Skip to main content

Advertisement

Log in

Growth rate and its variability in erect Antarctic bryozoans

  • Original Paper
  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Climate is altering rapidly in parts of the Arctic and Antarctic but we know little about how marine organisms are responding to, or might respond to such changes. Knowledge of within-taxon variability is the vital context (currently missing) to interpretation of environmental signals. We investigated growth in six species and three genera of erect Antarctic bryozoans, an ideal model taxon to investigate such response. Cellarinella margueritae, C. nodulata, C. rogickae, C. watersi, Melicerita obliqua and Stomhypselosaria watersi, extended 3.4, 5.2, 4.6, 4.1, 4.9 and 4.5 mm year−1 and synthesised 24, 55, 45, 176, 34 and 46 mg CaCO3 year−1, respectively. The maximum ages of these species ranged from 11 to 15 years except M. obliqua, which reached 32 years. This is the first investigation of growth rates of closely related Antarctic invertebrate species and reports the slowest growth rates of bryozoans known from anywhere to date. Our data coupled with that from literature shows that Antarctic bryozoan growth varies <<101 between species, 101 between genera, 102 between morphologies and is ∼101 slower than in tropical or temperate regions. However, within encrusting types the slowest growing species grow at similar rates from poles to tropics. Age was a strong confounding factor across our Antarctic study species but age-standardised data showed a possible decline in annual growth from 1992 to 2003. We identify several factors increasing this environmental signal strength, including (1) the importance of generic (though not necessarily species) identification and (2) use of dry-mass or ash-free dry-mass as the measures of growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Ann Rev 32:241–304

    Google Scholar 

  • Bader B (2000) Life cycle, growth rate, and carbonate production of Cellaria sinuosa. In: Herrera Cubilla A, Jackson JBC (eds) Proceedings of the 11th international bryozoology association conference. Smithsonian Tropical Research Institute, Balboa, pp 136–144

  • Bader B, Schäfer P (2004) Skeletal morphogenesis and growth check lines in the Antarctic bryozoan Melicerita obliqua. J Nat Hist 38:2901–2922

    Article  Google Scholar 

  • Barnes DKA (1995) Seasonal and annual growth in erect species of Antarctic bryozoans. J Exp Mar Biol Ecol 188:181–198

    Article  Google Scholar 

  • Barnes DKA, Arnold RJ (2001) A growth cline in encrusting benthos along a latitudinal gradient within Antarctic waters. Mar Ecol Prog Ser 210:85–91

    Google Scholar 

  • Barnes DKA, Clarke A (1994) Seasonal variation in the feeding activity of four species of Antarctic bryozoan in relation to environmental factors. J Exp Mar Biol Ecol 181:117–133

    Article  Google Scholar 

  • Barnes DKA, Kuklinski P (2005) Low colonisation on artificial substrata in arctic Spitsbergen. Polar Biol. doi:10.1007/s00300-005-0044-y

  • Barnes DKA, Peck LS (2005) Extremes of metabolic strategy in Antarctic Bryozoa. Mar Biol 147:979–988

    Article  Google Scholar 

  • Barnes DKA, Webb K, Linse K (2006) Slow growth of Antarctic bryozoans increases over 20 years and is anomalously high in 2003. Mar Ecol-Prog Ser 314:187–195

    Google Scholar 

  • Bowden DA, Clarke A, Peck LS, Barnes DKA (2006) Antarctic sessile marine benthos: colonization and growth on artificial substrata over 3 yr. Mar Ecol-Prog Ser 316:1–16

    Google Scholar 

  • Brey T, Mackensen A (1997) Stable isotopes prove shell growth bands in the Antarctic bivalve Laternula elliptica to be formed annually. Polar Biol 17:465–468

    Article  Google Scholar 

  • Brey T, Peck LS, Gutt J, Hain S, Arntz W (1995) Population dynamics of Magellania fragilis, a brachiopod dominating a mixed-bottom macrobenthic assemblage on the Antarctic shelf. J Mar Biol Ass UK 75:857–870

    Article  Google Scholar 

  • Brey T, Gutt J, Mackensen A, Starmans A (1998) Growth and productivity of the high Antarctic bryozoan Melicerita obliqua. Mar Biol 132:327–333

    Article  Google Scholar 

  • Brey T, Gerdes D, Gutt J, Mackensen A, Starmans A (1999) Growth and age of the Antarctic bryozoan Cellaria incula on the Weddell Sea shelf. Antarct Sci 11:408–414

    Google Scholar 

  • Buick DP, Ivany LC (2004) 100 years in the dark: Extreme longevity of Eocene bivalves from Antarctica. Geology 32:921–924

    Article  Google Scholar 

  • Clarke A (1988) Seasonality in the Antarctic marine environment. Comp Biochem Physiol 90B:461–473

    Google Scholar 

  • Clarke A, North AW (1991) Is the growth of polar fish limited by temperature? In: di Prisco G, Maresca B, Tota B (eds) Biology of Antarctic fish. Springer, Heidelberg, pp 54–69

    Google Scholar 

  • Clarke A, Prothero-Thomas E, Beaumont J, Chapman AL, Brey T (2005) Growth in the limpet Nacella concinna from contrasting sites in Antarctica. Polar Biol 28:62–71

    Google Scholar 

  • Cocito S, Novosel M, Pasaric Z, Key MM (2006) Growth of the bryozoan Pentapora fascialis (Cheilostomata, Ascophora) around submarine freshwater springs in the Adriatic Sea. Linzer biol Beitr 38:15–24

    Google Scholar 

  • Comiso JC (2000) Variability and trends in Antarctic surface temperatures from in situ and satellite infrared measurements. J Geophys Res 91:975–994

    Article  Google Scholar 

  • Dayton PK (1979) Observations of growth, dispersal and dynamics of some sponges in McMurdo sound, Antarctica, and its biological effects. In: Levian C, Bourny-Esnault (eds) Sponge biology. Centre National de la Recherche Scientifique, Paris, pp 271–283

    Google Scholar 

  • Dayton PK (1989) Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 245:1484–1486

    Article  PubMed  CAS  Google Scholar 

  • Dayton PK (1990) Polar benthos. In: Smith WO (ed) Polar oceanography. Academic, London, pp 631–685

  • Gruzov EN (1977) Seasonal alterations in coastal communities in the Davis Sea. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Smithsonian Institution, Balboa, pp 263–278

    Google Scholar 

  • Hayward PJ (1995) Antarctic cheilostomatous bryozoa. Oxford University Press, Oxford, p 355

  • Hermansen P, Larsen PS, Riisgard HU (2001) Colony growth rate of encrusting marine bryozoans (Electra pilosa and Celleporella hyalina). J Exp Mar Biol Ecol 263:1–23

    Article  Google Scholar 

  • Herrera A, Jackson JBC (1996) Life history variation among ‘dominant’ encrusting cheilostomate Bryozoa. In: Gordon DP, Smith AM, Grant-Mackie JA (eds) Bryozoans in space and time. NIWA, Wellington, pp 117–123

    Google Scholar 

  • Hillmer G, Scholz J, Dullo W-C (1996) Two types of bryozoan nodules from the Gulf of Aqaba, Red Sea. In: Gordon DP, Smith AM, Grant-Mackie J (eds) Bryozoans in space and time. NIWA, Wellington, pp 125–130

    Google Scholar 

  • King JC, Harangozo SA (1998) Climate change in the western Antarctic Peninsula since 1945:observations and possible causes. Ann Glaciol 27:571–575

    Google Scholar 

  • Kowalke J, Tatian M, Sahade R, Arntz WE (2001) Production and respiration of Antarctic ascidians. Polar Biol 24:663–669

    Article  Google Scholar 

  • Lutz RA, Rhodes DC (1980) Growth patterns within the molluscan shell: an overview. In: Rhodes DC, Lutz RA (eds) Skeletal growth of aquatic organisms. Plenum Press, New York, pp 203–254

    Google Scholar 

  • McKinney ML, Lockwood J (1999) Biotic homogenisation: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453

    Article  PubMed  Google Scholar 

  • Meredith MP, King JC (2005) Climate change in the ocean to the west of the Antarctic Peninsula during the second half of the 20th century. Geophys Res Let 32:L19604. doi:10.1029/2005GL024042, 2005

    Article  Google Scholar 

  • O’Dea A, Jackson JBC (2002) Bryozoan growth mirrors contrasting seasonal regimes across the Isthmus of Panama. Palaeogeogr Palaeoclimatol Palaeoecol 185:77–94

    Article  Google Scholar 

  • O’Dea A, Okamura B (1999) Influence of seasonal variation in temperature, salinity and food availability on module size and colony growth of the estuarine bryozoan Conopeum seurati. Mar Biol 135:581–588

    Article  Google Scholar 

  • Pätzold J, Ristedt H, Wefer G (1987) Rate of growth and longevity of a large colony of Pentapora foliacea (Bryozoa) recorded in their oxygen isotope profiles. Mar Biol 96:535–538

    Article  Google Scholar 

  • Pearse JS, McClintock JB, Bosch I (1991) Reproduction in Antarctic benthic marine invertebrates: tempos, modes and timing. Am Zool 31:65–80

    Google Scholar 

  • Peck LS (2002) Ecophysiology of Antarctic marine ectotherms: limits to life. Polar Biol 25:31–40

    Article  Google Scholar 

  • Peck LS, Brey T (1996) Bomb signals in old antarctic brachiopods. Nature 380:207–208

    Article  CAS  Google Scholar 

  • Poulin E, Palma AT, Féral J-P (2002) Evolutionary versus ecological success in Antarctic benthic invertebrates. Trends Ecol Evol 17:218–222

    Article  Google Scholar 

  • Quayle WC, Peck LS, Ellis-Evans CJ, Peat HJ, Harrigan PR (2002) Extreme responses to climate change in Antarctic lakes. Science 295:645

    Article  PubMed  CAS  Google Scholar 

  • Rauschert M (1991) Ergebnisse der faunistischen arbeiten im benthal von King George Island (Südshetlandinseln, Antarktis). Ber Polarforsch 76:1–75

    Google Scholar 

  • Schäfer P (1994) Growth strategies of Arctic bryozoa in the Nordic Seas. In: Hayward PJ, Ryland JS, Taylor PD (eds) Biology and palaeobiology of bryozoans, Olsen & Olsen, Fredensborg, pp 173–176

    Google Scholar 

  • Smith AM, Key MM (2004) Controls, variation, and a record of climate change in detailed stable isotope record in a single bryozoan skeleton. Quat Res 61:123–133

    Article  CAS  Google Scholar 

  • Smith AM, Nelson CS (1994) Calcification rates of rapidly colonizing bryozoans in Haukuri Gulf, northern New Zealand. N Z J Mar Freshw Res 28:227–234

    Article  Google Scholar 

  • Smith AM, Stewart B, Key MM, Jamet CM (2001) Growth and carbonate production by Adeonellopsis (Bryozoa: Cheilostomata) in Doubtful Sound, New Zealand. Palaeogeog Palaeoclimat Palaeoecol 175:201–210

    Article  Google Scholar 

  • Stebbing ARD (1971) Growth of Flustra foliacea (Bryozoa). Mar Biol 9:267–273

    Article  Google Scholar 

  • Stanwell-Smith D, Barnes DKA (1997) Benthic community development in Antarctica: recruitment and growth on settlement panels at Signy Island. J Exp Mar Biol Ecol 212:61–79

    Article  Google Scholar 

  • Tanaka K (2002) Growth dynamics and mortality of the intertidal encrusting sponge Halichondria okadai (Demospongiae, Halichondrida). Mar Biol 140:383–390

    Article  Google Scholar 

  • Taylor PD, Voigt E (1999) An unusually large cyclostome (Pennipora anomalopora) from the Upper Cretaceous of Maastricht. Bull Inst R Sci Nat Belg Sci Terre 69:165–171

    Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth-Sci Rev 62:1–103

    Article  Google Scholar 

  • Teixido N, Garrabou J, Gutt J, Arntz WE (2004) Recovery in Antarctic benthos after iceberg disturbance: trends in benthic composition, abundance and growth forms. Mar Ecol Prog Ser 278:1–16

    Google Scholar 

  • Vail LL, Wass RE (1981) Experimental studies on the settlement and growth of bryozoa in the natural environment. Aus J Mar Freshwat Res 32:639–656

    Article  Google Scholar 

  • Voigt M (2004) Wachstumsschwankungen der antarktischen Muschel Laternula elliptica in den letzten vierzig Jahren im Gebiet von King George Island. Unpublished PhD thesis, Universität Rostock, Germany

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological response to recent climate change. Nature 416:389–395

    Article  PubMed  CAS  Google Scholar 

  • Wasson K, Newberry AT (1997) Modular animals: gonochoric, hermaphroditic, or both at once? Invert Reprod Dev 31:159–175

    Google Scholar 

  • Winston JE (1983) Patterns of growth, reproduction and mortality in bryozoans from the Ross Sea, Antarctica. Bull Mar Sci 33:688–702

    Google Scholar 

  • Winston JE, Jackson JBC (1984) Ecology of cryptic coral reef communities 4. Community development and life histories of encrusting cheilostome Bryozoa. J Exp Mar Biol Ecol 76:1–21

    Article  Google Scholar 

Download references

Acknowledgments

We thank W.E. Arntz (Alfred Wegner Institute, Germany) to enable K. Linse’s participation in ANT XXI-2 and the helpful colleagues and ship’s crew on PFS Polarstern. We thank Peter Fretwell for preparation of Fig. 1 and Prof Andrew Clarke and three anonymous referees for comments leading to an improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David K. A. Barnes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, D.K.A., Webb, K.E. & Linse, K. Growth rate and its variability in erect Antarctic bryozoans. Polar Biol 30, 1069–1081 (2007). https://doi.org/10.1007/s00300-007-0266-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-007-0266-2

Keywords

Navigation