Skip to main content
Log in

Feeding repellence in Antarctic bryozoans

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The Antarctic sea star Odontaster validus and the amphipod Cheirimedon femoratus are important predators in benthic communities. Some bryozoans are part of the diet of the asteroid and represent both potential host biosubstrata and prey for this omnivorous lysianassid amphipod. In response to such ecological pressure, bryozoans are expected to develop strategies to deter potential predators, ranging from physical to chemical mechanisms. However, the chemical ecology of Antarctic bryozoans has been scarcely studied. In this study we evaluated the presence of defenses against predation in selected species of Antarctic bryozoans. The sympatric omnivorous consumers O. validus and C. femoratus were selected to perform feeding assays with 16 ether extracts (EE) and 16 butanol extracts (BE) obtained from 16 samples that belonged to 13 different bryozoan species. Most species (9) were active (12 EE and 1 BE) in sea star bioassays. Only 1 BE displayed repellence, indicating that repellents against the sea star are mainly lipophilic. Repellence toward C. femoratus was found in all species in different extracts (10 EE and 12 BE), suggesting that defenses against the amphipod might be both lipophilic and hydrophilic. Interspecific and intraspecific variability of bioactivity was occasionally detected, suggesting possible environmental inductive responses, symbiotic associations, and/or genetic variability. Multivariate analysis revealed similarities among species in relation to bioactivities of EE and/or BE. These findings support the hypothesis that, while in some cases alternative chemical or physical mechanisms may also provide protection, repellent compounds play an important role in Antarctic bryozoans as defenses against predators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Ogily SM, Knight Jones EW (1977) Anti-fouling role of antibiotics produced by marine algae and bryozoans. Nature 265:728–729

    Article  PubMed  CAS  Google Scholar 

  • Amsler MO, McClintock JB, Amsler CD, Angus RA, Baker BJ (2009) An evaluation of sponge-associated amphipods from the Antarctic Peninsula. Antarct Sci 21:579–589

    Article  Google Scholar 

  • Anderson SA, Northcote PT, Page MJ (2010) Spatial and temporal variability of the bacterial community in different chemotypes of the New Zealand marine sponge Mycale hentscheli. FEMS Microbiol Ecol 72(3):328–342

    Google Scholar 

  • Apeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R, Barber A et al (2012) The Magnitude of Global Marine Species Diversity. Curr Biol 22:2189–2202

    Google Scholar 

  • Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity. In: Battaglia B, Valenica J, Walton DWH (eds) Antarctic communities: species, Structure and survival. Cambridge University Press, Cambridge, pp 3–14

    Google Scholar 

  • Avila C, Iken K, Fontana A, Gimino G (2000) Chemical ecology of the Antarctic nudibranch Bathydoris hodgsoni Eliot, 1907: Defensive role and origin of its natural products. J Exp Biol Ecol 252:27–44

    Article  CAS  Google Scholar 

  • Avila C, Taboada S, Núñez-Pons L (2008) Antarctic marine chemical ecology: What is next? Mar Ecol 29:1–71

    Article  CAS  Google Scholar 

  • Barnes DKA, Kaiser S, Griffiths HJ, Linse K (2009) Marine, intertidal, freshwater and terrestrial biodiversity of an isolated polar archipelago. J Biogeogr 36:756–769

    Article  Google Scholar 

  • Best BA, Winston, JE (1984) Skeletal strength of encrusting cheilostome bryozoans. Biol Bull 167:390–409

    Google Scholar 

  • Blackman AJ, Li CP (1994) New tambjamine alkaloids from the marine bryozoan Bugula dentata. Aust J Chem 47:1625–1629

    Article  CAS  Google Scholar 

  • Blackman AJ, Matthews DJ (1985) Amathamide alkaloids from the marine bryozoan Amathia wilsoni Kirkpatrick. Heterocycles 23:2829–2833

    Article  CAS  Google Scholar 

  • Blunt JW, Copp BR, Keyzers RA, Munro MH, Prinsep MR (2012) Marine natural products. Nat Prod Rep 29(2):144–222

    Article  PubMed  CAS  Google Scholar 

  • Bock PE, Gordon DP (2013) Phylum Bryozoa Ehrenberg, 1831. Zootaxa 3703(1):067–074

    Article  Google Scholar 

  • Brandt A, Gooday AJ, Brandao SN, Brix SB, Brökeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe J, Janussen D, Kaiser S, Linse K, Malyutina M, Pawlowski J, Raupach M, Vanreusel A (2007) First insights into biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307–311

    Article  PubMed  CAS  Google Scholar 

  • Bregazzi PK (1972) Habitat selection by Cheirimedon femoratus (Pfeffer) and Tryphosella kergueleni (Miers) (Crustacea: Amphipoda). Br Antarct Surv Bull 31:21–31

    Google Scholar 

  • Carter MC (2008) The Functional Morphology of Avicularia in Cheilostome Bryozoans. PhD dissertation, Victoria University of Wellington, Wellington

  • Carte B, Faulkner DJ (1983) Defensive metabolites from three nembrothid nudibranchs. J Org Chem 48:2314–2318

    Article  CAS  Google Scholar 

  • Carter MC, Gordon DP, Gardner JPA (2010) Polymorphism and variation in modular animals: morphometric and density analyses of bryozoan avicularia. Mar Ecol Prog Ser 399:117–130

    Article  Google Scholar 

  • Clarke A (1992) Is there a latitudinal diversity cline in the sea? Trends Ecol Evol 7:286–287

    Article  PubMed  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Green RH (1988) Statistical design and analysis for a ‘biological effects’ study. Mar Ecol Progr Ser 46:213–226

    Article  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol 41:47–114

    Google Scholar 

  • Clarke A, Aronson RB, Crame JA, Gili JM, Blake DB (2004) Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct Sci 16:559–568

    Article  Google Scholar 

  • Clarke KR, Somerfield PJ, Chapman MG (2006) On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. J Exp Mar Biol Ecol 330:55–80

    Article  Google Scholar 

  • Coleman (1989) Short note. Gnathiphimedia mandibularis K.H. Barnard 1930, an Antarctic amphipod feeding on Bryozoa. Antarct Sci 1:343–344

  • Cutignano A, Zhang W, Avila C, Cimino G, Fontana A (2011) Intrapopulation variability in the terpene metabolism of the Antarctic opisthobranch mollusc Austrodoris kerguelenensis. Eur J Org Chem 27:5383–5389

    Article  Google Scholar 

  • Dauby P, Scailteur Y, Chapelle G, De Broyer C (2001a) Potential impact of the main benthic amphipods on the eastern Weddell Sea shelf ecosystem (Antarctica). Polar Biol 24(9):657–662

    Article  Google Scholar 

  • Dauby P, Scailteur Y, De Broyer C (2001b) Trophic diversity within the eastern Weddell Sea amphipod community. Hydrobiologia 443:69–86

    Article  Google Scholar 

  • Davidson SK, Haygood MG (1999) Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbor distinct strains of the bacterial symbiont “Candidatus Endobugula sertula”. Biol Bull 196:273–280

    Article  PubMed  CAS  Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo Sound, Antarctic. Ecol Monogr 44:105–128

    Article  Google Scholar 

  • Dayton PK, Morbida BJ, Bacon F (1994) Polar marine communities. Am Zool 34:90–99

    Google Scholar 

  • Dearborn JH, Watling LE, Edwards KC, Fratt DB, Hendler GL (1983) Echinoderm biology and general benthic collecting along the Antarctic Peninsula. Antarct J US 17:162–164

    Google Scholar 

  • De Broyer C, Rauschert M, Scailteur Y (1999) Structural and ecofunctional biodiversity of the benthic amphipod taxocoenoses. In: Arntz WE, Gutt J (eds) The expedition ANT XV/3 (EASIZ II) of RV “Polarstern” in 1998. Ber Polarforsch 301:163–174

  • De Broyer C, Scailteur Y, Chapelle G, Rauschert M (2001) Diversity of epibenthic habitats of gammaridean amphipods in the eastern Weddell Sea. Polar Biol 24:744–753

    Article  Google Scholar 

  • De Broyer C, Lowry JK, Jazdzewski K, Robert H (2007) Catalogue of the gammaridean and corophiidean Amphipoda (Crustacea) of the Southern Ocean with distribution and ecological data. Bull Inst R Sci Nat Belg Biol 77(1):1–135

    Google Scholar 

  • De Broyer C, Danis B, 64 SCAR-MarBIN Taxonomic Editors (2011) How many species in the Southern Ocean? Towards a dynamic inventory of the Antarctic marine species. Deep-Sea Res Part II 58(1–2):5–17

    Article  Google Scholar 

  • Duckworth A, Battershill CN (2003) Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture 221:311–329

    Article  Google Scholar 

  • Figuerola B, Monleón-Getino T, Ballesteros M, Avila C (2012a) Spatial patterns and diversity of bryozoan communities from the Southern Ocean: South Shetland Islands, Bouvet Island and Eastern Weddell Sea. Syst Biodiv 10(1):109–123

    Article  Google Scholar 

  • Figuerola B, Núñez-Pons L, Vázquez J, Taboada S, Cristobo FJ, Ballesteros M, Avila C (2012b) Chemical interactions in Antarctic marine benthic ecosystems. In Cruzado A (ed) Marine ecosystems. http://www.intechopen.com/books/marine-ecosystems/chemical-interactions-in-antarctic-marine-benthic-ecosystems. ISBN: 978-953-51-0176-5, InTech

  • Figuerola B, Ballesteros M, Avila C (2013) Description of a new species of Reteporella (Bryozoa Phidoloporidae) from the Weddell Sea (Antarctica) and possible functional morphology of avicularia. Acta Zool 94(1):66–73

    Article  Google Scholar 

  • Forbes A (1938) Conditions affecting the response of the avicularia of Bugula. Biological Bulletin 65:469–479

    Google Scholar 

  • Gray CA, McQuaid CD, Davies-Coleman MT (2005) A symbiotic shell-encrusting bryozoan provides subtidal whelks with chemical defense against rock lobsters. Afr J Mar Sci 27:549–556

    Article  Google Scholar 

  • Griffiths HJ (2010) Antarctic marine biodiversity—what do we know about the distribution of life in the Southern Ocean? PLoS ONE 5:e11683

    Article  PubMed  Google Scholar 

  • Hayward PJ (1995) Antarctic cheilostomatous bryozoa. Oxford University Press, Oxford

    Google Scholar 

  • Hayward PJ, Winston JE (2011) Bryozoa collected by the United States Antarctic research program: New taxa and new records. J Nat Hist 46(37–38):2259–2338

    Article  Google Scholar 

  • Hines DE, Pawlik JR (2012) Assessing the antipredatory defensive strategies of Caribbean non-scleractinian zoantharians (Cnidaria): Is the sting the only thing? Mar Biol 159(2):389–398

    Article  Google Scholar 

  • Huang YM, Amsler MO, McClintock JB, Amsler CD, Baker BJ (2007) Patterns of gammaridean amphipod abundance and species composition associated with dominant subtidal macroalgae from the western Antarctic Peninsula. Polar Biol 30:1417–1430

    Article  Google Scholar 

  • Huang JP, McClintock JB, Amsler CD, Huang YM (2008) Mesofauna associated with the marine sponge Amphimedon viridis: Do its physical and chemical attributes provide a prospective refuge from fish predation? J Exp Mar Biol Ecol 362:95–100

    Article  Google Scholar 

  • Iyengar EV, Harvell CD (2002) Specificity of cues triggering inducible spines in the bryozoan Membranipora membranacea. Mar Ecol Prog Ser 225:205–218

    Article  Google Scholar 

  • Kaufmann K (1971) The form and function of the avicularia of Bugula (Phylum Ectoprocta). Postilla 151:1–26

    Google Scholar 

  • Koplovitz G, McClintock JB, Amsler CD, Baker BJ (2009) Palatability and chemical anti-predatory defenses in common ascidians from the Antarctic Peninsula. Aquat Biol 7:81–92

    Article  Google Scholar 

  • Krapp RH, Berge J, Flores H, Gulliksen B, Werner I (2008) Sympagic occurrence of Eusirid and Lysianassoid amphipods under Antarctic pack ice. Deep-Sea Res 55(II):1015–1023

    Google Scholar 

  • Kuklinski P, Barnes DKA (2009) A new genus and three new species of Antarctic cheilostome Bryozoa. Polar Biol 32:1251–1259

    Article  Google Scholar 

  • Lebar MF, Heimbegner JL, Baker BJ (2007) Cold-water marine natural products. Nat Prod Rep 24(4):774–797

    Article  PubMed  CAS  Google Scholar 

  • Legendre P, Legendre L (2012) Numerical ecology, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Lidgard S (2008) Predation on marine bryozoan colonies: Taxa, traits and trophic groups. Mar Ecol Prog Ser 359:117–131

    Article  Google Scholar 

  • Lindquist N, Fenical W (1991) New tamjamine class alkaloids from the marine ascidian Atapozoa sp. and its nudibranch predators. Experientia 47:504–506

    Article  CAS  Google Scholar 

  • Lopanik N, Lindquist N, Targett N (2004) Potent cytotoxins produced by a microbial symbiont protect host larvae from predation. Oecologia 139:131–139

    Article  PubMed  Google Scholar 

  • Mahon AR, Amsler CD, McClintock JB, Amsler MO, Baker BJ (2003) Tissue-specific palatability and chemical defenses against macro- predators and pathogens in the common articulate brachiopod Liothyrella uva from the Antarctic Peninsula. J Exp Mar Biol Ecol 290:197–210

    Article  CAS  Google Scholar 

  • McClintock JB (1994) Trophic biology of Antarctic echinoderms. Mar Ecol Prog Ser 111:191–202

    Article  Google Scholar 

  • McClintock JB, Baker BJ (1997) Palatability and chemical defense of eggs, embryos and larvae of shallow-water Antarctic marine invertebrates. Mar Ecol Prog Ser 154:121–131

    Article  Google Scholar 

  • McClintock JB, Slattery M, Heine J, Weston J (1992) Chemical defense, biochemical composition and energy content of three shallow-water Antarctic gastropods. Polar Biol 11:623–629

    Article  Google Scholar 

  • McClintock JB, Slattery M, Baker BJ, Heine JN (1993) Chemical ecology of Antarctic sponges from McMurdo Sound, Antarctica: Ecological aspects. Antarct J US 28:134–135

    Google Scholar 

  • McClintock JB, Baker BJ, Slattery M, Heine JN, Bryan PJ, Yoshida W, Davies-Coleman MT, Faulkner DJ (1994) Chemical defense of common Antarctic shallow-water nudibranch Tritoniella belli Eliot (Mollusca: Tritonidae) and its prey, Clavularia frankliniana Rouel (Cnidaria: Octocorallia). J Chem Ecol 20:3361–3372

    Article  PubMed  CAS  Google Scholar 

  • McClintock JB, Baker BJ, Amsler CD, Barlow TL (2000) Chemotactic tube-foot responses of the spongivorous sea star Perknaster fuscus to organic extracts of sponges from McMurdo Sound, Antarctica. Antarct Sci 12:41–46

    Article  Google Scholar 

  • McClintock JB, Amsler CD, Baker BJ (2010) Overview of the chemical ecology of benthic marine invertebrates along the Western Antarctic Peninsula. Integr Comp Biol 50:967–980

    Article  PubMed  Google Scholar 

  • McKinney FK, Taylor PD, Lidgard S (2003) Predation on bryozoans and its reflection in the fossil record. In Kelley PH, Kowalewski M, Hansen TA (eds), Predator–prey interactions in the fossil record (pp 239–246)

  • Morris BD, Prinsep MR (1999) Amathaspiramides A–F, novel brominated alkaloids from the marine bryozoan Amathia wilsoni. J Nat Prod 62:688–693

    Article  PubMed  CAS  Google Scholar 

  • Núñez-Pons L, Carbone C, Paris D, Melck D, Ríos P, Cristobo J, Castelluccio F, Gavagnin M, Avila C (2012a) Chemo-ecological studies on hexactinellid sponges from the Southern Ocean. Naturwissenschaften 99(5):353–368

    Article  PubMed  Google Scholar 

  • Núñez-Pons L, Rodríguez-Arias M, Gómez-Garreta A, Ribera-Siguán A, Avila C (2012b) Feeding deterrence in Antarctic marine organisms: bioassays with the omnivore amphipod Cheirimedon femoratus. Mar Ecol Prog Ser 462:163–174

    Article  Google Scholar 

  • Orejas C, Gili JM, Arntz WE, Ros JD, López PJ, Teixido N, Filipe P (2000) Benthic suspension feeders, key players in Antarctic marine ecosystems? Contrib Sci 1:299–311

    Google Scholar 

  • Oshel PE, Steele DH (1985) Amphipod Paramphithoe hystrix: A micropredator on the sponge Haliclona ventilabrum. Mar Ecol Prog Ser 23:307–309

    Article  Google Scholar 

  • Page MJ, West LM, Northcote PT, Battershill CN, Kelly-Shanks M (2005) Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. J Chem Ecol 31:1161–1174

    Article  PubMed  CAS  Google Scholar 

  • Paul V (1992) Ecological roles of marine natural products. Comstock Publications Association, Ithaca, NY

    Google Scholar 

  • Pawlik JR (2012) Antipredatory defensive roles of natural products from marine invertebrates. In: Fattorusso E, Gerwick WH, Taglilatela-Scarfati (eds) Handbook of marine natural products. Springer, New York, p 1452

    Google Scholar 

  • Peters KJ, Amsler CD, McClintock JB, van Soest RWM, Baker BJ (2009) Palatability and chemical defenses of sponges from the Western Antarctic Peninsula. Mar Ecol Prog Ser 385:77–85

    Article  CAS  Google Scholar 

  • Piel J, Butzke D, Fusetani N, Hui DQ, Platzer M, Wen GP, Matsunaga S (2005) Exploring the chemistry of uncultivated bacterial symbionts: antitumor polyketides of the pederin family. J Nat Prod 68:472–479

    Article  PubMed  CAS  Google Scholar 

  • Puglisi MP, Paul VJ, Slattery M (2002) Biogeographic comparisons of chemical and structural defenses of the Pacific gorgonians Annella mollis and A. reticulata Mar Ecol Prog Ser 207:263–272

    Google Scholar 

  • Roussis V, Vagias C, Tsitsimpikou C, Diamantopoulou N (2000) Chemical variability of the volatile metabolites from the Caribbean corals of the genus Gorgonia. Z Naturforsch C 55(5–6):431–441

    Google Scholar 

  • Sharp JH, Winson MK, Porter JS (2007) Bryozoan metabolites: An ecological perspective. Nat Prod Rep 24:659–673

    Article  PubMed  CAS  Google Scholar 

  • Silén L (1977) Polymorphism. In: Woollacott RM, Zimmer RL (eds) Biology of bryozoans. Academic, New York, pp 184–231

    Google Scholar 

  • Slattery M, McClintock JB (1995) Population structure and feeding deterrence in three shallow-water Antarctic soft corals. Mar Biol 122:461–470

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of stadistics in biological research, Vol. Freeman WH and Co., NY

  • Stachowicz JJ, Lindquist N (2000) Hydroid defenses against predators: The importance of secondary metabolites versus nematocysts. Oecologia 124:280–288

    Article  Google Scholar 

  • Taboada T, Núñez-Pons L, Avila C (2013) Feeding repellence of Antarctic and sub-Antarctic benthic invertebrates against the omnivorous sea star Odontaster validus. Polar Biol 36(1):13–25

    Article  Google Scholar 

  • Teixidó N, Garrabou J, Arntz WE (2002) Spatial pattern quantification of Antarctic benthic communities using Landscape indices. Mar Ecol Prog Ser 242:1–14

    Article  Google Scholar 

  • Winston JE (1986) Victims of avicularia. Mar Ecol 7:193–199

    Article  Google Scholar 

  • Winston JE (1991) Avicularian behavior—a progress report. In Bigey FP (ed) Bryozoa living and fossil (pp 531–540). B Soc Sci Nat Ouest Fr Mem HS 1, Nantes, France

  • Winston JE (2009) Cold comfort: systematics and biology of Antarctic bryozoans. In: Krupnik I, Lang MA, Miller SE (eds) Smithsonian at the poles: contributions to international polar year science. Smithsonian Institute Scholar Press, Washington, DC, pp 205–221

    Chapter  Google Scholar 

  • Winston JE (2010) Life in the colonies: Learning the alien ways of colonial organisms. Integr Comp Biol 50(6):919–933

    Article  PubMed  Google Scholar 

  • Winston JE, Bernheimer AW (1986) Hemolytic-activity in an Antarctic bryozoan. J Nat Hist 20:369–374

    Article  Google Scholar 

Download references

Acknowledgments

We are thankful to J. Vázquez, C. Angulo, F.J. Cristobo, and S. Taboada for their laboratory support. We are also very grateful for the helpful suggestions of the reviewers. In this work, we used extracts from previous projects (ECOQUIM and ACTIQUIM), and for this reason, we want to thank W. Arntz, the R/V Polarstern, and the BIO Hespérides crew. We would like to thank as well the Unidad de Tecnología Marina (UTM-CSIC) and the crew of Las Palmas vessel for all their logistic support. Special thanks are also given to the “Gabriel de Castilla BAE” crew for their help and to the participants of the 4th Australarwood Meeting in Townsville for their useful comments. This research was developed in the framework of the ACTIQUIM-I and II projects (CGL2007-65453/ANT, CTM2010-17415/ANT) with the financial support of the Spanish Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blanca Figuerola.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figuerola, B., Núñez-Pons, L., Moles, J. et al. Feeding repellence in Antarctic bryozoans. Naturwissenschaften 100, 1069–1081 (2013). https://doi.org/10.1007/s00114-013-1112-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-013-1112-8

Keywords

Navigation