Skip to main content

Advertisement

Log in

Leveraging molecular docking to understand Congo red degradation by Staphylococcus caprae MB400

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Congo red (CR) is a genotoxic, sulphonated azo dye and poses significant pollution problem. We hereby report its degradation by Staphylococcus caprae MB400. The bacterium initially propagated as a suspected contaminant upon CR dye supplemented nutrient agar plates, forming zones of clearance around its growth area. The bacterium was purified, gram stained and identified as Staphylococcus caprae via 16S rRNA gene sequencing. Dye decolourization was analysed in liquid culture, and Fourier-transform infrared spectroscopy (FTIR) was conducted for analysis of degraded product/metabolites. A decolourization of ~ 96.0% at 100 µg/ml concentration and pH 7 after 24 h of incubation was observed. Structure of the azoreductase enzyme, responsible for breakage of the bond in the dye and ultimately decolourization, was predicted, and molecular docking was harnessed for understanding the mechanism behind the reduction of azo bond (–N=N–) and conversion to metabolites. Our analysis revealed 12 residues critical for structural interaction of the azoreductase enzyme with this dye. Among these, protein backbone region surrounding four residues, i.e. Lys65, Phe122, Ile166 and Phe169, showed major displacement changes, upon binding with the dye. However, overall the conformational changes were not large.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the data used in this manuscript is quoted as accession number or valid identifier and is within the manuscript.

References

  • Aftab U, Khan MR, Mahfooz M, Ali M, Aslam SH, Rehman A (2011) Decolourization and degradation of textile azo dyes by Corynebacterium sp. isolated from industrial effluent. Pak J Zool 43(1):1–8

    CAS  Google Scholar 

  • Basharat Z, Yasmin A (2022) Sulphonated azo dye decolorization by Alcaligenes faecalis subsp. phenolicus MB207: insights from laboratory and computational analysis. Biophys Chem 286:106806

    Article  CAS  PubMed  Google Scholar 

  • Basharat Z, Bibi M, Yasmin A (2017) Implications of molecular docking assay for bioremediation. Handbook of research on inventive bioremediation techniques. IGI global, pp 24–45

    Chapter  Google Scholar 

  • Basharat Z, Murtaza Z, Siddiqa A, Alnasser SM, Meshal A (2023) Therapeutic target mapping from the genome of Kingella negevensis and biophysical inhibition assessment through PNP synthase binding with traditional medicinal compounds. Mol Divers 1–14

  • Blümel S, Knackmuss H-J, Stolz A (2002) Molecular cloning and characterization of the gene coding for the aerobic azoreductase from Xenophilus azovorans KF46F. Appl Environ Microbiol 68:3948–3955

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen K, Huang W, Wu J, Houng L (1999) Microbial decolorization of azo dyes by Proteus mirabilis. J Ind Microbiol Biotechnol 23:686–690

    Article  CAS  PubMed  Google Scholar 

  • Cheng H-R, Jiang N (2006) Extremely rapid extraction of DNA from bacteria and yeasts. J Microbiol Biotechnol 28:55–59

    CAS  Google Scholar 

  • d’Ersu J, Aubin G, Mercier P, Nicollet P, Bémer P, Corvec S (2016) Characterization of Staphylococcus caprae clinical isolates involved in human bone and joint infections, compared with goat mastitis isolates. J Clin Microbiol 54:106–113

    Article  CAS  PubMed  Google Scholar 

  • Devriese* L, Poutrel B, Kilpper-Bälz R, Schleifer KH (1983) Staphylococcus gallinarum and Staphylococcus caprae, two new species from animals. Int J Syst Evol Microbiol 33:480–486

    Google Scholar 

  • Dinçer AR (2020) Increasing BOD5/COD ratio of non-biodegradable compound (reactive black 5) with ozone and catalase enzyme combination. SN Appl Sci 2:736

    Article  Google Scholar 

  • Erickson K (2010) The jukes-cantor model of molecular evolution. Primus 20:438–445

    Article  Google Scholar 

  • Eskandari F, Shahnavaz B, Mashreghi M (2019) Optimization of complete RB-5 azo dye decolorization using novel cold-adapted and mesophilic bacterial consortia. J Environ Manag 241:91–98

    Article  CAS  Google Scholar 

  • Feng J, Heinze MT, Xu H, Cerniglia EC, Chen H (2010) Evidence for significantly enhancing reduction of Azo dyes in Escherichia coli by expressed cytoplasmic Azoreductase (AzoA) of Enterococcus faecalis. Protein Pept Lett 17:578–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernando EY, Keshavarz T, Kyazze G (2019) The use of bioelectrochemical systems in environmental remediation of xenobiotics: a review. J Chem Technol Biotechnol 94:2070–2080

    Article  CAS  Google Scholar 

  • Guo G et al (2020) Azo dye decolorization by a halotolerant consortium under microaerophilic conditions. Chemosphere 244:125510

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Zamora M, Martínez-Jerónimo F (2019) Exposure to the azo dye Direct blue 15 produces toxic effects on microalgae, cladocerans, and zebrafish embryos. Ecotoxicology 28:890–902

    Article  PubMed  Google Scholar 

  • John GSM, Rose C, Takeuchi S (2011) Understanding tools and techniques in protein structure prediction. Syst Comput Biol Bioinform Comput Model 185–212

  • Kanda K et al (1991) Identification of a methicillin-resistant strain of Staphylococcus caprae from a human clinical specimen. Antimicrob Agents Chemother 35:174–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katal R, Zare H, Rastegar SO, Mavaddat P, Darzi GN (2014) Removal of dye and chemical oxygen demand (COD) reduction from textile industrial wastewater using hybrid bioreactors. Environ Eng Manag J 13(1):43–50

    Article  CAS  Google Scholar 

  • Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL Repository and associated resources. Nucleic Acids Res 37:D387–D392

    Article  CAS  PubMed  Google Scholar 

  • Koyani RD, Sanghvi GV, Sharma RK, Rajput KS (2013) Contribution of lignin degrading enzymes in decolourisation and degradation of reactive textile dyes. Int Biodeterior Biodegrad 77:1–9

    Article  CAS  Google Scholar 

  • Krithika A, Gayathri KV, Kumar DT, Doss CGP (2021) Mixed azo dyes degradation by an intracellular azoreductase enzyme from alkaliphilic Bacillus subtilis: a molecular docking study. Arch Microbiol 203:3033–3044

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra A et al (2023) Decoding whole genome of Anoxybacillus rupiensis TPH1 isolated from Tatapani hot spring, India and giving insight into bioremediation ability of TPH1 via heavy metals and azo dyes. Res Microbiol 174:104027

    Article  CAS  PubMed  Google Scholar 

  • Morrison JM, John GH (2015) Non-classical azoreductase secretion in Clostridium perfringens in response to sulfonated azo dye exposure. Anaerobe 34:34–43

    Article  CAS  PubMed  Google Scholar 

  • Naseer A et al (2016) Degradation and detoxification of Navy Blue CBF dye by native bacterial communities: an environmental bioremedial approach. Desalination Water Treatment 57:24070–24082

    Article  CAS  Google Scholar 

  • Oturkar CC, Patole MS, Gawai KR, Madamwar D (2013) Enzyme based cleavage strategy of Bacillus lentus BI377 in response to metabolism of azoic recalcitrant. Bioresour Technol 130:360–365

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Singh P, Iyengar L (2007) Bacterial decolorization and degradation of azo dyes. Int Biodeterior Biodegrad 59:73–84

    Article  CAS  Google Scholar 

  • Patel GB, Rakholiya P, Shindhal T, Varjani S, Tabhani N, Shah KR (2021) Lipolytic Nocardiopsis for reduction of pollution load in textile industry effluent and SWISS model for structural study of lipase. Biores Technol 341:125673

    Article  CAS  Google Scholar 

  • Picho-Chillan G et al (2019) Photodegradation of Direct Blue 1 azo dye by polymeric carbon nitride irradiated with accelerated electrons. Mater Chem Phys 237:121878

    Article  CAS  Google Scholar 

  • Rathod J, Dhebar S, Archana G (2017) Efficient approach to enhance whole cell azo dye decolorization by heterologous overexpression of Enterococcus sp. L2 azoreductase (azoA) and Mycobacterium vaccae formate dehydrogenase (fdh) in different bacterial systems. Int Biodeterior Biodegrad 124:91–100

    Article  CAS  Google Scholar 

  • Russ R, Rau J, Stolz A (2000) The function of cytoplasmic flavin reductases in the reduction of azo dyes by bacteria. Appl Environ Microbiol 66:1429–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saratale RG et al (2013) Decolorization and detoxification of sulfonated azo dye CI Remazol Red and textile effluent by isolated Lysinibacillus sp RGS. J Biosci Bioeng 115:658–667

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Banerjee A, Halder U, Biswas R, Bandopadhyay R (2017) Degradation of synthetic azo dyes of textile industry: a sustainable approach using microbial enzymes. Water Conserv Sci Eng 2:121–131

    Article  Google Scholar 

  • Sarkar S, Banerjee A, Chakraborty N, Soren K, Chakraborty P, Bandopadhyay R (2020) Structural-functional analyses of textile dye degrading azoreductase, laccase and peroxidase: a comparative in silico study. Electron J Biotechnol 43:48–54

    Article  CAS  Google Scholar 

  • Shah MP (2019) Bioremediation of azo dye. Microbial wastewater treatment. Elsevier, pp 103–126

    Chapter  Google Scholar 

  • Singh K, Arora S (2011) Removal of synthetic textile dyes from wastewaters: a critical review on present treatment technologies. Crit Rev Environ Sci Technol 41:807–878

    Article  CAS  Google Scholar 

  • Sreelatha S, Velvizhi G, Kumar AN, Mohan SV (2016) Functional behavior of bio-electrochemical treatment system with increasing azo dye concentrations: Synergistic interactions of biocatalyst and electrode assembly. Bioresour Technol 213:11–20

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan S, Sadasivam SK (2018) Exploring docking and aerobic-microaerophilic biodegradation of textile azo dye by bacterial systems. J Water Process Eng 22:180–191

    Article  Google Scholar 

  • Suhre K, Sanejouand Y-H (2004) ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res 32:W610–W614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki Y, Yoda T, Ruhul A, Sugiura WJ (2001) Molecular cloning and characterization of the gene coding for azoreductase from Bacillus sp. OY1–2 isolated from soil. J Biol Chem 276:9059–9065

    Article  CAS  PubMed  Google Scholar 

  • Vandenesch F, Eykyn SJ, Bes M, Meugnier H, Fleurette J, Etienne J (1995) Identification and ribotypes of Staphylococcus caprae isolates isolated as human pathogens and from goat milk. J Clin Microbiol 33:888–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei T, Gong J, Jamitzky F, Heckl WM, Stark RW, Rössle SC (2009) Homology modeling of human Toll-like receptors TLR7, 8, and 9 ligand-binding domains. Protein Sci 18:1684–1691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson K (1987) Preparation of genomic DNA from bacteria. Curr Protocols Mol Biol 241–245

  • Xu F, Mou Z, Geng J, Zhang X, Li C-Z (2016) Azo dye decolorization by a halotolerant exoelectrogenic decolorizer isolated from marine sediment. Chemosphere 158:30–36

    Article  CAS  PubMed  Google Scholar 

  • Yadav A, Mukherji S, Garg A (2013) Removal of chemical oxygen demand and color from simulated textile wastewater using a combination of chemical/physicochemical processes. Ind Research Eng Chem Res. 52:10063–10071

    Article  CAS  Google Scholar 

  • Yagub MT, Sen TK, Afroze S, Ang HM (2014) Dye and its removal from aqueous solution by adsorption: a review. Adv Colloid Interface Sci 209:172–184

    Article  CAS  PubMed  Google Scholar 

  • Yang H et al (2019) admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics 35:1067–1069

    Article  CAS  PubMed  Google Scholar 

  • Yu NY et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

AY and ZB contributed to conceptualization; ZB was involved in methodology, data curation and writing—original draft preparation, and provided software; SA and ZB contributed to validation and formal analysis; SA was involved in investigation; and AY contributed to resources, writing—review and editing, supervision and project administration. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Zarrin Basharat or Azra Yasmin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Yusuf Akhter.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 108 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basharat, Z., Asghar, S. & Yasmin, A. Leveraging molecular docking to understand Congo red degradation by Staphylococcus caprae MB400. Arch Microbiol 205, 250 (2023). https://doi.org/10.1007/s00203-023-03591-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00203-023-03591-z

Keywords

Navigation