Skip to main content
Log in

Phylogeographic patterns of the mysid Mesopodopsis slabberi (Crustacea, Mysida) in Western Europe: evidence for high molecular diversity and cryptic speciation

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The phylogeographic patterns among populations of Mesopodopsis slabberi (Crustacea, Mysida), an ecological important mysid species of marine and estuarine habitats, were analysed by means of DNA sequencing of a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) and the 16S ribosomal RNA genes. Samples of M. slabberi collected from five Atlantic and two Western Mediterranean populations were investigated. Very high levels of within-population molecular diversity were observed in all samples (mean h=0.807 and π=0.0083), with exception of the Mediterranean Ebro population which contained only one haplotype. Differentiation among populations was high, and a clear phylogeographic break was observed between the Atlantic and Mediterranean populations. Moreover, a strong differentiation was detected between both populations in the Western Mediterranean Sea (Alicante and Ebro delta), while two divergent lineages occurred in sympatry within the Atlantic Mondego estuary. The high congruence between both the COI and 16S rRNA sequence data, the reciprocal monophyly of the different mitochondrial clades and the levels of nucleotide divergence between them suggest the presence of a complex of cryptic species within M. slabberi. Estimations of divergence time between the different mitochondrial lineages indicate that a split occurred during the late Miocene/early Pliocene. Such a divergence could be concordant with vicariant events during sea-level drops within the Mediterranean region at that time. However, within the Mediterranean Sea, the potential of divergence through ecological diversification cannot be ruled out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avise JC, Ball RM, Arnold J (1988) Current versus historical population sizes in vertebrate species with high gene flow: a comparison based on mitochondrial DNA lineages and inbreeding theory for neutral mutations. Mol Biol Evol 5:331–344

    CAS  PubMed  Google Scholar 

  • Azeiteiro UMM, Jesus L, Marques JC (1999) Distribution, population dynamics, and production of the suprabenthic mysid Mesopodopsis slabberi in the Mondego estuary, Portugal. J Crust Biol 19:498–509

    Article  Google Scholar 

  • Bacescu M (1940) Les Mysidacés des eaux Roumaines (Etude taxonomique, morphologique, bio-géographique et biologique). Ann Sci Univ Jassy 26:453–804

    Google Scholar 

  • Bargelloni L, Alarcon JA, Alvarez MC, Penzo E, Magoulas A, Reis C, Patarnello T (2003) Discord in the family Sparidae (Teleostei): divergent phylogeographical patterns across the Atlantic–Mediterranean divide. J Evol Biol 16:1149–1158

    Article  CAS  PubMed  Google Scholar 

  • Beyst B, Buysse D, Dewicke A, Mees J (2001) Surf zone hyperbenthos of Belgian sandy beaches: seasonal patterns. Estuar Coast Shelf Sci 53:877–895

    Article  Google Scholar 

  • Bilton DT, Paula J, Bishop JDD (2002) Dispersal, genetic differentiation and speciation in estuarine organisms. Estuar Coast Shelf Sci 55:937–952

    Article  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  CAS  PubMed  Google Scholar 

  • Borsa P, Naciri M, Bahri L, Chikhi L, Garcia de Leon FJ, Kotoulas G, Bonhomme F (1997) Zoogéographie infraspecifique de la mer Méditerranée. Analyse des donnees genetiques populationnelles sur seize espèces Atlanto-Mediterraneennes (Poissons et Invertébrés). Vie Milieu 47:295–305

    Google Scholar 

  • Bremer JR, Mejuto J, Baker AJ (1995) Mitochondrial DNA control region sequences indicate extensive mixing of swordfish (Xiphias gladius L.) populations in the Atlantic ocean. Can J Fish Aquat Sci 52:1720–1732

    Article  CAS  Google Scholar 

  • Bucklin A, Wiebe PH (1998) Low mitochondrial diversity and small effective population sizes on the copepods Calanus finmarchicus and Nannocalanus minor: possible impact of climate variation during recent glaciation. J Hered 89:383–392

    Article  CAS  PubMed  Google Scholar 

  • Bucklin A, Frost BW, Kocher TD (1995) Molecular systematics of six Calanus and three Metridia species (Calanoida: Copepoda). Mar Biol 121:655–664

    Article  CAS  Google Scholar 

  • Carlton JT (1985) Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water. Oceanogr Mar Biol 23:313–371

    Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: the global transport of nonindigenous marine organisms. Science 261:78–82

    Article  Google Scholar 

  • Casu M, Curini-Galletti M (2004) Sibling species in interstitial flatworms: a case study using Monocelis lineta (Proseriata: Monocelididae). Mar Biol 145:669–679

    Google Scholar 

  • Cognetti G (1994) Colonization of brackish waters. Mar Pollut Bull 28:583–586

    Article  CAS  Google Scholar 

  • Cognetti G, Maltagliati F (2000) Biodiversity and adaptive mechanisms in brackish water fauna. Mar Pollut Bull 40:7–14

    Article  CAS  Google Scholar 

  • Cognetti G, Maltagliati F (2004) Strategies of genetic biodiversity conservation in the marine environment. Mar Pollut Bull 48:811–812

    Article  CAS  PubMed  Google Scholar 

  • Crandall KA, Templeton AR (1993) Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics 134:959–969

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunha MR, Moreira MH, Sorbe JC (2000) Diamysis bahirensis: a mysid species new to the Portuguese fauna and first record from the west European coast. Crustac Issues 12:139–152

    Google Scholar 

  • Dando PR, Southward AJ (1981) Existence of ‘Atlantic’ and ‘Mediterranean’ forms of Chthamalus montagui (Crustacea, Cirripedia) in the western Mediterranean. Mar Biol Lett 2:239–248

    Google Scholar 

  • Deprez T, Vanden Berghe E, Vincx M (2004) NeMys: a multidisciplenary biological information system. In: Vanden Berghe E, Brown M, Costello MJ, Heip C, Levitus S, Pissierssens P (eds) Proceedings of ‘The Colour of Ocean Data’ Symposium, Brussels, 25–27 November 2002, IOC Workshop Reports 188 (UNESCO, Paris), pp 57–63

  • Dewicke A, Cattrijsse A, Mees J, Vincx M (2003) Spatial patterns of the hyperbenthos of subtidal sandbanks in the southern North Sea. J Sea Res 49:27–45

    Article  Google Scholar 

  • Doebeli M, Dieckmann U (2003) Speciation along environmental gradients. Nature 421:259–264

    Article  CAS  PubMed  Google Scholar 

  • Duggen S, Hoernie K, van den Bogaard P, Rupke L, Phipps Morgan J (2003) Deep roots of the Messinian salinity crisis. Nature 422:602–605

    Article  CAS  PubMed  Google Scholar 

  • Duran S, Giribet G, Turon X (2004a) Phylogeographical history of the sponge Crambe crambe (Porifera, Poecilosclerida): range expansion and recent invasion of the Macaronesian islands from the Mediterranean Sea. Mol Ecol 13:109–122

    Article  CAS  PubMed  Google Scholar 

  • Duran S, Palacin C, Becerro MA, Turon X, Giribet G (2004b) Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata, Echinoidea). Mol Ecol 13:3317–3328

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Smouse P, Quattro J (1992) Analyses of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–297

    CAS  Google Scholar 

  • Glenn TC, Stephan W, Braun MJ (1999) Effects of a population bottleneck on whooping crane mitochondrial DNA variation. Conserv Biol 13:1097–1107

    Article  Google Scholar 

  • Goldman N, Anderson JP, Rodrigo AG (2000) Likelihood-based tests of topologies in phylogenetics. Sys Biol 49:652–670

    Article  CAS  Google Scholar 

  • Gomoiu MT (1978) Quantitative data concerning the distribution and ecology of Mesopodopsis slabberi (van Beneden) at the Danube River mouths area. Cercet Mar 11:103–112

    Google Scholar 

  • Greenwood JG, Jones MB, Greenwood J (1989) Salinity effects on brood maturation on the mysid crustacean Mesopodopsis slabberi. J Mar Biol Assoc UK 69:683–694

    Article  Google Scholar 

  • Gysels ES, Hellemans B, Pampoulie C, Volckaert FAM (2004) Phylogeography of the common goby, Pomatoschistus microps, with particular emphasis on the colonization of the Mediterranean and the North Sea. Mol Ecol 13:403–417

    Article  CAS  PubMed  Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? In: Beaumont AR (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 122–134

    Google Scholar 

  • Holland BS, Dawson MN, Crow GL (2004) Global phylogeography of Cassiopea (Scyphozoa: Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145:1119–1128

    Article  Google Scholar 

  • Hostens K, Mees J (1999) The mysid-feeding guild of demersal fishes in the brackish zone of the Westerschelde estuary. J Fish Biol 55:704–719

    Article  Google Scholar 

  • Hsü KJ, Montadert L, Bernoulli D, Cita MB, Erickson A, Garrison RE, Kidd RB, Mélières F, Müller C, Wright R (1977) History of the Mediterranean salinity crisis. Nature 267:399–403

    Article  Google Scholar 

  • Hudson RR, Coyne JA (2002) Mathematical consequences of the genealogical species concept. Evolution 56:1557–1565

    Article  PubMed  Google Scholar 

  • Irwin DE (2002) Phylogeographic breaks without geographic barriers to gene flow. Evolution 56:2383–2394

    Article  PubMed  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Ann Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90

    Article  CAS  Google Scholar 

  • Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond B 265:2257–2263

    Article  Google Scholar 

  • Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology and causes of the Messinian salinity crisis. Nature 400:652–655

    Article  CAS  Google Scholar 

  • Kuo C-H, Avise JC (2005) Phylogeographic breaks in low-dispersal species: the emergence of concordance across gene trees. Genetica 124:179–186

    Article  PubMed  Google Scholar 

  • Lavoie DM, Smith LD, Ruiz GM (1999) The potential for intracoastal transfer of non-indigenous species in ballast water of ships. Estuar Coast Shelf Sci 48:551–564

    Article  Google Scholar 

  • Lawrie SM, Speirs DC, Raffaelli DG, Gurney WSC, Paterson DM, Ford R (1999) The swimming behaviour and distribution of Neomysis integer in relation to tidal flow. J Exp Mar Biol Ecol 242:95–106

    Article  Google Scholar 

  • Lee CE (2000) Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate ‘populations’. Evolution 54:2014–2027

    Article  CAS  PubMed  Google Scholar 

  • Maldonado A (1985) Evolution of the Mediterranean basins and a detailed reconstruction of the Cenozoic Paleoceanography. In: Margalef R (eds) Western Mediterranean. Pergamon Press, London, pp 17–56

    Google Scholar 

  • Maltagliati F (1999) Genetic divergence in natural populations of the Mediterranean killifish Aphanius fasciatus. Mar Ecol Prog Ser 179:155–162

    Article  Google Scholar 

  • Mauchline J (1980) The biology of mysids and euphausiids. In: Blaxter JHS, Russel FS, Yonge M (eds) Advances in marine biology (18). Academic, London, pp 681

    Google Scholar 

  • Mees J, Fockedey N, Hamerlynck O (1995) Comparative study of the hyperbenthos of three European estuaries. Hydrobiologia 311:153–174

    Article  Google Scholar 

  • Millot C (1999) Circulation in the Western Mediterranean Sea. J Mar Syst 20:423–442

    Article  Google Scholar 

  • Moffat AM, Jones MB (1993) Correlation of the distribution of Mesopodopsis slabberi (Crustacea, Mysidacea) with physico-chemical parameters in a partially-mixed estuary (Tamar, England). Neth J Aquat Ecol 27:155–162

    Article  Google Scholar 

  • Munilla T, San Vicente C (2005) Suprabenthic biodiversity of Catalan beaches (NW Mediterranean). Acta Oecol 27:81–91

    Article  Google Scholar 

  • Müller J (2000) Mitochondrial DNA variation and the evolutionary history of cryptic Gammarus fossarum types. Mol Phylogenet Evol 15:260–268

    Article  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nikula R, Vainola R (2003) Phylogeography of Cerastoderma glaucum (Bivalvia: Cardiidae) across Europe: a major break in the Eastern Mediterranean. Mar Biol 143:339–350

    Article  Google Scholar 

  • Nilsson T (1982) The Pleistocene: geology and life in the quaternary age. D. Ridel Publishing Co., Dordrecht

    Google Scholar 

  • Palumbi S, Martin RA, Romano S, McMillan WO, Stice L, Grabowski G (1991) The simple fool’s Guide to PCR, Version 2. University of Hawaii Zoology Department, Honululu

  • Pannacciulli FG, Bishop JDD, Hawkins SJ (1997) Genetic structure of populations of two species of Chthamalus (Crustacea: Cirripedia) in the north-east Atlantic and Mediterranean. Mar Biol 128:73–82

    Article  Google Scholar 

  • Peijnenburg KTC, Breeuwer JAJ, Pierrot-Bults AC, Menken SBJ (2004) Phylogeography of the planktonic chaetogenath Sagitta setosa reveals isolation in European seas. Evolution 58:1472–1487

    Article  PubMed  Google Scholar 

  • Perdices A, Carmona JA, Fernández-Delgado C, Doadrio I (2001) Nuclear and mitochondrial data reveal high genetic divergence among Atlantic and Mediterranean populations of the Iberian killifish Aphanius iberus (Teleostei: Cyprinodontidae). Heredity 87:314–324

    Article  CAS  PubMed  Google Scholar 

  • Perez-Losada M, Guerra A, Sanjuan A (1999) Allozyme differentiation in the cuttlefish Sepia offcinalis (Mollusca: Cephalopoda) from the NE Atlantic and Mediterranean. Heredity 83:280–289

    Article  CAS  PubMed  Google Scholar 

  • Pfenninger M, Staubach S, Albrecht C, Streit B, Schwenk K (2003) Ecological and morphological differentiation among cryptic evolutionary lineages in freshwater limpets of the nominal form-group Ancylus fluviatilis (O.F. Müller, 1774). Mol Ecol 12:2731–2745

    Article  CAS  PubMed  Google Scholar 

  • Pillai NK (1968) A revision of the genus Mesopodopsis Czerniavsky (Crustacea: Mysidacea). J Zool Soc India 20:6–24

    Google Scholar 

  • Por FD (1989) The legacy of the Tethys. An aquatic biogeography of the Levant. Kluwer, Dordrecht

    Book  Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Quesada H, Beynon CM, Skibinski DOF (1995) A mitochondrial DNA discontinuity in the mussel Mytilus galloprovincialis Lmk: Pleistocene vicariance biogeography and secondary intergradation. Mol Biol Evol 12:521–524

    CAS  PubMed  Google Scholar 

  • Remerie T, Bourgois T, Vanreusel A (2005) Morphological differentiation between geographically separated populations of Neomysis integer and Mesopodopsis slabberi (Crustacea, Mysida). Hydrobiologia 549:239–250

    Article  Google Scholar 

  • Roast SD, Widdows J, Jones MB (1998) The position maintenance behaviour of Neomysis integer (Peracarida: Mysidacea) in response to current velocity, substratum and salinity. J Exp Mar Biol Ecol 220:25–45

    Article  Google Scholar 

  • Rocha-Olivares A, Fleeger JW, Foltz DW (2001) Decoupling of molecular and morphological evolution in deep lineages of a meiobenthic harpacticoid copepod. Mol Biol Evol 18:1088–1102

    Article  CAS  PubMed  Google Scholar 

  • Roman J, Palumbi SR (2004) A global invader at home: population structure of the green crab, Carcinus maenas, in Europe. Mol Ecol 13:2891–2898

    Article  CAS  PubMed  Google Scholar 

  • Rosenborg NA (2003) The shapes of neutral gene genealogies in two species: probabilities of monophyly, paraphyly and polyphyly in a coalescent model. Evolution 57:1465–1477

    Article  Google Scholar 

  • Sanjuan A, Comesaña AS, De Carlos A (1996) Macrogeographic differentiation by mtDNA restriction site analysis in the S.W. European Mytilus galloprovincialis Lmk. J Exp Mar Biol Ecol 198:89–100

    Article  Google Scholar 

  • Sardo AM, Morgado F, Soares AMVM (2005) Mesopodopsis slabberi (Crustacea: Mysidacea): can it be used in toxicity tests? Ecotox Environ Safe 60:81–86

    Article  CAS  Google Scholar 

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN. A software for population genetics data analysis, Version 2.00. University of Geneva, Geneva

  • Schubart CD, Diesel R, Blair Hedges S (1998) Rapid evolution to terrestrial life in Jamaican crabs. Nature 393:363–365

    Article  CAS  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    Article  CAS  Google Scholar 

  • Solé M, Porte C, Barcelo D, Albaiges J (2000) Bivalves residue analysis for the assessment of coastal pollution in the Ebro Delta (NW Mediterranean). Mar Pollut Bull 40:746–753

    Article  Google Scholar 

  • Stamatis C, Triantafyllidis A, Moutou KA, Mamuris Z (2004) Mitochondrial DNA variation in Northeast Atlantic and Mediterranean populations of Norway lobster, Nephrops norvegicus. Mol Ecol 13:1377–1390

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (1998) PAUP*: phylogenetic analysis using parsimony (* and other methods), Version 4.0. Sinauer Associates, Sunderland

    Google Scholar 

  • Tamura K, Nei M (1993) Estimations of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Tattersall WM, Tattersall OS (1951) The British Mysidacea. Ray Society, London, p 460

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Tintore J, La Violette PE, Blade I, Cruzado A (1998) A study of an intense density front in the eastern Alboran Sea: the Almeria-Oran front. J Phys Oceanogr 18:1384–1397

    Article  Google Scholar 

  • Triantafyllidis A, Apostolidis AP, Katsares V, Kelly E, Mercer J, Hughes M, Jørstad KE, Tsolou A, Hynes R, Triantaphyllidis C (2005) Mitochondrial DNA variation in the European lobster (Homarus gammarus) throughout the range. Mar Biol 146:223–235

    Article  CAS  Google Scholar 

  • Wallis GP, Beardmore JA (1984) Genetic variation and environmental heterogeneity in some closely related goby species. Genetica 62:223–237

    Article  Google Scholar 

  • Watterson GA (1984) Lines of descent and the coalescent. Theor Popul Biol 26:77–93

    Article  Google Scholar 

  • Webb P, Wooldridge TH (1990) Diel horizontal migration of Mesopodopsis slabberi (Crustacea: Mysidacea) in Algoa Bay, southern Africa. Mar Ecol Prog Ser 62:73–78

    Article  Google Scholar 

  • Witt JDS, Blinn DW, Hebert PDN (2003) The recent evolutionary origin of the phenotypically novel amphipod Hyalella Montezuma offers an ecological explanation for morphological stasis in a closely allied species complex. Mol Ecol 12:405–413

    Article  PubMed  Google Scholar 

  • Wittmann KJ (1992) Morphogeographic variations in the genus Mesopodopsis Czerniavsky with description of three new species (Crustacea, Mysidacea). Hydrobiologia 241:71–89

    Article  Google Scholar 

  • Wonham MJ, Carlton JT, Ruis GM, Smith LD (2000) Fish and ships: relating dispersal frequency to success in biological invasions. Mar Biol 136:1111–1121

    Article  Google Scholar 

  • Zane L, Ostellari L, Maccatrozzo L, Bargelloni L, Cuzin-Roudy J, Buchholz F, Patarnello T (2000) Genetic differentiation in a pelagic crustacean (Meganyctiphanes norvegica: Euphausiacea) from the North East Atlantic and the Mediterranean Sea. Mar Biol 136:191–199

    Article  Google Scholar 

  • Zardoya R, Castilho R, Grande C, Favre-Krey L, Caetano S, Marcato S, Krey G, Patarnello T (2004) Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol Ecol 13:1785–1798

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research is supported by the FWO project G029200, the GOA BOF project (1205398) ‘Biodiversity of marine benthic communities along ecological gradients’ from Ghent University (Flemish Government of Education) and the TROPHOS project of the Belgian Federal Science Policy Office (contract No. EV/02/25A). We would like to thank J.-C. Dauvin, A. M. Sardo, M. Cunha, M. R. Pastorinho P. D. Moyano, C. Barbera, C. Ribera and T. Wooldridge for their help with collecting and providing samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Remerie.

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Appendices

Appendix 1

Variable nucleotide positions observed in the 458 bp fragment of the mitochondrial COI gene of the Mesopodopsis slabberi and M. wooldridgei (M_woold) haplotypes. Dots indicate an identical nucleotide base, dotted horizontal lines delimitate the different mtDNA clades as observed in the MP tree (see Fig. 2). Squares represent nucleotide substitutions resulting in an amino acid change. For each nucleotide substitution the codon position at which a change occurred is indicated in the last row.

Appendix 2

Variable nucleotide positions observed in the 487 bp fragment of the 16 rRNA gene of the Mesopodopsis slabberi and M. wooldridgei haplotypes. The first column indicates the geographical origin of the haplotypes (for sampling site abbreviations, see Table 1), dots indicate an identical nucleotide base, dotted horizontal lines delimitate the different mtDNA clades as observed in the MP tree (see Fig. 4). - gap, ? unknown nucleotide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remerie, T., Bourgois, T., Peelaers, D. et al. Phylogeographic patterns of the mysid Mesopodopsis slabberi (Crustacea, Mysida) in Western Europe: evidence for high molecular diversity and cryptic speciation. Mar Biol 149, 465–481 (2006). https://doi.org/10.1007/s00227-005-0235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-005-0235-7

Keywords

Navigation