However, the overall outcomes of children with RCM have significantly improved due to the strategy of earlier heart transplantation. The timing for listing for heart transplant remains controversial and is multifactorial. Posttransplant outcomes of children with RCM are similar to posttransplant outcomes in other forms of cardiomyopathy. Until a better understanding of the mechanistic pathways leading to RCM can result in improved risk stratification and/or disease-modifying therapies, cardiac transplantation remains the definitive therapy for children with RCM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Richardson P, McKenna W, Bristow M, et al. Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation. 1996;93(5):841–2. https://doi.org/10.1161/01.cir.93.5.841.

    Article  CAS  PubMed  Google Scholar 

  2. Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation. 2006;113(14):1807–16. https://doi.org/10.1161/CIRCULATIONAHA.106.174287.

    Article  PubMed  Google Scholar 

  3. Denfield SW, Webber SA. Restrictive cardiomyopathy in childhood. Heart Fail Clin. 2010;6(4):445–52, viii. https://doi.org/10.1016/j.hfc.2010.05.005.

    Article  PubMed  Google Scholar 

  4. Burns KM, Byrne BJ, Gelb BD, et al. New mechanistic and therapeutic targets for pediatric heart failure: report from a National Heart, Lung, and Blood Institute working group. Circulation. 2014;130(1):79–86. https://doi.org/10.1161/CIRCULATIONAHA.113.007980.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Masutani S, Little WC, Hasegawa H, Cheng HJ, Cheng CP. Restrictive left ventricular filling pattern does not result from increased left atrial pressure alone. Circulation. 2008;117(12):1550–4. https://doi.org/10.1161/CIRCULATIONAHA.107.730564.

    Article  PubMed  Google Scholar 

  6. Vaikunth SS, Lui GK. Heart failure with reduced and preserved ejection fraction in adult congenital heart disease. Heart Fail Rev. 2020;25(4):569–81. https://doi.org/10.1007/s10741-019-09904-z.

    Article  PubMed  Google Scholar 

  7. Lipshultz SE, Sleeper LA, Towbin JA, et al. The incidence of pediatric cardiomyopathy in two regions of the United States. N Engl J Med. 2003;348(17):1647–55. https://doi.org/10.1056/NEJMoa021715.

    Article  PubMed  Google Scholar 

  8. Nugent AW, Daubeney PE, Chondros P, et al. The epidemiology of childhood cardiomyopathy in Australia. N Engl J Med. 2003;348(17):1639–46. https://doi.org/10.1056/NEJMoa021737.

    Article  PubMed  Google Scholar 

  9. Denfield SW, Rosenthal G, Gajarski RJ, et al. Restrictive cardiomyopathies in childhood. Etiologies and natural history. Tex Heart Inst J. 1997;24(1):38–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewis AB. Clinical profile and outcome of restrictive cardiomyopathy in children. Am Heart J. 1992;123(6):1589–93. https://doi.org/10.1016/0002-8703(92)90814-c.

    Article  CAS  PubMed  Google Scholar 

  11. Malcić I, Jelusić M, Kniewald H, Barisić N, Jelasić D, Bozikov J. Epidemiology of cardiomyopathies in children and adolescents: a retrospective study over the last 10 years. Cardiol Young. 2002;12(3):253–9. https://doi.org/10.1017/s1047951102000550.

    Article  PubMed  Google Scholar 

  12. Webber SA, Lipshultz SE, Sleeper LA, et al. Outcomes of restrictive cardiomyopathy in childhood and the influence of phenotype: a report from the pediatric cardiomyopathy registry. Circulation. 2012;126(10):1237–44. https://doi.org/10.1161/CIRCULATIONAHA.112.104638.

    Article  PubMed  Google Scholar 

  13. Wittekind SG, Ryan TD, Gao Z, et al. Contemporary outcomes of pediatric restrictive cardiomyopathy: a single-center experience. Pediatr Cardiol. 2019;40(4):694–704. https://doi.org/10.1007/s00246-018-2043-0.

    Article  PubMed  Google Scholar 

  14. Hayashi T, Tanimoto K, Hirayama-Yamada K, et al. Genetic background of Japanese patients with pediatric hypertrophic and restrictive cardiomyopathy. J Hum Genet. 2018;63(9):989–96. https://doi.org/10.1038/s10038-018-0479-y.

    Article  CAS  PubMed  Google Scholar 

  15. Parrott A, Khoury PR, Shikany AR, Lorts A, Villa CR, Miller EM. Investigation of de novo variation in pediatric cardiomyopathy. Am J Med Genet C Semin Med Genet. 2020;184(1):116–23. https://doi.org/10.1002/ajmg.c.31764.

    Article  CAS  PubMed  Google Scholar 

  16. Geske JB, Anavekar NS, Nishimura RA, Oh JK, Gersh BJ. Differentiation of constriction and restriction: complex cardiovascular hemodynamics. J Am Coll Cardiol. 2016;68(21):2329–47. https://doi.org/10.1016/j.jacc.2016.08.050.

    Article  PubMed  Google Scholar 

  17. Zangwill SD, Naftel D, L’Ecuyer T, et al. Outcomes of children with restrictive cardiomyopathy listed for heart transplant: a multi-institutional study. J Heart Lung Transplant. 2009;28(12):1335–40. https://doi.org/10.1016/j.healun.2009.06.028.

    Article  PubMed  Google Scholar 

  18. Sen-Chowdhry S, Syrris P, McKenna WJ. Genetics of restrictive cardiomyopathy. Heart Fail Clin. 2010;6(2):179–86. https://doi.org/10.1016/j.hfc.2009.11.005.

    Article  PubMed  Google Scholar 

  19. Mortensen SA, Olsen HS, Baandrup U. Chronic anthracycline cardiotoxicity: haemodynamic and histopathological manifestations suggesting a restrictive endomyocardial disease. Br Heart J. 1986;55(3):274–82. https://doi.org/10.1136/hrt.55.3.274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bu’Lock FA, Gabriel HM, Oakhill A, Mott MG, Martin RP. Cardioprotection by ICRF187 against high dose anthracycline toxicity in children with malignant disease. Br Heart J. 1993;70(2):185–8. https://doi.org/10.1136/hrt.70.2.185.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Mason JW, Billingham ME, Friedman JP. Methysergide-induced heart disease: a case of multivalvular and myocardial fibrosis. Circulation. 1977;56(5):889–90. https://doi.org/10.1161/01.cir.56.5.889.

    Article  CAS  PubMed  Google Scholar 

  22. Billingham ME. Pharmacotoxic myocardial disease: an endomyocardial study. Heart Vessels Suppl. 1985;1:278–82. https://doi.org/10.1007/BF02072409.

    Article  CAS  PubMed  Google Scholar 

  23. Gottdiener JS, Katin MJ, Borer JS, Bacharach SL, Green MV. Late cardiac effects of therapeutic mediastinal irradiation. Assessment by echocardiography and radionuclide angiography. N Engl J Med. 1983;308(10):569–72. https://doi.org/10.1056/NEJM198303103081005.

    Article  CAS  PubMed  Google Scholar 

  24. Mocumbi AO, Ferreira MB, Sidi D, Yacoub MH. A population study of endomyocardial fibrosis in a rural area of Mozambique. N Engl J Med. 2008;359(1):43–9. https://doi.org/10.1056/NEJMoa0708629.

    Article  CAS  PubMed  Google Scholar 

  25. Mocumbi AO, Yacoub S, Yacoub MH. Neglected tropical cardiomyopathies: II. Endomyocardial fibrosis: myocardial disease. Heart. 2008;94(3):384–90. https://doi.org/10.1136/hrt.2007.136101.

    Article  PubMed  Google Scholar 

  26. Grimaldi A, Mocumbi AO, Freers J, et al. Tropical endomyocardial fibrosis: natural history, challenges, and perspectives. Circulation. 2016;133(24):2503–15. https://doi.org/10.1161/CIRCULATIONAHA.115.021178.

    Article  CAS  PubMed  Google Scholar 

  27. Denfield SW. Chapter 18 – clinical features of restrictive cardiomyopathy and constrictive pericarditis. In: Jefferies JL, Chang AC, Rossano JW, Shaddy RE, Towbin JA, editors. Heart failure in the child and young adult. Academic Press; 2018. p. 215–38.

    Chapter  Google Scholar 

  28. Mankad R, Bonnichsen C, Mankad S. Hypereosinophilic syndrome: cardiac diagnosis and management. Heart. 2016;102(2):100–6. https://doi.org/10.1136/heartjnl-2015-307959.

    Article  CAS  PubMed  Google Scholar 

  29. Radford DJ, Garlick RB, Pohlner PG. Multiple valvar replacements for hypereosinophilic syndrome. Cardiol Young. 2002;12(1):67–70. https://doi.org/10.1017/s1047951102000136.

    Article  PubMed  Google Scholar 

  30. Santos CL, Moraes CR, Santos FL, Moraes F, Brindeiro FD. Endomyocardial fibrosis in children. Cardiol Young. 2001;11(2):205–9. https://doi.org/10.1017/s1047951101000129.

    Article  CAS  PubMed  Google Scholar 

  31. Murphy SL, Anderson JH, Kapplinger JD, et al. Evaluation of the Mayo Clinic phenotype-based genotype predictor score in patients with clinically diagnosed hypertrophic cardiomyopathy. J Cardiovasc Transl Res. 2016;9(2):153–61. https://doi.org/10.1007/s12265-016-9681-5.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mogensen J, Kubo T, Duque M, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest. 2003;111(2):209–16. https://doi.org/10.1172/JCI16336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaski JP, Syrris P, Burch M, et al. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart. 2008;94(11):1478–84. https://doi.org/10.1136/hrt.2007.134684.

    Article  CAS  Google Scholar 

  34. Peddy SB, Vricella LA, Crosson JE, et al. Infantile restrictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene. Pediatrics. 2006;117(5):1830–3. https://doi.org/10.1542/peds.2005-2301.

    Article  PubMed  Google Scholar 

  35. Peled Y, Gramlich M, Yoskovitz G, et al. Titin mutation in familial restrictive cardiomyopathy. Int J Cardiol. 2014;171(1):24–30. https://doi.org/10.1016/j.ijcard.2013.11.037.

    Article  PubMed  Google Scholar 

  36. Brodehl A, Ferrier RA, Hamilton SJ, et al. Mutations in FLNC are associated with familial restrictive cardiomyopathy. Hum Mutat. 2016;37(3):269–79. https://doi.org/10.1002/humu.22942.

    Article  CAS  Google Scholar 

  37. Pinto JR, Parvatiyar MS, Jones MA, Liang J, Potter JD. A troponin T mutation that causes infantile restrictive cardiomyopathy increases Ca2+ sensitivity of force development and impairs the inhibitory properties of troponin. J Biol Chem. 2008;283(4):2156–66. https://doi.org/10.1074/jbc.M707066200.

    Article  CAS  PubMed  Google Scholar 

  38. Selcen D, Muntoni F, Burton BK, et al. Mutation in BAG3 causes severe dominant childhood muscular dystrophy. Ann Neurol. 2009;65(1):83–9. https://doi.org/10.1002/ana.21553.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dalakas MC, Park KY, Semino-Mora C, Lee HS, Sivakumar K, Goldfarb LG. Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med. 2000;342(11):770–80. https://doi.org/10.1056/NEJM200003163421104.

    Article  CAS  PubMed  Google Scholar 

  40. Facher JJ, Regier EJ, Jacobs GH, Siwik E, Delaunoy JP, Robin NH. Cardiomyopathy in Coffin-Lowry syndrome. Am J Med Genet A. 2004;128A(2):176–8. https://doi.org/10.1002/ajmg.a.30056.

    Article  PubMed  Google Scholar 

  41. Sanna T, Dello Russo A, Toniolo D, et al. Cardiac features of Emery-Dreifuss muscular dystrophy caused by Lamin A/C gene mutations. Eur Heart J. 2003;24(24):2227–36. https://doi.org/10.1016/j.ehj.2003.09.020.

    Article  CAS  PubMed  Google Scholar 

  42. Arbustini E, Pasotti M, Pilotto A, et al. Desmin accumulation restrictive cardiomyopathy and atrioventricular block associated with desmin gene defects. Eur J Heart Fail. 2006;8(5):477–83. https://doi.org/10.1016/j.ejheart.2005.11.003.

    Article  CAS  PubMed  Google Scholar 

  43. Kushwaha SS, Fallon JT, Fuster V. Restrictive cardiomyopathy. N Engl J Med. 1997;336(4):267–76. https://doi.org/10.1056/NEJM199701233360407.

    Article  CAS  PubMed  Google Scholar 

  44. Marshall JD, Muller J, Collin GB, et al. Alström syndrome: mutation spectrum of ALMS1. Hum Mutat. 2015;36(7):660–8. https://doi.org/10.1002/humu.22796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karlberg N, Jalanko H, Perheentupa J, Lipsanen-Nyman M. Mulibrey nanism: clinical features and diagnostic criteria. J Med Genet. 2004;41(2):92–8. https://doi.org/10.1136/jmg.2003.014118.

    Article  CAS  PubMed Central  Google Scholar 

  46. Starr LJ, Grange DK, Delaney JW, et al. Myhre syndrome: clinical features and restrictive cardiopulmonary complications. Am J Med Genet A. 2015;167A(12):2893–901. https://doi.org/10.1002/ajmg.a.37273.

    Article  Google Scholar 

  47. Rivenes SM, Kearney DL, Smith EO, Towbin JA, Denfield SW. Sudden death and cardiovascular collapse in children with restrictive cardiomyopathy. Circulation. 2000;102(8):876–82. https://doi.org/10.1161/01.cir.102.8.876.

    Article  CAS  PubMed  Google Scholar 

  48. Weller RJ, Weintraub R, Addonizio LJ, Chrisant MR, Gersony WM, Hsu DT. Outcome of idiopathic restrictive cardiomyopathy in children. Am J Cardiol. 2002;90(5):501–6. https://doi.org/10.1016/s0002-9149(02)02522-5.

    Article  PubMed  Google Scholar 

  49. Elliott P, Andersson B, Arbustini E, et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J. 2008;29(2):270–6. https://doi.org/10.1093/eurheartj/ehm342.

    Article  PubMed  Google Scholar 

  50. Courtois M, Kovács SJ, Ludbrook PA. Transmitral pressure-flow velocity relation. Importance of regional pressure gradients in the left ventricle during diastole. Circulation. 1988;78(3):661–71. https://doi.org/10.1161/01.cir.78.3.661.

    Article  CAS  PubMed  Google Scholar 

  51. Li CJ, Chen CS, Yiang GT, Tsai AP, Liao WT, Wu MY. Advanced evolution of pathogenesis concepts in cardiomyopathies. J Clin Med. 2019;8(4) https://doi.org/10.3390/jcm8040520.

  52. Atun R, Davies JI, Gale EAM, et al. Diabetes in sub-Saharan Africa: from clinical care to health policy. Lancet Diabetes Endocrinol. 2017;5(8):622–67. https://doi.org/10.1016/S2213-8587(17)30181-X.

    Article  Google Scholar 

  53. Graham TP, Johns JA. Pre-operative assessment of ventricular function in patients considered for Fontan procedure. Herz. 1992;17(4):213–9.

    Google Scholar 

  54. Krieger EV, Fernandes SM. Heart failure caused by congenital left-sided lesions. Heart Fail Clin. 2014;10(1):155–65. https://doi.org/10.1016/j.hfc.2013.09.015.

    Article  PubMed  Google Scholar 

  55. Krogmann ON, Rammos S, Jakob M, Corin WJ, Hess OM, Bourgeois M. Left ventricular diastolic dysfunction late after coarctation repair in childhood: influence of left ventricular hypertrophy. J Am Coll Cardiol. 1993;21(6):1454–60. https://doi.org/10.1016/0735-1097(93)90323-s.

    Article  CAS  Google Scholar 

  56. Gatzoulis MA, Clark AL, Cullen S, Newman CG, Redington AN. Right ventricular diastolic function 15 to 35 years after repair of tetralogy of Fallot. Restrictive physiology predicts superior exercise performance. Circulation. 1995;91(6):1775–81. https://doi.org/10.1161/01.cir.91.6.1775.

    Article  CAS  PubMed  Google Scholar 

  57. Inai K, Nakanishi T, Mori Y, Tomimatsu H, Nakazawa M. Left ventricular diastolic dysfunction in Ebstein’s anomaly. Am J Cardiol. 2004;93(2):255–8. https://doi.org/10.1016/j.amjcard.2003.09.056.

    Article  PubMed  Google Scholar 

  58. Tretter JT, Redington AN. The forgotten ventricle? The left ventricle in right-sided congenital heart disease. Circ Cardiovasc Imaging. 2018;11(3):e007410. https://doi.org/10.1161/CIRCIMAGING.117.007410.

    Article  Google Scholar 

  59. Andrade L, Carazo M, Wu F, Kim Y, Wilson W. Mechanisms for heart failure in systemic right ventricle. Heart Fail Rev. 2020;25(4):599–607. https://doi.org/10.1007/s10741-019-09902-1.

    Article  Google Scholar 

  60. Penny DJ, Rigby ML, Redington AN. Abnormal patterns of intraventricular flow and diastolic filling after the Fontan operation: evidence for incoordinate ventricular wall motion. Br Heart J. 1991;66(5):375–8. https://doi.org/10.1136/hrt.66.5.375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Akagi T, Benson LN, Gilday DL, et al. Influence of ventricular morphology on diastolic filling performance in double-inlet ventricle after the Fontan procedure. J Am Coll Cardiol. 1993;22(7):1948–52. https://doi.org/10.1016/0735-1097(93)90784-x.

    Article  CAS  Google Scholar 

  62. Cheung YF, Penny DJ, Redington AN. Serial assessment of left ventricular diastolic function after Fontan procedure. Heart. 2000;83(4):420–4. https://doi.org/10.1136/heart.83.4.420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Motonaga KS, Khairy P, Dubin AM. Electrophysiologic therapeutics in heart failure in adult congenital heart disease. Heart Fail Clin. 2014;10(1):69–89. https://doi.org/10.1016/j.hfc.2013.09.011.

    Article  PubMed  Google Scholar 

  64. Lee TM, Hsu DT, Kantor P, et al. Pediatric cardiomyopathies. Circ Res. 2017;121(7):855–73. https://doi.org/10.1161/CIRCRESAHA.116.309386.

    Article  CAS  PubMed Central  Google Scholar 

  65. Anderson HN, Cetta F, Driscoll DJ, Olson TM, Ackerman MJ, Johnson JN. Idiopathic restrictive cardiomyopathy in children and young adults. Am J Cardiol. 2018;121(10):1266–70. https://doi.org/10.1016/j.amjcard.2018.01.045.

    Article  PubMed  Google Scholar 

  66. Fitzpatrick AP, Shapiro LM, Rickards AF, Poole-Wilson PA. Familial restrictive cardiomyopathy with atrioventricular block and skeletal myopathy. Br Heart J. 1990;63(2):114–8. https://doi.org/10.1136/hrt.63.2.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Russo LM, Webber SA. Idiopathic restrictive cardiomyopathy in children. Heart. 2005;91(9):1199–202. https://doi.org/10.1136/hrt.2004.043869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hayashi T, Tsuda E, Kurosaki K, Ueda H, Yamada O, Echigo S. Electrocardiographic and clinical characteristics of idiopathic restrictive cardiomyopathy in children. Circ J. 2007;71(10):1534–9. https://doi.org/10.1253/circj.71.1534.

    Article  PubMed  Google Scholar 

  69. Cetta F, O’Leary PW, Seward JB, Driscoll DJ. Idiopathic restrictive cardiomyopathy in childhood: diagnostic features and clinical course. Mayo Clin Proc. 1995;70(7):634–40. https://doi.org/10.4065/70.7.634.

    Article  CAS  PubMed  Google Scholar 

  70. Walsh MA, Grenier MA, Jefferies JL, Towbin JA, Lorts A, Czosek RJ. Conduction abnormalities in pediatric patients with restrictive cardiomyopathy. Circ Heart Fail. 2012;5(2):267–73. https://doi.org/10.1161/CIRCHEARTFAILURE.111.964395.

    Article  PubMed  Google Scholar 

  71. Sasaki N, Garcia M, Lytrivi I, et al. Utility of Doppler tissue imaging-derived indices in identifying subclinical systolic ventricular dysfunction in children with restrictive cardiomyopathy. Pediatr Cardiol. 2011;32(5):646–51. https://doi.org/10.1007/s00246-011-9948-1.

    Article  Google Scholar 

  72. Chen SC, Balfour IC, Jureidini S. Clinical spectrum of restrictive cardiomyopathy in children. J Heart Lung Transplant. 2001;20(1):90–2. https://doi.org/10.1016/s1053-2498(00)00162-5.

    Article  CAS  PubMed  Google Scholar 

  73. Maskatia SA, Decker JA, Spinner JA, et al. Restrictive physiology is associated with poor outcomes in children with hypertrophic cardiomyopathy. Pediatr Cardiol. 2012;33(1):141–9. https://doi.org/10.1007/s00246-011-0106-6.

    Article  PubMed  Google Scholar 

  74. Ha JW, Ommen SR, Tajik AJ, et al. Differentiation of constrictive pericarditis from restrictive cardiomyopathy using mitral annular velocity by tissue Doppler echocardiography. Am J Cardiol. 2004;94(3):316–9. https://doi.org/10.1016/j.amjcard.2004.04.026.

    Article  PubMed  Google Scholar 

  75. Quiñones MA. Assessment of diastolic function. Prog Cardiovasc Dis. 2005;47(5):340–55. https://doi.org/10.1016/j.pcad.2005.02.009.

    Article  PubMed  Google Scholar 

  76. Sasaki N, Garcia M, Ko HH, Sharma S, Parness IA, Srivastava S. Applicability of published guidelines for assessment of left ventricular diastolic function in adults to children with restrictive cardiomyopathy: an observational study. Pediatr Cardiol. 2015;36(2):386–92. https://doi.org/10.1007/s00246-014-1018-z.

    Article  PubMed  Google Scholar 

  77. Ezon DS, Maskatia SA, Sexson-Tejtel K, Dreyer WJ, Jeewa A, Denfield SW. Tissue Doppler imaging measures correlate poorly with left ventricular filling pressures in pediatric cardiomyopathy. Congenit Heart Dis. 2015;10(5):E203–9. https://doi.org/10.1111/chd.12267.

    Article  PubMed  Google Scholar 

  78. Dragulescu A, Mertens L, Friedberg MK. Interpretation of left ventricular diastolic dysfunction in children with cardiomyopathy by echocardiography: problems and limitations. Circ Cardiovasc Imaging. 2013;6(2):254–61. https://doi.org/10.1161/CIRCIMAGING.112.000175.

    Article  Google Scholar 

  79. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the heart failure association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69. https://doi.org/10.1093/eurjhf/hfs105.

    Article  CAS  PubMed  Google Scholar 

  80. Chen K, Williams S, Chan AK, Mondal TK. Thrombosis and embolism in pediatric cardiomyopathy. Blood Coagul Fibrinolysis. 2013;24(3):221–30. https://doi.org/10.1097/MBC.0b013e32835bfd85.

    Article  PubMed  Google Scholar 

  81. Gupta A, Singh Gulati G, Seth S, Sharma S. Cardiac MRI in restrictive cardiomyopathy. Clin Radiol. 2012;67(2):95–105. https://doi.org/10.1016/j.crad.2011.05.020.

    Article  CAS  PubMed  Google Scholar 

  82. Fenton MJ, Chubb H, McMahon AM, Rees P, Elliott MJ, Burch M. Heart and heart-lung transplantation for idiopathic restrictive cardiomyopathy in children. Heart. 2006;92(1):85–9. https://doi.org/10.1136/hrt.2004.049502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Murtuza B, Fenton M, Burch M, et al. Pediatric heart transplantation for congenital and restrictive cardiomyopathy. Ann Thorac Surg. 2013;95(5):1675–84. https://doi.org/10.1016/j.athoracsur.2013.01.014.

    Article  PubMed  Google Scholar 

  84. Amdani S, Boyle G, Elizabeth S, et al. Waitlist and post- heart transplant outcomes for children with non-dilated cardiomyopathy. Ann Thorac Surg. 2020;112:188. https://doi.org/10.1016/j.athoracsur.2020.05.170.

    Article  PubMed  Google Scholar 

  85. Schoenfeld MH. The differentiation of restrictive cardiomyopathy from constrictive pericarditis. Cardiol Clin. 1990;8(4):663–71.

    Article  CAS  PubMed  Google Scholar 

  86. Lipshultz SE, Cochran TR, Briston DA, et al. Pediatric cardiomyopathies: causes, epidemiology, clinical course, preventive strategies and therapies. Future Cardiol. 2013;9(6):817–48. https://doi.org/10.2217/fca.13.66.

    Article  CAS  PubMed  Google Scholar 

  87. Singh TP, Almond CS, Piercey G, Gauvreau K. Current outcomes in US children with cardiomyopathy listed for heart transplantation. Circ Heart Fail. 2012;5(5):594–601. https://doi.org/10.1161/CIRCHEARTFAILURE.112.969980.

    Article  PubMed  Google Scholar 

  88. Dipchand AI, Naftel DC, Feingold B, et al. Outcomes of children with cardiomyopathy listed for transplant: a multi-institutional study. J Heart Lung Transplant. 2009;28(12):1312–21. https://doi.org/10.1016/j.healun.2009.05.019.

    Article  PubMed  Google Scholar 

  89. Dipchand AI. Current state of pediatric cardiac transplantation. Ann Cardiothorac Surg. 2018;7(1):31–55. https://doi.org/10.21037/acs.2018.01.07.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bengur AR, Beekman RH, Rocchini AP, Crowley DC, Schork MA, Rosenthal A. Acute hemodynamic effects of captopril in children with a congestive or restrictive cardiomyopathy. Circulation. 1991;83(2):523–7. https://doi.org/10.1161/01.cir.83.2.523.

    Article  CAS  PubMed  Google Scholar 

  91. Kirk R, Dipchand AI, Rosenthal DN, et al. The international society for heart and lung transplantation guidelines for the management of pediatric heart failure: executive summary. [Corrected]. J Heart Lung Transplant. 2014;33(9):888–909. https://doi.org/10.1016/j.healun.2014.06.002.

    Article  PubMed  Google Scholar 

  92. Morales DLS, Adachi I, Peng DM, et al. Fourth annual pediatric interagency registry for mechanical circulatory support (Pedimacs) report. Ann Thorac Surg. 2020;110(6):1819–31. https://doi.org/10.1016/j.athoracsur.2020.09.003.

    Article  PubMed  Google Scholar 

  93. Tunuguntla H, Denfield SW, McKenzie ED, Adachi I. Mitral valve replacement for inflow obstruction of left ventricular assist device in a child with restrictive cardiomyopathy. J Thorac Cardiovasc Surg. 2016;151(1):e11–3. https://doi.org/10.1016/j.jtcvs.2015.08.031.

    Article  PubMed  Google Scholar 

  94. Topilsky Y, Pereira NL, Shah DK, et al. Left ventricular assist device therapy in patients with restrictive and hypertrophic cardiomyopathy. Circ Heart Fail. 2011;4(3):266–75. https://doi.org/10.1161/CIRCHEARTFAILURE.110.959288.

    Article  PubMed  Google Scholar 

  95. Su JA, Menteer J. Outcomes of Berlin heart EXCOR. Pediatr Transplant. 2017;21(8) https://doi.org/10.1111/petr.13048.

  96. Sundararajan S, Thiruchelvam T, Hsia TY, Karimova A. New 15-mL ventricular assist device in children with restrictive physiology of the left ventricle. J Thorac Cardiovasc Surg. 2014;147(6):e79–80. https://doi.org/10.1016/j.jtcvs.2014.02.083.

    Article  PubMed  Google Scholar 

  97. Dykes JC, Reinhartz O, Almond CS, et al. Alternative strategy for biventricular assist device in an infant with hypertrophic cardiomyopathy. Ann Thorac Surg. 2017;104(2):e185–6. https://doi.org/10.1016/j.athoracsur.2017.02.069.

    Article  PubMed  Google Scholar 

  98. Glass L, Savage A, Haddad O, Kavarana MN. Continuous-flow, implantable biventricular assist device as bridge to cardiac transplantation in a small child with restrictive cardiomyopathy. J Heart Lung Transplant. 2018;37(1):173–4. https://doi.org/10.1016/j.healun.2017.08.001.

    Article  PubMed  Google Scholar 

  99. Bauer A, Khalil M, Lüdemann M, et al. Creation of a restrictive atrial communication in heart failure with preserved and mid-range ejection fraction: effective palliation of left atrial hypertension and pulmonary congestion. Clin Res Cardiol. 2018;107(9):845–57. https://doi.org/10.1007/s00392-018-1255-x.

    Article  PubMed  Google Scholar 

  100. Hasenfuß G, Hayward C, Burkhoff D, et al. A transcatheter intracardiac shunt device for heart failure with preserved ejection fraction (REDUCE LAP-HF): a multicentre, open-label, single-arm, phase 1 trial. Lancet. 2016;387(10025):1298–304. https://doi.org/10.1016/S0140-6736(16)00704-2.

    Article  PubMed  Google Scholar 

  101. Kaye DM, Hasenfuß G, Neuzil P, et al. One-year outcomes after transcatheter insertion of an interatrial shunt device for the management of heart failure with preserved ejection fraction. Circ Heart Fail. 2016;9(12) https://doi.org/10.1161/CIRCHEARTFAILURE.116.003662.

  102. Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(17):1609–20. https://doi.org/10.1056/NEJMoa1908655.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan W. Denfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Spinner, J.A., Denfield, S.W. (2023). Restrictive Cardiomyopathy in Children. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_77-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_77-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics