Skip to main content
Log in

Population genetic structure of North American Ophiactis spp. brittle stars possessing hemoglobin

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

With the discovery of previously unreported populations of hemoglobin-possessing Ophiactis from the Texas coast in the Gulf of Mexico, an investigation into its population structure, including populations of O. simplex from the Pacific coast of California and O. rubropoda from the Atlantic coast of Florida, was undertaken using DNA sequence data from the mitochondrial COI gene. The reconstructed haplotype network suggests that California populations contain the ancestral source of mtDNA variation, and there is no evidence of recent introductions into Texas. Population genetic analyses reveal the California, Florida, and Texas Ophiactis populations to each be significantly differentiated from one another. Sequence divergence among the three areas is shallower than would be predicted given biogeographic history. Texas and Florida populations are equally genetically diverged from California populations as they are to one another, despite the greater potential for gene flow between these areas. The genetic distinctiveness of the Texas populations and the concordance of this pattern with phylogeographic patterns in other brittle star systems indicate an isolated and independent evolutionary history and we hypothesize that the three geographic regions included in this study each serve as hypotheses of population-level lineages that remain to be tested with independent sources of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F (2004) Parallel metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20:407–415

    Article  PubMed  CAS  Google Scholar 

  • Bermingham E, McCafferty SS, Martin AP (1997) Fish biogeography and molecular clocks: perspectives from the Panamanian Isthmus. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic Press, New York, pp 113–128

    Chapter  Google Scholar 

  • Cardigos F, Tempera F, Ávila S, Gonçalves J, Colaço A, Santos RS (2007) Non-indigenous marine species of the Azores. Helgol Mar Res 60:160–169

    Article  Google Scholar 

  • Carlton JT, Geller JB (1993) Ecological roulette: global transport of non-indigenous marine organisms. Science 261:78–82

    Article  Google Scholar 

  • Christensen AB (1998) The properties of the hemoglobins of Ophiactis simplex (Ophiuroidea, Echinodermata). Am Zool 38:120A

    Google Scholar 

  • Christensen AB (2004) A new distribution record and notes on the biology of the fissiparous brittle star Ophiactis simplex (Ophiuroidea, Echinodermata) in Texas. Tex J Sci 56:175–179

    Google Scholar 

  • Christensen AB, Colacino JM (2000) Respiration in the burrowing brittlestar, Hemipholis elongata Say (Echinodermata, Ophiuroidea): a study of the effects of environmental variables on oxygen uptake. Comp Biochem Physiol A 127:201–213

    Article  CAS  Google Scholar 

  • Christensen AB, Colacino JM, Bonaventura C (2003) Functional biochemical properties of the hemoglobins of the burrowing brittle star Hemipholis elongata Say (Ecinodermata, Ophiuroidea). Biol Bull 205:54–65

    Article  PubMed  CAS  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  PubMed  CAS  Google Scholar 

  • Coates AG, Obando JA (1996) The geologic evolution of the Central American Isthmus. In: Jackson JBC, Coates AG, Budd A (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 21–56

    Google Scholar 

  • Cuénot L (1891) Etudes sur le sang et les glandes lymphatiques dans la serie animale. II. Invertebrates. Arch Zool Exp Gen 9:595–670

    Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Foettinger A (1880) Sur l’existence de l’hemoglobine chez les echinoderms. Arch Biol Paris 1:405–415

    Google Scholar 

  • Hajduk SL, Cosgrove WB (1975) Hemoglobin in an ophiuroid, Hemipholis elongata. Am Zool 15:808

    Google Scholar 

  • Hansson HG (2001) Echinodermata. In: Costello MJ, Emblow CS, White R (eds) European register of marine species: a checklist of the marine species in Europe and a bibliography of guides to their identification. Patrimoines Naturels, vol 50. Publications Scientifiques du Museum National d’Histoire Natuelle, Paris, pp 336–351

  • Hendler G, Baldwin CC, Smith DG, Thacker CE (1999) Planktonic dispersal of juvenile brittle stars (Echinodermata: Ophiuroidea) on a Caribbean reef. Bull Mar Sci 65:283–288

    Google Scholar 

  • Hendler GL, Miller JE, Pawson DL, Kier PM (eds) (1995) Sea stars, sea urchins and allies. Echinoderms of Florida and the Caribbean. Smithsonian Institution Press, Washington

  • Highsmith RC (1985) Floating and algal rafting as potential dispersal mechanism for fauna in brooding invertebrates. Mar Ecol Prog Ser 25:169–179

    Article  Google Scholar 

  • Hofmann EE, Worley SJ (1986) An investigation of the circulation of the Gulf of Mexico. J Geophys Res 91:14221–14236

    Article  Google Scholar 

  • Knowlton N, Weigt LA (1998) New dates and new rates for the divergence of the Isthmus of Panama. Proc R Soc Lond B 265:2257–2263

    Article  Google Scholar 

  • Kolbe JJ, Glor RE, Rodríguez Schettino L, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    Article  PubMed  CAS  Google Scholar 

  • Kuhner MK, Yamato J, Beerli P, Smith LP, Rynes E, Walkup E, Li C, Sloan J, Colacurcio P, Felsenstein J (2005) LAMARC v 2.0. University of Washington, Seattle

    Google Scholar 

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55:955–975

    Article  PubMed  CAS  Google Scholar 

  • Levine L (2006) Recent progress in understanding larval dispersal: new directions and digressions. Int Comp Biol 46:282–297

    Article  CAS  Google Scholar 

  • Lonhart SI, Tupen JW (2001) New range records of 12 marine invertebrates: the role of el Nino and other mechanisms in southern and central California. Bull Soc Calif Acad Sci 100:238–248

    Google Scholar 

  • Lugo-Fernandez A, Deslarzes KJP, Price JM, Boland GS, Morin MV (2001) Inferring probable dispersal of Flower Garden Banks coral larva (Gulf of Mexico) using observed and simulated drifter trajectories. Cont Shelf Res 21:47–67

    Article  Google Scholar 

  • Mackie JA, Keough MJ, Christidis L (2006) Invasion patterns inferred from cytochrome oxidase I sequences in three bryozoans, Bugula neritina, Watersipora subtorquata, and Watersipora arcuata. Mar Biol 149:285–295

    Article  CAS  Google Scholar 

  • Marko PB (2002) Fossil calibration of molecular clocks and the divergence times of geminate species pairs separated by the Isthmus of Panama. Mol Biol Evol 19:2005–2021

    PubMed  CAS  Google Scholar 

  • Martela C, Viardb F, Bourguetc D, Garcia-Meunier P (2004) Invasion by the marine gastropod Ocinebrellus inornatus in France. Mar Biol 305:155–170

    Article  Google Scholar 

  • May GE, Gelembiuk GW, Panov VE, Orlova MI, Lee CE (2006) Molecular ecology of zebra mussel invasions. Mol Ecol 15:1021–1031

    Article  PubMed  CAS  Google Scholar 

  • Medeiros-Bergen D, Perna NT, Conroy JA, Kocher TD (1998) Identification of ophiuroid post-larvae using mitochondrial DNA. In: Mooi R, Telford M (eds) Echinoderms: San Francisco. Proceedings of the 9th International Echinoderm Conference, Balkema, Rotterdam, The Netherlands, pp 399–404

  • Metz EC, Gomez-Gutierrez G, Vacquier VD (1998) Mitochondrial DNA and bindin gene sequence evolution among allopatric species of the sea urchin genus Arbacia. Mol Biol Evol 15:185–195

    PubMed  CAS  Google Scholar 

  • Mladenov PV, Burke RD (1994) Echinodermata: asexual propagation. In: Adiyodi KG, Adiyodi RG (eds) Reproductive biology of invertebrates. Oxford and IBH Publications, New Dehli, pp 339–383

    Google Scholar 

  • Mladenov PV, Emson RH (1984) Divide and broadcast: sexual reproduction in the West Indian brittle star Ophiocomella ophiactoides and its relationship to fissiparity. Mar Biol 81:273–282

    Article  Google Scholar 

  • Mladenov PV, Emson RH (1990) Genetic structure of populations of two closely related brittle stars with contrasting sexual and asexual life histories, with observations on the genetic structure of a second asexual species. Mar Biol 104:265–274

    Article  Google Scholar 

  • Nielsen E (1932) Ophiurans from the Gulf of Panama, California, and the Strait of Georgia. Vidensk Medd Dan Nat Foreing 91:241–346

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  PubMed  CAS  Google Scholar 

  • Ross DJ, Johnson CR, Hewitt CL (2003) Variability in the impact of an introduced predator (Asterias amurensis: Asteroidea) on soft-sediment assemblages. J Exp Mar Biol Ecol 288:257–278

    Article  Google Scholar 

  • Roy MS, Sponer R (2002) Evidence of a human-mediated invasion of the tropical western Atlantic by the ‘world’s most common brittlestar’. Proc R Soc Lond B 269:1017–1023

    Article  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Ruppert EE, Fox RS (eds) (1988) Seashore animals of the southeast. University of South Carolina Press, Columbia

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin version 2.0: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Shearer TL, Cofforth MA (2006) Genetic identification of Caribbean scleractinian coral recruits at the Flowers Garden Banks and Florida keys. Mar Ecol Prog Ser 306:133–142

    Article  CAS  Google Scholar 

  • Silberman JD, Sarver SK, Walsh PJ (1994) Mitochondrial DNA variation and population structure in the spiny lobster Panulirus argus. Mar Biol 120:601–608

    Article  CAS  Google Scholar 

  • Simroth H (1876) Anatomie und Schizogonie der Ophiactis virens Sars. Ein Beitrag zur Kenntniss der Echinodermen. Z Wiss Zool 27:417–485, 555–560

    Google Scholar 

  • Singeltary RL (1973) A new species of brittle star from Florida. Fla Sci 36:175–178

    Google Scholar 

  • Sites JW, Marshall JC (2004) Operational criteria for delimiting species. Annu Rev Ecol Evol Syst 35:199–227

    Article  Google Scholar 

  • Sponer R, Roy MS (2002) Phylogeographic analysis of the brooding brittle star Amphipholis squamata (Echinodermata) along the coast of New Zealand reveals high cryptic genetic variation and cryptic dispersal potential. Evolution 56:1954–1967

    PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    PubMed  CAS  Google Scholar 

  • Thiel M, Gutow L (2005) The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanogr Mar Biol Annu Rev 43:279–418

    Google Scholar 

  • Tuset MV, Gonzales JA, Garcia-Diaz MM, Santana JI (1996) Feeding habits of Serranus cabrilla (Serranidae) in the Canary Islands. Cybium 20:161–167

    Google Scholar 

  • Uthicke S, Benzie JAH (2003) Gene flow and population history in high dispersal marine invertebrates: mitochondrial DNA analysis of Holothuria nobilis (Echinodermata: Holothuriodea) populations from the Indo-Pacific. Mol Ecol 12:2635–2648

    Article  PubMed  CAS  Google Scholar 

  • Wares JP, Cunningham CW (2001) Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55:2455–2469

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Jay Carroll, Constance Gramlich, and Dr. Bruno Pernet for collection of California populations; David Powell and the crew of the RV Walton Smith for aid in O. rubropoda collections; Dr. Gordon Hendler for morphological examination of specimens; Dr. Michael Roy for initial primer design; and Dr. Bob Fjellstrom for technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana B. Christensen.

Additional information

Communicated by M.I. Taylor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christensen, A.B., Christensen, E.F. & Weisrock, D.W. Population genetic structure of North American Ophiactis spp. brittle stars possessing hemoglobin. Mar Biol 154, 755–763 (2008). https://doi.org/10.1007/s00227-008-0968-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-008-0968-1

Keywords

Navigation