Skip to main content

Chemistry, Biological Activity, and Uses of Clusia Latex

  • Living reference work entry
  • First Online:
Gums, Resins and Latexes of Plant Origin

Abstract

Plants of the genus Clusia L. have had considerable importance to numerous traditional communities, providing food, remedies, and raw materials for crafts. These plants occur in southern Mexico, the Caribbean, the Amazon Forest, the Andes, and even reach southern Brazil. The genus is characterized by the production of latex in nearly all tissues of the plant. Interrelations between traditional neotropical people of the Americas and these plants have been quite diversified in terms of the number of species and the use of the products obtained from different parts of the plant for the treatment of diseases and even with magic connotations. Medicinal knowledge of these species based on their uses and forms of preparation has demonstrated the relevance of these plants and their importance to traditional communities. This chapter presents evidence of the importance of species of Clusia related to the different types of use, particularly medicinal purposes for primary health care among different traditional people. Ethnobotanical and ethnopharmacological aspects of these species are also addressed, with an emphasis on bioactive compounds, chemical composition, and biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

DCM:

Dichloromethane

EtOAc:

Ethyl acetate

EtOH:

Ethanol

MeOH:

Methanol

PPBs:

Polyprenylated benzophenones

PS:

Polysaccharide

References

  1. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in co-evolution. Evolution 18:586–608

    Article  Google Scholar 

  2. Brown RW (1956) Composition of scientific words. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  3. Metcalfe CR (1967) Distribution of latex in the plant kingdom. Econ Bot 21:115–127

    Article  Google Scholar 

  4. Coppen JJW (1995) Gums, resins, and latexes of plant origin, Non-wood Forest products. FAO, Rome

    Google Scholar 

  5. Abarca SLF, Klinghamer PGL, Choi YH (2019) Plant latex, from ecological interests to bioactive chemical resources. Planta Med 85:856–868

    Article  Google Scholar 

  6. Ruhfel BR, Bittrich V, Bove CP, Gustafsson MHG, Philbrick CT, Rutishauser R, Xi Z, Davis CC (2011) Phylogeny of the clusioid clade (Malpighiales): evidence from the plastid and mitochondrial genomes. Amer J Bot 98:306–325

    Article  Google Scholar 

  7. Went FAFC (1926) Latex as a constituent of the cell-sap. Verh Koningl Wetensch Amsterdam 29(2):192–198

    Google Scholar 

  8. Mahlberg PG (1993) Laticifers: an historical perspective. Bot Rev 59:1–23

    Article  Google Scholar 

  9. Lewinsohn TM (1991) The geographical distribution of plant latex. Chemoecology 2:64–68

    Article  Google Scholar 

  10. Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Pl Sci 13:631–639

    Article  CAS  Google Scholar 

  11. Agrawal AA, Konno K (2009) Latex: a model for understanding mechanisms, ecology, and evolution of plant defense against herbivory. Annu Rev Ecol Evol Syst 40:311–331

    Article  Google Scholar 

  12. Hunter JR (1994) Reconsidering the functions of latex. Trees 9:1–5

    Article  Google Scholar 

  13. Hua J, Liu Y, Xiao CJ, Jin SX, Lou SH, Li SH (2017) Chemical profile and defensive function of the latex of Euphorbia peplus. Phytochemistry 136:56–64

    Article  CAS  PubMed  Google Scholar 

  14. Dussourd DE (2017) Behavioral sabotage of plant defenses by insect folivores. Annu Rev Entomol 62:15–34

    Article  CAS  PubMed  Google Scholar 

  15. Kniep KJ (1905) Über die Bedeutung des Milchsafts der Pflanzen. Flora 94:129–205

    Google Scholar 

  16. Dussourd DE, Eisner T (1987) Vein-cutting behavior: insect counterploy to the latex defense of plants. Science 237:898–901

    Article  CAS  PubMed  Google Scholar 

  17. Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72:1510–1530

    Article  CAS  PubMed  Google Scholar 

  18. Farrell BD, Dussourd DE, Mitter C (1991) Escalation of plant defense: do latex and resin canals spur plant diversification? Am Nat 138:881–900

    Article  Google Scholar 

  19. Foisy MR, Albert LP, Hughes DWW, Weber MG (2019a) Do latex and resin canals spur plant diversification? Re-examining a classic example of escape and radiate coevolution. J Ecol 107:1606–1619

    Article  Google Scholar 

  20. Foisy MR, Albert LP, Hughes DWW, Weber MG (2019b) Data from: do latex and resin canals spur plant diversification? Re-examining a classic example of escape and radiate coevolution, Dryad. Dataset. https://doi.org/10.5061/dryad.2mn0j54

  21. Da Camara et al (1999) International Conference on Biodiversity”. 2° IUPAC - Belo Horizonte, 130:37

    Google Scholar 

  22. Moldenhawer JHD (1812) BeitragezurAnatomie der Pflanzen. Königl. Schulbücherei, Kiel

    Google Scholar 

  23. Meyen FJF (1837) Ueber die Sekretions-Organe der Pflanzen. Morin, Berlin

    Google Scholar 

  24. Anonymus, von Reichenbach H (1846) Die Milchsaftgefässe, ihrUrsprung und ihreEntwicklung. Bot Zeitung 4:833–872

    Google Scholar 

  25. von Mohl H (1851) Grundzüge der Anatomie und Physiologie der vegetabilischenZelle. Vieweg und Sohn, Braunschweig

    Google Scholar 

  26. Jackson BD (1928) A glossary of botanic terms, 4th edn. Duckworth, London

    Google Scholar 

  27. Milanez FR (1946) Nota prévia sobre os laticíferos de Hevea brasiliensis. Arq Serv Flor Brasil 2:39–65

    Google Scholar 

  28. Esau K (1953) Plant Anatomy. Wiley, London

    Google Scholar 

  29. Stant MY (1964) Anatomy of the Alismataceae. J Linn Soc Bot 59:1–42

    Article  Google Scholar 

  30. Prado E, Demarco D (2018) Chapter 6: Laticifers and secretory ducts: similarities and differences. In: Hufnagel L (ed) Ecosystem services and global ecology. IntechOpen Ltd., London

    Google Scholar 

  31. Alencar AC, Tölke ED, Sampaio Mayer JL (2020) New perspectives on secretory structures in Clusia (Clusiaceae – Clusioid clade): production of latex or resins? Botany 98(3):161–172

    Article  CAS  Google Scholar 

  32. Tussac FR (1827) Flore des Antilles, ou histoire générale botanique, rurale et economique des végétaux indigènes des Antilles, vol. 4. Chez l’auteur, F. Schoell et Hautel, Paris

    Google Scholar 

  33. Trécul MA (1866) Des vaisseaux propres dans les Clusiacées. Ann Sci Nat Bot Sér 5:368–379

    Google Scholar 

  34. Stevens PF (2001) Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since]. http://www.mobot.org/mobot/research/apweb/. Accessed 13 May 2021

  35. Artschwager E (1943) Contribution to the morphology and anatomy of guayule (Parthenium argentatum). Tech Bull No 842:1–33

    Google Scholar 

  36. Unger FJAN (1857) Das System der Milchsaftgänge in Alisma Plantago. Denkschr. Akad Wissensch Math Natw Kl 13:27–32

    Google Scholar 

  37. Meyer FJ (1932) Beiträgezur Anatomie der Alismataceen. Beih Bot Centralbl 49:54–63

    Google Scholar 

  38. Upadhyai RK (2011) Plant latex: a natural source of pharmaceuticals and pesticides. Int J Green Pharm 5:169–180

    Article  Google Scholar 

  39. Teixeira SP, Marinho CR, Leme FM (2020) Structural diversity and distribution of laticifers. In: Nawroth R (ed) Advances in botanical research. Elsevier, Amsterdam/London

    Google Scholar 

  40. Govindarajalu E (1967) Further contribution to the anatomy of the Alismataceae: Sagittaria guayanensis H.B.K. ssp. lappula (D.Don) Bogin. Proc Indian Acad Sci 65:142–151

    Article  Google Scholar 

  41. Endress PK (1994) Diversity and evolutionary biology of tropical flowers. Cambridge University Press, New York

    Google Scholar 

  42. Meyen FJF (1838) Neues System der Pflanzen-Physiologie, vol 2. Haude & Spener, Berlin

    Google Scholar 

  43. Hanstein JLER (1864) Die Milchsaftgefasse und die verwandtenOrgane der Rinde. Wiegandt & Hempel, Berlin

    Google Scholar 

  44. TieghemMPh V (1872) Mémoire sur les canauxsécréteurs des plantes. Ann Sci Nat Bot Sér 16:96–201

    Google Scholar 

  45. TieghemMPh V (1884) Sur la disposition des canauxsécréteurs dans les Clusiacées, les Hypéricacées, les Ternstrœmiacées et les Diptérocarpées. Bull Soc Bot France 31:141–151

    Article  Google Scholar 

  46. Müller K (1882) Vergleichende Untersuchung der anatomischenVerhältnisse der Clusiaceen, Hypericaceen, Dipterocarpaceen und Ternstroemiaceen. Bot Jahrb Syst 2:430–464

    Google Scholar 

  47. Bittrich V, Amaral MCE (1997) Floral biology of some Clusia species from Central Amazonia. Kew Bull 52:617–635

    Article  Google Scholar 

  48. Armbruster WS (1984) The role of resin in angiosperm pollination: ecological and chemical considerations. Am J Bot 71:1149–1160

    Article  Google Scholar 

  49. Roubik DW (1989) Ecology and natural history of tropical bees. Cambridge University Press, New York

    Book  Google Scholar 

  50. Simpson BB, Neff JL (1981) Floral rewards: alternatives to pollen and nectar. Ann Mo Bot Gard 68:301–322

    Article  Google Scholar 

  51. Leroi-Gourhan A (1975) The flowers found with Shanidar IV, a Neanderthal burial in Iraq. Science 190:562–564

    Article  Google Scholar 

  52. Lietava J (1992) Medicinal plants in a middle Paleolithic grave Shanidar IV? J Ethnopharmacol 35:263–266

    Article  CAS  PubMed  Google Scholar 

  53. Lüttge U, Duarte HM (2007) Morphology, anatomy, life forms and hydraulic architecture. In: Lüttge U (ed) Clusia: a Woody Neotropical genus of remarkable plasticity and diversity. Springer, Heidelberg/Berlin

    Chapter  Google Scholar 

  54. Bittrich V, Trad RJ, Cabral FN, Nascimento JE Jr, Souza VC (2021) Clusiaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB89. Accessed 30 July 2021

  55. Marinho LC, Alencar AC, Nascimento JE Jr (2020) Clusia Carnose leaves and beautiful flowers. Cactus Succul J 92:271–279

    Google Scholar 

  56. Van Andel T, Behari-Ramdas J, Havinga R, Groenendijk S (2007) The medicinal plant trade in Suriname. Ethnobot Res Appl 5:351–372

    Article  Google Scholar 

  57. Labate BC et al (2011) Hoasca ethnomedicine: traditional use of ‘NoveVegetais’(‘nine herbs’) by the União do vegetal. In: Labate BC, Jungarbele H (eds) Time the internationalization of ayahuasca. LIT Verlag, Zurich

    Google Scholar 

  58. Descourtilz ME (1829) Flore Pittoresque et Médicale des Antilles. Picard, Paris

    Google Scholar 

  59. Kosteletzky VF (1836) Allgemeine medizinisch-pharmazeutische Flora., vols. 5-6. Prag, Borrosch und André

    Google Scholar 

  60. Wiesner JV (1914) Die Rohstoffe des Pflanzenreichs, vol 1. W. Engelmann, Leipzig

    Google Scholar 

  61. Eastaugh N, Walsh V, Chaplin T, Siddall R (2007) Pigment compendium: a dictionary of historical pigments. Routledge, Oxford

    Book  Google Scholar 

  62. García-Barriga H (1975) Flora medicinal de Colombia: botánica médica. edición 1, vol II, Imprensa Nacional, Bogotá

    Google Scholar 

  63. Pio Corrêa MP (1984) Dicionário da plantas úteis do Brasil e das exóticas cultivadas. imprensa Nacional, Rio de Janeiro

    Google Scholar 

  64. Suárez AC (2000) II Conferencia internacional Amazonia: Logros para una agenda sustentable. In: De Lisio A (ed) Etnobotánica medicinal Piaroa al Norte del Estado Amazonas. Caracas

    Google Scholar 

  65. Schultes RE (1983) De plantis toxicariis e Mundo Novo tropicale commentationes XXX: biodynamic Guttiferous plants of the Northwest Amazon. Bot Mus Leafl Harv Univ 29:49–57

    Article  Google Scholar 

  66. Odonne G, Valadeau C, Alban-Castillo J, Stien D, Sauvain M, Bourdy G (2013) Medical ethnobotany of the Chayahuita of the Paranapura basin (Peruvian Amazon). J Ethnopharmacol 146:127–153

    Article  PubMed  Google Scholar 

  67. Roumy V, Macedo JCR, Bonneau N et al (2020) Plant therapy in the Peruvian Amazon (Loreto) in case of infectious diseases and its antimicrobial evaluation. J Ethnopharmacol 249:112–411

    Article  Google Scholar 

  68. Valadeau C, Castillo JA, Sauvain M, Lores AF, Bourdy G (2010) The rainbow hurts my skin: medicinal concepts and plant use among the Yanesha (Amuesha), an Amazonian Peruvian ethnic group. J Ethnopharmacol 127:175–192

    Article  PubMed  Google Scholar 

  69. Nascimento-Júnior JE (2017) Taxonomic and ecological studies in the Criuva clade (Clusia L., Clusiaceae) Dissertation, UniversidadeEstadual de Campinas

    Google Scholar 

  70. Caballero-George C, Vanderheyden PML, Solis PN, Pieters L, Shahat AA, Gupta MP, Vauquelin G, Vlietinck AJ (2001) Biological screening of selected medicinal Panamanian plants by radioligand-binding techniques. Phytomedicine 8:59–70

    Article  CAS  PubMed  Google Scholar 

  71. Quattrocchi U (2017) CRC world dictionary of palms: common names, scientific names, eponyms, synonyms, and etymology (2 volume set). CRC Press, Boca Raton

    Book  Google Scholar 

  72. Peckolt T (1897) HeilpflanzenBrasiliensaus der Familie der Guttiferae. Ber. Deutsch. Pharm Ges 7:228–245

    Google Scholar 

  73. DeFilipps RA, Maina SL, Crepin J (2004) Medicinal plants of the Guianas (Guyana, Surinam, French Guiana). Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC

    Google Scholar 

  74. Sanz-Biset J, Cañigueral S (2011) Plant use in the medicinal practices known as “strict diets” in Chazuta valley (Peruvian Amazon). J Ethnopharmacol 137:271–288

    Article  PubMed  Google Scholar 

  75. Peraza-Sánchez SR, Cen-Pacheco F, Noh-Chimal A, May-Pat F, Simá-Polanco P, Dumonteil E, Mut-Martín M (2007) Leishmanicidal evaluation of extracts from native plants of the Yucatan peninsula. Fitoterapia 78:315–318

    Article  PubMed  Google Scholar 

  76. Coelho-Ferreira M (2009) Medicinal knowledge and plant utilization in an Amazonian coastal community of Marudá, Pará state (Brazil). J Ethnopharmacol 126:159–175

    Article  PubMed  Google Scholar 

  77. Lachman-White DA, Adams CD, Trotz UOD (1992) A guide to the medicinal plants of coastal Guyana. Commonwealth Science Council, London

    Google Scholar 

  78. Milliken W, Miller RP, Pollard SR, Wandelli EV (1992) The ethnobotany of the WaimiriAtroari Indians of Brazil. Royal Botanic Gardens Kew

    Google Scholar 

  79. Céline V, Adriana P, Eric D, Joaquina AC, Yannick E, Augusto LF, Geneviève B (2009) Medicinal plants from the Yanesha (Peru): evaluation of the leishmanicidal and antimalarial activity of selected extracts. J Ethnopharmacol 123:413–422

    Article  Google Scholar 

  80. Ballesteros JL, Bracco F, Cerna M, Finzi VP, Vidari G (2016) Ethnobotanical research at the Kutukú Scientific Station, Morona-Santiago, Ecuador. Biomed Res Int 2016:9105746

    Article  PubMed  PubMed Central  Google Scholar 

  81. Macía MJ, García E, Vidaurre PJ (2005) An ethnobotanical survey of medicinal plants commercialized in the markets of La Paz and El Alto, Bolivia. J Ethnopharmacol 97:337–350

    Article  PubMed  Google Scholar 

  82. del Valle AF, Milano B, Vele G, Williams B, Rodriguez E, Michelangeli F (1999) Plantas medicinales de Ia region de Yutaje, Estado Amazonas. Mem lnst Bio Experim 2:145–148

    Google Scholar 

  83. Bussmann RW, Glenn A, Meyer K, Rothrock A, Townesmith A, Sharon D, Regalado S (2009) Antibacterial activity of medicinal plants of northern Peru-part II. Arnaldoa 16:93–103

    Google Scholar 

  84. Lastres M, Ruiz-Zapata T, Castro M, Torrecilla P, Lapp M, Hernández-Chong L, Muñoz D (2015) Conocimiento y uso de las plantas medicinales de la comunidad Valle de la Cruz, estado Aragua. Pittieria 39:59–89

    Google Scholar 

  85. Carbonó-Delahoz E, Dib-Diazgranados JC (2013) Medicinal plants used by the cogui at palomino river, Sierra Nevada of Santa Marta (Colombia). Caldasia 35:333–350

    Google Scholar 

  86. Milliken W, Albert B (1996) The use of medicinal plants by the Yanomami Indians of Brazil. Econ Bot 50:10–25

    Article  Google Scholar 

  87. Vásquez SPF, Mendonça MSD, Noda SDN (2014) Ethnobotany of medicinal plants in riverine communities of the municipality of Manacapuru, Amazonas, Brasil. Acta Amazon 44:457–472

    Article  Google Scholar 

  88. García BH (1975) Flora medicinal de Colombia, Tomo II, Imprenta Nacional, Fondo Colombiano de Investigaciones Científicas y Proyectos especiales, 210–217

    Google Scholar 

  89. Hasbun C, Calvo MA, Barrios M, Arguedas E, Calvo A, Jiménez R, Poveda L (1985) Distribución de friedelina en especies del género Clusia (Guttiferae) de Costa Rica Ing. Cie Quím 9:96–97

    CAS  Google Scholar 

  90. Cavalcante PB, Frikel P (1973) A farmacopeia Tiriyó - Estudo étno-botânico. Pará, Belém

    Google Scholar 

  91. Lentz DL (1993) Medicinal and other economic plants of the Paya of Honduras. Econ Bot 47:358–370

    Article  Google Scholar 

  92. Duke JA, Vasquez R (1994) Amazonian ethnobotanical dictionary. CRC Press

    Google Scholar 

  93. Mejía K, Rengifo E (2000) Plantas Medicinales de Uso Popular en la Amazonía Peruana. Tarea Asociación Gráfica Educativa, Lima-Perú

    Google Scholar 

  94. Yasunaka K, Abe F, Nagayama A, Okabe H, Lozada-Pérez L, López-Villafranco E, MuñizEE AA, Reyes-Chilpa R (2005) Antibacterial activity of crude extracts from Mexican medicinal plants and purified coumarins and xanthones. J Ethnopharmacol 97:293–299

    Article  CAS  PubMed  Google Scholar 

  95. Cook S (2016) Ethnographic inventory. In: Cook S (ed) The Forest of the Lacandon Maya. Springer, Boston

    Chapter  Google Scholar 

  96. Desvaux NA (1842) Sur une espéce nouvelle de Figuier, et sur quelques arbres à lait édule. Ann Sci Nat Bot Sér 18:308–316

    Google Scholar 

  97. Albert B, Milliken W (2009) Urihi A: a terra-floresta Yanomami. In: Welch JR (ed) Urihi A: a terra-floresta Yanomami. Instituto Socio ambiental, São Paulo

    Google Scholar 

  98. Martius CFP (1843) Systema maleriae medicae vegetabilis brasiliensis. Fridr, Fleischer

    Google Scholar 

  99. Estrella E (1995) Plantas medicinales amazónicas: realidad y perspectivas. FAO, Tratado de Cooperación Amazónica Secretaria Pro-Tempore, Lima-Perú

    Google Scholar 

  100. Brito MRD, Senna-Valle LD (2012) Diversity of plant knowledge in a “Caiçara” community from the Brazilian Atlantic Forest coast. Acta Bot Bras 26:735–747

    Article  Google Scholar 

  101. Bittrich V (1997) O género Clusia (Guttiferae) para a floricultura. Ornam Hortic 3:13–19

    Google Scholar 

  102. Santos MG, Fevereiro PCA, Reis GL, Barcelos JI (2009) Recursos vegetais da restinga de Carapebus, Rio de Janeiro, Brasil. J Neot Biol 6:35–54

    Google Scholar 

  103. Rocha FV, de Lima RB, da Cruz DD (2019) Conservation priorities for Woody species used by a Quilombo community on the coast of northeastern Brazil. J Ethnobiol 39:158–179

    Article  Google Scholar 

  104. Da Cunha LVFC, Ulysses P (2006) Quantitative ethnobotany in an Atlantic Forest fragment of northeastern Brazil-implications to conservation. Environ Monit Assess 114:1–25

    Article  PubMed  Google Scholar 

  105. Van Andel TR (2000) Non-timber Forest products of the North-West District of Guyana: part II Tropenbos-Guyana series 8b. Tropenbos-Guyana Programme, Guyana, Georgetown

    Google Scholar 

  106. Van Andel T, Reinders M (1999) Non-timber Forest products in Guyana’s Northwest District: potentials and pitfalls. In: Ros-Tonen MAF (ed) Seminar proceedings ‘NTFP research in the Tropenbos Programme: results and perspectives’. The Tropenbos Foundation, Wageningen

    Google Scholar 

  107. Santos NPD (2005) Theodoro Peckolt: a produção científica de um pioneiro da fitoquímica no Brasil. Hist CiêncSaúde-Manguinhos 12:515–533

    Article  Google Scholar 

  108. Lans C (2007) Ethnomedicines used in Trinidad and Tobago for reproductive problems. J Ethnobiol Ethnomed 3:1–12

    Google Scholar 

  109. Giron AJI (1966) Relacion de unos aspectos de la flora útil de Guatemala, 2nd edn. Tipografia Nacional de Guatemala, Guatemala

    Google Scholar 

  110. GBD (2017) Causes of death collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392:1736–1788

    Google Scholar 

  111. Yunes RA, Calixto JB (2001) Em Plantas medicinais sob a ótica da química medicinal moderna, 1st edn. Argos Editora Universitária, Chapecó

    Google Scholar 

  112. Spjut RW, Pedue RE (1976) Plant folklore: a tool for predicting sources of antitumor activity? Cancer Treat Rep 60:979–985

    CAS  PubMed  Google Scholar 

  113. Bailón-Moscoso N, Romero-Benavides JC, Sordo M, Villacís J, Silva R, Celi L, Martínez-Vázquez M, Ostrosky-Wegman P (2016) Phytochemical study and evaluation of cytotoxic and genotoxic properties of extracts from Clusialatipes leaves. Rev Bras Farmacogn 26:44–49

    Article  Google Scholar 

  114. Utami R, Khalid N, Sukari N, Rahmani MA, Abdul M, Dachriyanus AB (2013) Phenolic contents, antioxidant and cytotoxic activities of Elaeocarpus floribundus Blume. Pak J Pharm Sci 26:245–250

    CAS  PubMed  Google Scholar 

  115. Natarajan N, Thamaraiselvan R, Lingaiah H, Srinivasan P, Periyasamy BM (2011) Effect of flavonone hesperidin on the apoptosis of humanmammary carcinoma cell line MCF-7. Biomed Prev Nutr 1:207–215

    Article  Google Scholar 

  116. Park HJ, Kim MJ, Ha E, Chung JH (2008) Apoptotic effect of hesperidin through caspase activation in human colon cancer cells, SNU-C4. Phytomedicine 15:47–151

    Article  Google Scholar 

  117. Marín RM, Porto RMO, Paredes MEH, Alarcón AB, Balmaseda IH, del Valle RMS, Lopes MTP, Guerra IR (2018) GC-MS analysis and bioactive properties of extracts obtained from Clusia minor L. leaves. J Mex Chem Soc 62:177–188

    Google Scholar 

  118. Bouic PJD (2001) The role of phytosterols and phytosterolins in immune modulation: a review of the past 10 years. Curr Opin Clin Nutr Metab Care 4:471–475

    Article  CAS  PubMed  Google Scholar 

  119. Gallo MB, Sarachine MJ (2009) Biological activities of lupeol. Int J Biomed Pharm Sci 3:46–66

    Google Scholar 

  120. Vázquez LH, Palazon J, Navarro-Ocaña A (2012) The Pentacyclic triterpenes α, β-amyrins: a review of sources and biological activities. In: Rao V (ed) Phytochemicals-a global perspective of their role in nutrition and health. InTech, Rijeka

    Google Scholar 

  121. Ribeiro MMJ, da Silva KMM, Palavecino LA, Pinto LC, Ferreira BLA, Lobão AQ, Castro HC, Montenegro RC, Carla H, Barros CF, Joffily A, Valverde AL, de Paiva SR (2020) Anatomical, histochemical and biological studies of Clusia grandifloraSplitg.(Clusiaceae). Braz Arch Biol Technol:e20190674

    Google Scholar 

  122. Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Brito LIDC, de Carvalho MV, da Silva VP, Heringer AP, da Silva PM, Fontão APG, Figueiredo MR, Sampaio AELF (2019) Evaluation of cytotoxic activity of triterpenes from Clusia studartiana. J Med Plants Res 13:335–342

    Article  Google Scholar 

  124. De Andrade MR, Almeida EX, Conserva LM (1998) Alkyl chromone and other compounds from Clusianemorosa. Phytochemistry 47:1431–1433

    Article  Google Scholar 

  125. Melo CL, Queiroz MGR, Arruda-Filho ACV, Rodrigues AM, de Sousa DF, Almeida JGL, Pessoa ODL, Silveira ER, Menezes DB, Melo TS, Santos FA, Rao VS (2009) Betulinic acid, a natural pentacyclic triterpenoid, prevent abdominal fat accumulation in mice fed a high-fat diet. J Agric Food Chem 57:8776–8781

    Article  PubMed  Google Scholar 

  126. Fulda S (2008) Betulinic acid: a natural product with anticancer activity. Mol Nutr Food Res 53:140–146

    Article  Google Scholar 

  127. Seo EK, Huang L, Wall ME, Wani MC, Navarro H, Mukherjee R, Farnsworth NR, Kinghorn AD (1999) New biphenyl compounds with DNA Strand-scission activity from Clusia paralicola. J Nat Prod 62:1484–1487

    Article  CAS  PubMed  Google Scholar 

  128. Takaoka S, Nakade K, Fukuyama Y (2002) The first total synthesis and neurotrophic activity of clusiparalicoline a, a prenylated and geranylated biaryl from Clusia paralicola. Tetrahedron let 43:6919–6923

    Article  CAS  Google Scholar 

  129. Wu SB, Long C, Kennelly EJ (2014) Structural diversity and bioactivities of natural benzophenones. Nat Prod Rep 31:1158–1174

    Article  CAS  PubMed  Google Scholar 

  130. Lokvam J, Braddock JF, Reichardt PB, Clausen TP (2000) Two polyisoprenylated benzophenones from the trunk latex of Clusia grandiflora (Clusiaceae). Phytochemistry 55:29–34

    Article  CAS  PubMed  Google Scholar 

  131. Da Camara CAG, Marsaioli AJ, Bittrich V (2002) Derivados do Tocoferol Inéditos do Látex de Clusia Grandiflora. In: 25° Reunião Anual – Sociedade Brasileira de Química. Poços de Caldas

    Google Scholar 

  132. de Oliveira CM, Porto A, Bittrich V, Vencato I, Marsaioli AJ (1996) Floral resins of Clusia spp.: chemical composition and biological function. Tetrahedron Lett 37:6427–6430

    Article  Google Scholar 

  133. Piccinelli AL, Cuesta-Rubio O, Chica MB, Mahmood N, Pagano B, Pavone M, Baronee V, Rastrelli L (2005) Estructural revision of clusianone and 7-epi-clusianone and anti-HIV activity of polyisopenylated benzophenones. Tetrahedron 61:8206–8211

    Article  CAS  Google Scholar 

  134. Cuesta-Rubio O, Velez-Castro H, Frontana-Uribe BA, Cardenas J (2001) Nemorosone, the major constituent of floral resins of Clusia rosea. Phytochemistry 57:279–283

    Article  CAS  PubMed  Google Scholar 

  135. Popolo A, Piccinelli AL, Morello S, Sorrentino R, Osmany CR, Rastrelli L, Aldo P (2011) Cytotoxic activity of nemorosone in human MCF-7 breast cancer cells. Can J Physiol Pharmacol 89:50–57

    Article  CAS  PubMed  Google Scholar 

  136. Díaz-Carballo D, Malak S, Freistühler M, Elmaagacli A, Bardenheuer W, Reusch HP (2008) Nemorosone blocks proliferation and induces apoptosis in leukemia cells. Int J Clin Pharmacol Ther 46:428–439

    Article  PubMed  Google Scholar 

  137. Camargo MS, Oliveira MT, Santoni MM, Resende FA, Oliveira-Höhne AP, Espanha LG, Nogueira CH, Cuesta-Rubio O, Vilegas W, Varanda EA (2015) Effects of nemorosone, isolated from the plant Clusia rosea, on the cell cycle and gene expression in MCF-7 BUS breast cancer cell lines. Phytomedicine 22:153–157

    Article  CAS  PubMed  Google Scholar 

  138. Cuesta-Rubio O, Frontana-Uribe BA, Ramirez-Apan T, Cardenas J (2002) Polyisoprenylated benzophenones in Cuban propolis; biological activity of nemorosone. Z. Naturforsch. C. J Biosci 57:372–378

    CAS  Google Scholar 

  139. Pardo-Andreu GL, Nuñez-Figueredo Y, Tudella VG, Cuesta-Rubio O, Rodrigues FP, Pestana CR, Curti C (2011) The anti-cancer agent nemorosone is a new potent protonophoric mitochondrial uncoupler. Mitochondrion 11:255–263

    Article  CAS  PubMed  Google Scholar 

  140. Camargo MS, Prieto AM, Resende FA, Boldrin PK, Cardoso CR, Fernández MF, Molina-Molina JM, Olea N, Vilegas W, Cuesta-Rubio O, Varanda EA (2013) Evaluation of estrogenic, antiestrogenic and genotoxic activity of nemorosone, the major compound found in brown Cuban propolis. BMC Complementary Altern Med 13:1–8

    Article  Google Scholar 

  141. Díaz-Carballo D, Malak S, Bardenheuer W, Freistuehler M, Reusch HP (2008) Cytotoxic activity of nemorosone in neuroblastoma cells. J Cell Mol Med 12:2598–2608

    Article  PubMed  PubMed Central  Google Scholar 

  142. Wolf RJ, Hilger RA, Hoheisel JD, Werner J, Holtrup F (2013) In vivo activity and pharmacokinetics of nemorosone on pancreatic cancer xenografts. PLoS One 8:e74555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Díaz-Carballo D, Gustmann S, Acikelli AH, Bardenheuer W, Buehler H, Jastrow H, Ergun S (2012) Strumberg D: 7-epi-nemorosone from Clusia rosea induces apoptosis, androgen receptor down-regulation and dysregulation of PSA levels in LNCaP prostate carcinoma cells. Phytomedicine 19:1298–1306

    Article  PubMed  Google Scholar 

  144. Ferraz CG, Ribeiro PR, Marques EJ, Mendonca R, Guedes MLS, Silveira ER, El-Bacha R, Cruz FG (2019) Polyprenylated benzophenone derivatives with a novel tetracyclo [8.3. 1.03, 11.05, 10] tetradecane core skeleton from Clusia burle-marxii exhibited cytotoxicity against GL-15 glioblastoma-derived human cell line. Fitoterapia 138:104346

    Article  CAS  PubMed  Google Scholar 

  145. Gustafson KR, Blunt JW, Munro MH, Fuller RW, McKee TC, Cardellina JH II, Cragg GM, Boyd MR (1992) The guttiferones, HIV-inhibitory benzophenones from Symphonia globulifera, Garcinia livingstonei, Garcinia ovalifolia, and Clusia rosea. Tetrahedron 48:10093–10102

    Article  CAS  Google Scholar 

  146. Roux D, Hadi HA, Thoret S, Guénard D, Thoison O, Païs M, Sévenet T (2000) Structure- activity relationship of Polyisoprenyl benzophenones from Garcinia pyrifera on the tubulin/microtubule system. J Nat Prod 63:1070–1076

    Article  CAS  PubMed  Google Scholar 

  147. Matsumoto K, Akao Y, Kobayashi E, Ito T, Ohguchi K, Tanaka T, Iinuma M, Nozawa Y (2003) Cytotoxic benzophenone derivatives from Garcinia species display a strong apoptosis-inducing effect against human leukemia cell lines. Biol Pharm Bull 26:569–571

    Article  CAS  PubMed  Google Scholar 

  148. Protiva P, Hopkins ME, Baggett S, Yang H, Lipkin M, Holt PR, Kennelly EJ, Bernard WI (2008) Growth inhibition of colon cancer cells by polyisoprenylated benzophenones are associated with induction of the endoplasmic reticulum response. Int J Cancer 123:687–694

    Article  CAS  PubMed  Google Scholar 

  149. Kumar SK, Chattopadhyay MP, Darokar A, Garg A, Khanuja SP (2007) Cytotoxic activities of xanthochymol and isoxanthochymol substantiated by LC-MS/MS. Planta Med 73:1452–1456

    Article  CAS  PubMed  Google Scholar 

  150. Williams RB, Hoch J, Glass TE, Evans R, Miller JS, Wisse JH, Kingston DG (2003) A novel cytotoxic guttiferone analogue from Garcinia macrophylla from the Suriname rainforest. Planta Med 69:864–866

    Article  CAS  PubMed  Google Scholar 

  151. McCandlish LE, Hanson JC, Stout GH (1976) The structures of two derivatives of bicycle-3,3,1.Nonane-2,4,9-trione. A natural product: clusianone, C33H42O4, and trimethylated catechinic acid, C18H20O6. Acta Crystall B-Stru 32:1793–1801

    Article  Google Scholar 

  152. Delle-Monache F, Delle-Monache G, Gacs-Baitz E (1991) Prenylated benzophenones from Clusiasandiensis. Phytochemistry 30:2003–2005

    Article  CAS  Google Scholar 

  153. Simpkins NS, Holtrup F, Rodeschini V, Taylor JD, Wolf R (2012) Comparison of the cytotoxic effects of enantiopure PPAPs, including nemorosone and clusianone. Bioorg Med Chem Lett 22:6144–6147

    Article  CAS  PubMed  Google Scholar 

  154. Westekemper H, Freistuehler M, Bornfeld N, Steuhl KP, Scheulen M, Hilger RA (2013) Chemosensitivity of conjunctival melanoma cell lines to target-specific chemotherapeutic agents. Graefes Arch Clin Exp Ophthalmol 251:279–284

    Article  CAS  PubMed  Google Scholar 

  155. Reis FH, Pardo-Andreu GL, Nuñez-Figueredo Y, Cuesta-Rubio O, Marín-Prida J, Uyemura SA, Alberici LC (2014) Clusianone, a naturally occurring nemorosoneregioisomer, uncouples rat liver mitochondria and induces HepG2 cell death. Chem Biol Interact 212:20–29

    Article  CAS  PubMed  Google Scholar 

  156. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454:428–435

    Article  CAS  PubMed  Google Scholar 

  157. Farias JAC, Ferro JNS, Silva JP, Agra IKR, Oliveira FM, Candea ALP, Conte FP, Ferraris FK, Henriques MGMO, Conserva LM, Barreto E (2012) Modulation of inflammatory processes by leaves extract from Clusia nemorosa both in vitro and in vivo animal models. Inflammation 35:764–771

    Article  PubMed  Google Scholar 

  158. Ferro JNS, Silva JP, Conserva LM, Barreto E (2013) Leaf extract from Clusia nemorosa induces an antinociceptive effect in mice via a mechanism that is adrenergic systems dependent. Chin J Nat Medicines 11:385–390

    Article  CAS  Google Scholar 

  159. Moghaddam MG, Ahmad FBH, Samzadeh-Kermani A (2012) Biological activity of betulinic acid: a review. Pharmacol Pharm 3:119–123

    Article  CAS  Google Scholar 

  160. Ou Z, Zhao J, Zhu L, Huang L, Ma Y, Ma C, Yi J (2019) Anti-inflammatory effect and potential mechanism of betulinic acid on λ-carrageenan-induced paw edema in mice. Biomed Pharmacother 118:109347

    Article  CAS  PubMed  Google Scholar 

  161. Devi KP, Malar DS, Nabavi SF, Sureda A, Xiao J, Nabavi SM, Daglia M (2015) Kaempferol and inflammation: from chemistry to medicine. Pharmacol Res 99:1–10

    Article  CAS  PubMed  Google Scholar 

  162. Choi JN, Choi YH, Lee JM, Noh IC, Park JW, Choi WS, Choi JH (2012) Anti-inflammatory effects of β-sitosterol-β-D-glucoside from Trachelospermum jasminoides (Apocynaceae) in lipopolysaccharide-stimulated RAW 264.7 murine macrophages. Nat Prod Res 26:2340–2343

    Article  CAS  PubMed  Google Scholar 

  163. Mangas R, Reynaldo G, Vecchia MTD, Aver K, Piovesan LG, Bello A, Rodeiro I, Malheiros A, Souza MM, Menéndez R (2019) Gas chromatography/mass spectrometry characterization and antinociceptive effects of the ethanolic extract of the leaves from Clusia minor L. J Pharm Pharmacogn Res 7:21–30

    CAS  Google Scholar 

  164. Bittar M, de Souza MM, Yunes RA, Lento R, Delle Monache F, Cechinel Filho V (2000) Antinociceptive activity of I3, II8-binaringenin, a biflavonoid present in plants of the guttiferae. Planta Med 66:84–86

    Article  CAS  PubMed  Google Scholar 

  165. Loizou S, Lekakis I, Chrousos GP, Moutsatsou P (2010) β-Sitosterol exhibits anti-inflammatory activity in human aortic endothelial cells. Mol Nut Food Res 54:551–558

    Google Scholar 

  166. Nirmal SA, Pal SC, Mandal SC, Patil AN (2012) Analgesic and anti-inflammatory activity of β-sitosterol isolated from Nyctanthesarbortristis leaves. Inflammopharmacology 20:219–224

    Article  CAS  PubMed  Google Scholar 

  167. Otuki MF, Ferreira J, Lima FV, Meyre-Silva C, Malheiros A, Muller LA, Cani GS, Santos ARS, Yunes RA, Calixto JB (2005) Antinociceptive properties of a mixture of α-amyrin and β-amyrin triterpenes: evidence for participation of protein kinase C and protein kinase a pathways. J Pharmacol Exp Ther 313:310–318

    Article  CAS  PubMed  Google Scholar 

  168. Pinto SH, Pinto LMS, Cunha GMA, Chaves MH, Santos FA, Rao VS (2008) Anti-inflammatory effect of α, β-Amyrin, a pentacyclic triterpene from Protium heptaphyllum in a rat model of acute periodontitis. Inflammopharmacology 16:48–52

    Article  CAS  PubMed  Google Scholar 

  169. Saleem M (2009) Lupeol, a novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett 285:109–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ferreira RO (2015) Contribuição ao estudo químico de Clusia nemorosa, Clusia paralicola e Clusia lanceolata e avaliação de atividades biológicas. Dissertation, Universidade Federal Rural do Rio de Janeiro

    Google Scholar 

  171. Salehi B, Venditti A, Sharifi-Rad M, Kręgiel D, Sharifi-Rad J, Durazzo A, Lucarini M, Santini A, Souto EB, Novellino E, Antolak H, Azzini E, Setzer WN, Martins N (2019) The therapeutic potential of apigenin. Int J Mol Sci 20:1–26

    Article  Google Scholar 

  172. de Oliveira JC, Neves IA, da Camara CA, Schwartz MO (2008) Volatile constituents of the fruits of Clusia Nemorasa G. Mey. From the different regions of the Atlantic coast restingas of Pernambuco (northeast of Brazil). J Essent Oil Res 20:219–222

    Article  Google Scholar 

  173. Fernandes ES, Passos GF, Medeiros R, da Cunha FM, Ferreira J, Campos MM, Calixto JB (2007) Anti-inflammatory effects of compounds α-humulene and (-)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur J Pharmacol 569:228–236

    Article  CAS  PubMed  Google Scholar 

  174. Compagnone RS, Suarez AC, Leitão SG, Delle-Monache F (2008) Flavonoids, benzophenones, and a new euphane derivative from Clusia columnaris Engl. Rev Bras Farmacogn 18:6–10

    Article  CAS  Google Scholar 

  175. Taher M, Aminuddin A, Susanti D, Aminudin NI, On S, Ahmad F, Hamidon H (2016) Cytotoxic, anti-inflammatory and adipogenic effects of inophyllum D, calanone, isocordato-oblongic acid, and morelloflavone on cell lines. Nat Prodt Sci 22:122–128

    Article  CAS  Google Scholar 

  176. Gil B, Sanz MJ, Terencio MC et al (1997) Morelloflavone, a novel biflavonoid inhibitor of human secretory phospholipase A2 with anti-inflammatory activity. BiochemPharmacol 53:733–740

    CAS  Google Scholar 

  177. El-Sakhawy FS, Kassem HA, Abou-Hussein DR, El-Gaafary MS (2007) Phytochemical and biological investigation of some flavonoids from Clusiafluminensis (planch. &Triana) cultivated in Egypt. Bull Fac Pharm 45:215–225

    CAS  Google Scholar 

  178. Huerta-Reyes M, del Carmen MB, Lozada L, Jimenez-Estrada M, Soler C, Reyes-Chilpa R (2004) HIV-1 inhibition by extracts of Clusiaceae species from Mexico. Biol Pharm Bull 27:916–920

    Article  CAS  PubMed  Google Scholar 

  179. Ito C, Itoigawa M, Miyamoto Y, Onoda S, Rao KS, Mukainaka T, Furukawa H (2003) Polyprenylated benzophenones from Garcinia assigu and their potential cancer Chemopreventive activities. J Nat Prod 66:206–209

    Article  CAS  PubMed  Google Scholar 

  180. Marín RM, Porto RMO, Alarcón AB, Lavín ANV (2008) Caracterización por cromatografía de gases/espectrometría de masas del extracto apolar de las hojas de Clusia minor L. Lat Am J Pharm 27:747–751

    Google Scholar 

  181. Cheng D, Guo Z, Zhang S (2015) Effect of β-sitosterol on the expression of HPV E6 and p53 in cervical carcinoma cells. Contemp Oncol l19:36–42

    Google Scholar 

  182. Navid MH, Laszczyk-Lauer MN, Reichling J, Schnitzler P (2014) Pentacyclic triterpenes in birch bark extract inhibit early step of herpes simplex virus type 1 replication. Phytomedicine 21:1273–1280

    Article  Google Scholar 

  183. Parvez MK, Alam P, Arbab AH, Al-Dosari MS, Alhowiriny TA, Alqasoumi SI (2018) Analysis of antioxidative and antiviral biomarkers β-amyrin, β-sitosterol, lupeol, ursolic acid in Guiera senegalensis leaves extract by validated HPTLC methods. Saudi Pharm J 26:685–693

    Article  PubMed  PubMed Central  Google Scholar 

  184. Cichewicz RH, Kouzi SA (2004) Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med Res Rev 24:90–114

    Article  CAS  PubMed  Google Scholar 

  185. Rao GS, Sinsheimer JE, Cochran KW (1974) Antiviral activity of triterpenoid saponins containing acylated β-amyrinaglycones. J Pharm Sci 63:471–473

    Article  CAS  PubMed  Google Scholar 

  186. Lin YM, Flavin MT, Schure R, Chen FC, Sidwell R, Barnard DI, Huffman JH, Kern ER (1999) Antiviral activities of biflavonoids. Planta Med 65:120–125

    Article  CAS  PubMed  Google Scholar 

  187. Lin YM, Anderson H, Flavin MT, Pai YHS, Mata-Greenwood E, Pengsuparp T, Pezzuto JM, Schinazi RF, Hughes SH, Chen FC (1997) In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora. J Nat Prod 60:884–888

    Article  CAS  PubMed  Google Scholar 

  188. de Melo EB, Gomes AS, Carvalho I (2006) α- and β-glucosidase inhibitors: chemical structure and biological activity. Tetrahedron 62:10277–10302

    Google Scholar 

  189. Silverman RB, Holladay MW (2014) The organic chemistry of drug design and drug action. Academic Press, California

    Google Scholar 

  190. Simões-Pires CA, Hmicha B, Marston A, Hostettmann K (2009) A TLC bioautographic method for the detection of α-and β-glucosidase inhibitors in plant extracts. Phytochem Analysis 20:511–515

    Article  Google Scholar 

  191. Guerrero RO, Rivera SM, Rivera S, Sueiro LA (2003) Bioassay screening of Amazonian plants. P R Health Sci J 22:291–297

    PubMed  Google Scholar 

  192. Silva-Rivas R, Bailon-Moscoso N, Cartuche L, Romero-Benavides JC (2020) The antioxidant and hypoglycemic properties and phytochemical profile of Clusialatipes extracts. Pharm J 12:144–149

    CAS  Google Scholar 

  193. Li YQZ, Gao FC, Bian F, Sheng JB, Shan F (2009) Comparative evaluation of quercetin, Isoquercetin and Rutin as inhibitors of α-glucosidase. J Agric Food Chem 57:11463–11468

    Article  CAS  PubMed  Google Scholar 

  194. Singh M, Govindarajan R, Nath V, Rawat AKS, Mehrotra S (2006) Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. Et Lind. J Ethnopharmacol 107:67–72

    Article  PubMed  Google Scholar 

  195. Åsgård R, Rytter E, Basu S, Abramsson-Zetterberg L, Möller L, Vessby B (2007) High intake of fruit and vegetables is related to low oxidative stress and inflammation in a group of patients with type 2 diabetes. Scand J Food Nutr 51:149–158

    Article  PubMed Central  Google Scholar 

  196. Süntar I, Akkol EK, Nahar L, Sarker SD (2012) Wound healing and antioxidant properties: do they coexist in plants? Free Radicals Antioxid 2:1–7

    Article  Google Scholar 

  197. Silva MCAD, Paiva SR (2012) Antioxidant activity and flavonoid content of Clusia fluminensis planch. & Triana. An Acad Bras Cienc 84:609–616

    Article  PubMed  Google Scholar 

  198. Armijos CP, Meneses MA, Guamán-Balcázar MC, Cuenca M, Suárez AI (2018) Antioxidant properties of medicinal plants used in the southern Ecuador. J Pharmacogn Phytochem 7:2803–2812

    CAS  Google Scholar 

  199. Moura ACG, Perazzo FF, Maistro EL (2008) The mutagenic potential of Clusia alata (Clusiaceae) extract based on two short-term in vivo assays. Genet Mol Res 7:1360–1368

    Article  CAS  PubMed  Google Scholar 

  200. Silva KMD, Nóbrega AB, Lessa B, Anholeti MC, Lobao AQ, Valverde AL, Paiva SR, Joffily A (2017) Clusia criuva Cambess. (Clusiaceae): anatomical characterization, chemical prospecting, and antioxidant activity. An Acad Bras Cienc 89:1565–1578

    Google Scholar 

  201. Oliveira RF, Camara CA, de Agra MF, Silva TM (2012) Biflavonoids from the unripe fruits of Clusia paralicola and their antioxidant activity. Nat Prod Commun 7:1597–1600

    CAS  PubMed  Google Scholar 

  202. Lins ACS, Agra MF, Conceição DC, Pinto FC, Camara CA, Silva TMS (2016) Constituintes químicos e atividade antioxidante das partes aéreas de Clusia paralicola (Clusiaceae) e Vismia guianensis (Hypericaceae). Rev Virtual Quim 8:157–168

    Article  Google Scholar 

  203. Ferreira RO, de Carvalho Jr AR, da Silva TM, Castro RN, da Silva TM, de Carvalho MG (2014) Distribution of metabolites in galled and non-galled leaves of Clusia lanceolata and its antioxidant activity. Rev Bras Farmac 24:617–625

    Article  CAS  Google Scholar 

  204. Ferreira RO, Carvalho ARD Jr, Riger CJ, Castro RN, Silva T, Carvalho MGD (2016) Constituintes químicos e atividade antioxidante in vivo de flavonoides isolados de Clusia lanceolata (Clusiaceae). Quim Nova 39:1093–1097

    CAS  Google Scholar 

  205. Cuesta-Rubio O, Piccinelli AL, Rastrelli L (2005) Chemistry and biological activity of polyisoprenylated benzophenone derivatives. Stud Nat Prod Chem 32:671–720

    Article  CAS  Google Scholar 

  206. Baggett S, Protiva P, Mazzola EP, Yang H, Ressler ET, Basile MJ, Kennelly EJ (2005) Bioactive benzophenones from Garcinia x anthochymus fruits. J Nat Prod 68:354–360

    Article  CAS  PubMed  Google Scholar 

  207. Panthong K, Hutadilok-Towatana N, Panthong A (2009) Cowaxanthone F, a new tetraoxygenated xanthone, and other anti-inflammatory and antioxidant compounds from Garcinia cowa. Can J Chem 87:1636–1640

    Article  CAS  Google Scholar 

  208. Herth W, Schnepf E (1980) The fluorochrome, calcofluor white, binds oriented to structural polysaccharide fibrils. Protoplasma 105:129–133

    Article  Google Scholar 

  209. de Oliveira AH, Andrade AO, Vandesmet LCS, da Silva MAP, Coutinho HDM, dos Santos MAF (2016) Actividad moduladora de extractos de las hojas de Clusia nemorosa G. Mey (Clusiaceae) sobre drogas antimicrobianas. Rev Cubana Plant Med 21:1–8

    Google Scholar 

  210. Segun MA, Simeon AA, Ayodele-Oduola RO (2020) Chemical analysis and antibacterial activities of Calotropis procera and Clusia rosea leaves extracts. GSC Biol Pharm Sci 12:25–30

    Article  Google Scholar 

  211. Ribeiro PR, Ferraz CG, Guedes ML, Martins D, Cruz FG (2011) A new biphenyl and antimicrobial activity of extracts and compounds from Clusia burle-marxii. Fitoterapia 82:1237–1240

    Article  CAS  PubMed  Google Scholar 

  212. de Souza AO, Galetti FCS, Silva CL, Bicalho B, Parma MM, Fonseca SF, Marsaioli AJ, Trindade ACLB, Gil RPF, Bezerra FS, Neto MA, de Oliveira MCF (2007) Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Quim Nova 30:1563–1566

    Article  Google Scholar 

  213. Porto ALM, Machado MFS, Oliveira MAC, Bittrich V, Amaral MCE, Marsaioli AJ (2000) Polyisoprenylated benzophenones from Clusia floral resins. Phytochemistry 55:755–768

    Article  CAS  PubMed  Google Scholar 

  214. Suffredini IB, Paciencia ML, Nepomuceno DC, Younes RN, Varella AD (2006) Antibacterial and cytotoxic activity of Brazilian plant extracts-Clusiaceae. Mem Inst Oswaldo Cruz 101:287–290

    Article  PubMed  Google Scholar 

  215. Lokvam J, Braddock JF (1999) Anti-bacterial function in the sexually dimorphic pollinator rewards of Clusia grandiflora (Clusiaceae). Oecologia 119:534–540

    Article  PubMed  Google Scholar 

  216. Naldoni FJ, Claudino ALR, Cruz-Junior JW, Chavasco JK, Silva PMF, Veloso MP, dos Santos MH (2009) Antimicrobial activity of benzophenones and extracts from the fruits of Garcinia brasilienisis. J Med Food 12:403–407

    Article  CAS  PubMed  Google Scholar 

  217. Rojas NM, Cuesta O, Avilés A, Lugo D, Avellaneda S (2001) Actividad antimicrobiana de nemorosona aislada de Clusia rosea. Rev Cub Farm 35:197–200

    Google Scholar 

  218. Monzote L, Cuesta-Rubio O, Matheeussen A, Van Assche T, Maes L, Cos P (2011) Antimicrobial evaluation of the polyisoprenylated benzophenones nemorosone and guttiferone a. Phytother Res 25:458–462

    Article  CAS  PubMed  Google Scholar 

  219. Iinuma M, Tosa H, Tanaka T, Kanamaru S, Asai F, Kobayashi Y, Miyauchi K, Shimano R (1996) Antibacterial activity of some garcinia benzophenone derivatives against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull 19:311–314

    Article  CAS  PubMed  Google Scholar 

  220. Vikram A, Jayaprakasha GK, Uckoo RM, Patil BS (2013) Inhibition of Escherichia coli O157: H7 motility and biofilm by β-sitosterol glucoside. Biochim Biophys Acta 1830:5219–5228

    Article  CAS  PubMed  Google Scholar 

  221. Verdi LG, Pizzolatti MG, Montanher ABP, Brighente IM, Júnior AS, Smânia E, Simionatto EL, Monache FD (2004) Antibacterial and brine shrimp lethality tests of biflavonoids and derivatives of Rheedia gardneriana. Fitoterapia 75:360–363

    Article  CAS  PubMed  Google Scholar 

  222. Nandu TG, Subramenium GA, Shiburaj S, Viszwapriya D, Iyer PM, Balamurugan K, Rameshkumar KB, Pandian SK (2018) Fukugiside, a biflavonoid from Garcinia travancorica inhibits biofilm formation of streptococcus pyogenes and its associated virulence factors. J Med Microbiol 67:1391–1401

    Article  CAS  PubMed  Google Scholar 

  223. Nontakham J, Charoenram N, Upamai W, Taweechotipatr M, Suksamrarn S (2014) Anti-helicobacter pylori xanthones of Garcinia fusca. Arch Pharm Res 37:972–977

    Article  CAS  PubMed  Google Scholar 

  224. Kvist LP, Christensen SB, Rasmussen HB, Mejia K, Gonzalez A (2006) Identification and evaluation of Peruvian plants used to treat malaria and leishmaniasis. J Ethnopharmacol 106:390–402

    Article  CAS  PubMed  Google Scholar 

  225. Milliken W (1997) Traditional anti-malarial medicine in Roraima, Brazil. Econ Bot 51:212–237

    Article  Google Scholar 

  226. Barrio G, Grueiro M, Montero D, Nogal JJ, Escario JA, Muelas S, Fernández C, Veja C, Rolón M, Fernández M, Solís PN, Gupta MP (2004) In vitro antiparasitic activity of plant extracts from Panama. Pharm Biol 42:332–337

    Google Scholar 

  227. Silva EM, Araújo RM, Freire-Filha LG, Silveira ER, Lopes NP, Paula JED, Braz-Filho R, Espindola LS (2013) Clusiaxanthone and tocotrienol series from Clusia pernambucensis and their antileishmanial activity. J Braz Chem Soc 24:1314–1324

    CAS  Google Scholar 

  228. Zhang J, Zhao J, Samoylenko V, Jain S, Tekwani BL, Muhammad I (2018) New polyisoprenylated polycyclic phloroglucines from Clusia gundlachii. Nat Prod Commun 13:361–365

    Google Scholar 

  229. Gontijo VS, Judice WA, Codonho B, Pereira IO, Assis DM, Januário JP, Caroselli EE, Juliano MA, Dosatti AC, Marques MJ, Viegas-Junior C, dos Santos MH (2012) Leishmanicidal, antiproteolytic and antioxidant evaluation of natural biflavonoids isolated from Garcinia brasiliensis and their semisynthetic derivatives. Eur J Med Chem 58:613–623

    Article  CAS  PubMed  Google Scholar 

  230. Castro O, Gutiérrez JM, Barrios M, Castro I, Romero M, Umaña E (1999) Neutralización del efecto hemorrágico inducido por veneno de Bothrops asper (Serpentes: Viperidae) por extractos de plantas tropicales. Rev Biol Trop 47:605–616

    CAS  PubMed  Google Scholar 

  231. de Oliveira EC, Anholeti MC, Domingos TF, Faioli CN, Sanchez EF, de Paiva SR, Fuly AL (2014) Inhibitory effect of the plant Clusia fluminensis against biological activities of Bothrops jararaca snake venom. Nat Prod Commun 9:21–25

    PubMed  Google Scholar 

  232. Da Silva AR, Anholeti MC, Pietroluongo M, Sanchez EF, Valverde AL, de Paiva SR, Figueiredo MR, Kaplan MAC, Fuly AL (2019) Utilization of the plant Clusia fluminensis Planch & Triana against some toxic activities of the venom of Bothrops jararaca and B. jararacussu snake venom toxic activities. Curr Top Med Chem 19:1990–2002

    Article  PubMed  Google Scholar 

  233. Villalobos J, Hasbun C (1986) The effect of Clusia coclensis on the blood pressure of dogs. Fitoterapia 57:375–376

    Google Scholar 

  234. González MG, Matamoros OM (1996) Efectos cardiovasculares del extracto acuoso de las hojas de Clusia coclensis (Guttiferae). Rev Biol Trop 44:87–91

    Google Scholar 

  235. Hasbún-Pacheco C, Calvo-Pineda MA, Barrios-Chica M, Arguedas-Campos E, Calvo A, Jiménez R, Poveda-Alvarez LJ (1985) Distribución de friedelina en especies del género Clusia (Guttiferae) Clusiaceae de Costa Rica. Ing Cienc 9:96–97

    Google Scholar 

  236. Hasbún-Pacheco C, Castro-Castillo O, Monache FD (1989) Phytochemical investigation on Clusia coclensis. Investigación fitoquímica en Clusia coclensis. Fitoterapia 60:190

    Google Scholar 

  237. Medina E, Aguiar G, Gomez M, Aranda J, Medina JD, Winte K (2006) Taxonomic significance of the epicuticular wax composition in species of the genus Clusia from Panama. Biochem Syst Ecol 34:319–326

    Article  CAS  Google Scholar 

  238. Rees A, Dodd GF, Spencer JP (2018) The efects of flavonoids on cardiovascular health: a review of human intervention trials and implications for cerebrovascular function. Nutrients 10:1–20

    Article  Google Scholar 

  239. Larson AJ, Symons JD, Jalili T (2012) Therapeutic potential of quercetin to decrease blood pressure: review of eficacy and mechanisms. Adv Nutr 2012:39–46

    Article  Google Scholar 

  240. Schnorr O, Brossette T, Momma TY, Kleinbongard P, Keen CL, Schroeter H, Sies H (2008) Cocoa flavanols lower vascular arginase activity in human endothelial cells in vitro and in erythrocytes in vivo. Arch Biochem Biophys 476:211–215

    Article  CAS  PubMed  Google Scholar 

  241. Loizzo MR, Said A, Tundis R, Rashed K, Statti GA, Hufner A, Menichini F (2007) Inhibition of angiotensin converting enzyme (ACE) by flavonoids isolated from Ailanthus excels (Roxb) (Simaroubaceae). Phytother Res 21:32–36

    Article  CAS  PubMed  Google Scholar 

  242. Karanjgaokar CG, Radhakrishnan PV, Venkatarama K (1967) Morelloflavone, a 3-(8-)-flavonylflavanone, from the heartwood of Garcinia morella. Tetrahedron Lett 8:3195–3198

    Article  Google Scholar 

  243. Tuansulong KA, Hutadilok-Towatana N, Mahabusarakam W, Pinkaew D, Fujise K (2011) Morelloflavone from Garcinia dulcis as a novel biflavonoid inhibitor of HMG-CoA reductase. Phytother Res 25:424–428

    CAS  PubMed  Google Scholar 

  244. Brusotti G, Papetti A, Serra M, Temporini C, Marini E, Orlandini S, Sanda AK, Watcho P, Kamtchouing P (2016) Allanblackia floribunda Oliv, an aphrodisiac plant with vasorelaxant properties. J Ethnopharmacol 192:480–485

    Article  CAS  PubMed  Google Scholar 

  245. Dreyer DL (1974) Xanthochymol from Clusia rosea (guttiferae). Phytochemistry 13:2883–2884

    Article  CAS  Google Scholar 

  246. Da Camara CAG, Druzian JI, Bittrich V, Marsaioli AJ, Scamparini ARP (2000) Partial characterization of polysaccharides from Clusia species (Guttiferae). In: Abstract book of 22° IUPAC - international symposium on the chemistry of natural products. São Carlos

    Google Scholar 

  247. Olea RSG, Roque NF (1990) Análise de misturas de triterpenos por RMN de 13C. Quim Nova 13:278–281

    CAS  Google Scholar 

  248. Ríos JL (2010) Effects of triterpenes on the immune system. J Ethnopharmacol 128:1–14

    Article  PubMed  Google Scholar 

  249. Da Camara CAD, Marsaioli AJ, Bittrich V (2018) Chemical constituents of apolar fractions from fruit latex of twelve Clusia species (Clusiaceae). An Acad Bras Cienc 90:1919–1927

    Article  PubMed  Google Scholar 

  250. Orians CM (2000) The effects of hybridization in plants on secondary chemistry: implications for the ecology and evolution of plant-herbivore interactions. Am J Bot 87:1749–1756

    Article  CAS  PubMed  Google Scholar 

  251. Cheng D, Vrieling K, Klinkhamer PG (2011) The effect of hybridization on secondary metabolites and herbivore resistance: implications for the evolution of chemical diversity in plants. Phytochem Rev 10:107–117

    Article  CAS  PubMed  Google Scholar 

  252. Lapis MSF, Marsaioli AJ, da Camara CAG, Bittrich V (2004) Estudo da Composição Química e da Atividade Antioxidante do Látex do Fruto de Clusia grandiflora. In: Livro de Resumos 27° Reunião Anual da Sociedade Brasileira de Química, Salvador

    Google Scholar 

  253. Delle-Monache F, Marta M, Macquhae MM, Nicoletti M (1984) Two new tocotrienoloic acids from the fruits of Clusia grandiflora Splith. Gazz Chim Ital 114:135–137

    CAS  Google Scholar 

  254. Teixeira JSR, Moreira LM, Guedes MLS, Cruz FG (2006) A new biphenyl from Clusia melchiorii and a new tocotrienol from C. obdeltifolia. J Braz Chem Soc 17:812–814

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Augusto Gomes da Camara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

da Camara, C.A.G., Marsaioli, A.J., Bittrich, V., de Moraes, M.M. (2021). Chemistry, Biological Activity, and Uses of Clusia Latex. In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-76523-1_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76523-1_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76523-1

  • Online ISBN: 978-3-030-76523-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics