Skip to main content
Log in

The cardiac autonomic nervous system: an introduction

Das kardiale autonome Nervensystem: eine Einführung

  • Schwerpunkt
  • Published:
Herzschrittmachertherapie + Elektrophysiologie Aims and scope Submit manuscript

Abstract

In recent decades, numerous anatomical and physiological studies of the cardiac autonomic nervous system (ANS) have investigated the complex relationships between the brain and the heart. Autonomic activation not only alters heart rate, conduction, and hemodynamics, but also cellular and subcellular properties of individual myocytes. Moreover, the cardiac ANS plays an essential role in cardiac arrhythmogenesis. There is mounting evidence that neural modulation either by ablation or stimulation can effectively control a wide spectrum of cardiac arrhythmias. This article discusses anatomic aspects of the cardiac ANS, focusing on how autonomic activities influence cardiac electrophysiology. Specific autonomic triggers of various cardiac arrhythmias, in particular atrial fibrillation (AF) and ventricular arrhythmias, are also briefly discussed. Studies with heart-rate variability analysis indicate that, rather than being triggered by either vagal or sympathetic activity, the onset of AF can be associated with simultaneous discharge of both limbs, leading to an imbalance between these two arms of the cardiac ANS. At the same time, sudden cardiac death resulting from ventricular arrhythmias continues to be a significant health and societal burden. These nerve activities of the cardiac ANS can be targeted for the treatment for cardiac arrhythmias, in particular AF and ventricular tachyarrhythmias.

Zusammenfassung

In jüngster Zeit wurde das komplexe Wechselspiel zwischen Gehirn und Herz in zahlreichen anatomischen und physiologischen Studien zum kardialen autonomen Nervensystem (ANS) untersucht. Autonome Aktivierung verändert nicht nur die Herzschlagfrequenz, die Reizleitung und die Hämodynamik, sondern auch zelluläre und subzelluläre Eigenschaften einzelner Myozyten. Hinzu kommt die essenzielle Rolle, die das ANS bei kardialen Arrhythmien spielt. Es gibt zunehmende Evidenz, dass neurale Modulation, entweder durch Ablation oder Stimulation, ein breites Spektrum an Herzrhythmusstörungen wirksam kontrollieren kann. Im vorliegenden Beitrag werden die anatomischen Aspekte des ANS diskutiert, wobei die Frage, wie kardiale Elektrophysiologie durch autonome Einflüsse verändert wird, im Fokus steht. Spezifische autonome Trigger verschiedener kardialer Arrhythmien, insbesondere von Vorhofflimmern und ventrikulären Arrhythmien, werden ebenfalls kurz diskutiert. Analysen der Herzfrequenzvariabilität ergaben, dass die Manifestation von Vorhofflimmern eher mit simultanen Entladungen beider Schenkel assoziiert ist, die zu einer Dysbalance zwischen diesen beiden Teilen des ANS führen, als durch vagale oder sympathische Aktivität allein. Gleichzeitig stellt der plötzliche Herztod aufgrund ventrikulärer Arrhythmien eine signifikante gesundheitliche und gesellschaftliche Belastung dar. Behandlungsmaßnahmen bei Herzrhythmusstörungen, insbesondere bei Vorhofflimmern und ventrikulären Tachyarrhythmien, könnten auf eine Beeinflussung dieser Effekte des kardialen autonomen Nervensystems abzielen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Levy MN, Ng M, Martin P, Zieske H (1966) Sympathetic and parasympathetic interactions upon the left ventricle of the dog. Circ Res 19:5–10

    Article  Google Scholar 

  2. Levy MN (1971) Sympathetic-parasympathetic interactions in the heart. Circ Res 29:437–445

    Article  CAS  PubMed  Google Scholar 

  3. Martins JB, Zipes DP (1980) Effects of sympathetic and vagal nerves on recovery properties of the endocardium and epicardium of the canine left ventricle. Circ Res 46:100–110

    Article  CAS  PubMed  Google Scholar 

  4. Yuan BX, Ardell JL, Hopkins DA, Losier AM, Armour JA (1994) Gross and microscopic anatomy of the canine intrinsic cardiac nervous system. Anat Rec 239:75–87

    Article  CAS  PubMed  Google Scholar 

  5. Armour JA, Murphy DA, Yuan BX, Macdonald S, Hopkins DA (1997) Gross and microscopic anatomy of the human intrinsic cardiac nervous system. Anat Rec 247:289–298

    Article  CAS  PubMed  Google Scholar 

  6. Leriche R, Herman L, Fontaine R (1931) Ligature de la coronaire gauche et fonction du coeur après énervation sympathique. C R Soc Biol 107:547

    Google Scholar 

  7. McEachern CG, Manning GW, Hall G (1940) Sudden occlusion of coronary arteries following removal of cardiosensory pathways: experimental study. Arch Intern Med 65:661–670

    Article  Google Scholar 

  8. Harris AS, Estandia A, Tillotson RF (1951) Ventricular ectopic rhythms and ventricular fibrillation following cardiac sympathectomy and coronary occlusion. Am J Physiol 165:505–512

    Article  CAS  PubMed  Google Scholar 

  9. Kapa S, Venkatachalam KL, Asirvatham SJ (2010) The autonomic nervous system in cardiac electrophysiology: an elegant interaction and emerging concepts. Cardiol Rev 18:275–284

    Article  PubMed  Google Scholar 

  10. Taggart P, Critchley H, Lambiase PD (2011) Heart-brain interactions in cardiac arrhythmia. Heart 97:698–708

    Article  CAS  PubMed  Google Scholar 

  11. Shen MJ, Choi EK, Tan AY, Lin SF, Fishbein MC, Chen LS, Chen PS (2011) Neural mechanisms of atrial arrhythmias. Nat Rev Cardiol 27:30–39

    Google Scholar 

  12. Schwartz PJ (2009) Cutting nerves and saving lives. Heart Rhythm 6:760–763

    Article  PubMed  Google Scholar 

  13. Armour JA (2010) Functional anatomy of intrathoracic neurons innervating the atria and ventricles. Heart Rhythm 7:994–996

    Article  PubMed  Google Scholar 

  14. Chiou CW, Eble JN, Zipes DP (1997) Efferent vagal innervation of the canine atria and sinus and atrioventricular nodes—The third fat pad. Circulation 95:2573–2584

    Article  CAS  PubMed  Google Scholar 

  15. Pauza DH, Skripka V, Pauziene N, Stropus R (2000) Morphology, distribution, and variability of the epicardiac neural ganglionated subplexuses in the human heart. Anat Rec 259:353–382

    Article  CAS  PubMed  Google Scholar 

  16. Pauza DH, Skripka V, Pauziene N (2002) Morphology of the intrinsic cardiac nervous system in the dog: a whole-mount study employing histochemical staining with acetylcholinesterase. Cells Tissues Organs 172:297–320

    Article  PubMed  Google Scholar 

  17. Armour JA (2007) The little brain on the heart. Cleve Clin J Med 74(Suppl 1):S48–S51

    Article  PubMed  Google Scholar 

  18. Hou Y, Scherlag BJ, Lin J, Zhang Y, Lu Z, Truong K, Patterson E, Lazzara R, Jackman WM, Po SS (2007) Ganglionated plexi modulate extrinsic cardiac autonomic nerve input: effects on sinus rate, atrioventricular conduction, refractoriness, and inducibility of atrial fibrillation. J Am Coll Cardiol 50:61–68

    Article  PubMed  Google Scholar 

  19. Kawashima T (2005) The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol (Berl) 209:425–438

    Article  Google Scholar 

  20. Tan AY, Li H, Wachsmann-Hogiu S, Chen LS, Chen PS, Fishbein MC (2006) Autonomic innervation and segmental muscular disconnections at the human pulmonary vein-atrial junction: implications for catheter ablation of atrial-pulmonary vein junction. J Am Coll Cardiol 48:132–143

    Article  PubMed  Google Scholar 

  21. Lavian G, Kopelman D, Shenhav A, Konyukhov E, Gardi U, Zaretzky A, Shofti R, Finberg JP, Hashmonai M (2003) In vivo extracellular recording of sympathetic ganglion activity in a chronic animal model. Clin Auton Res 13(Suppl 1):I83–I88

    PubMed  Google Scholar 

  22. Watson AM, Mogulkoc R, McAllen RM, May CN (2004) Stimulation of cardiac sympathetic nerve activity by central angiotensinergic mechanisms in conscious sheep. Am J Physiol Regul Integr Comp Physiol 286:R1051–R1056

    Article  CAS  PubMed  Google Scholar 

  23. Jardine DL, Charles CJ, Ashton RK, Bennett SI, Whitehead M, Frampton CM, Nicholls GM (2005) Increased cardiac sympathetic nerve activity following acute myocardial infarction in a sheep model. J Physiol 565:325–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jung BC, Dave AS, Tan AY, Gholmieh G, Zhou S, Wang DC, Akingba G, Fishbein GA, Montemagno C, Lin SF, Chen LS, Chen PS (2006) Circadian variations of stellate ganglion nerve activity in ambulatory dogs. Heart Rhythm 3:78–85

    Article  CAS  PubMed  Google Scholar 

  25. Ogawa M, Zhou S, Tan AY, Song J, Gholmieh G, Fishbein MCLH, Siegel RJ, Karagueuzian HS, Chen LS, Lin SF, Chen PS (2007) Left stellate ganglion and vagal nerve activity and cardiac arrhythmias in ambulatory dogs with pacing-induced congestive heart failure. J Am Coll Cardiol 50:335–343

    Article  PubMed  Google Scholar 

  26. Armour JA (1985) Activity of in situ middle cervical ganglion neurons in dogs, using extracellular recording techniques. Can J Physiol Pharmacol 63:704–716

    Article  CAS  PubMed  Google Scholar 

  27. Choi EK, Shen MJ, Han S, Kim D, Hwang S, Sayfo S, Piccirillo G, Frick K, Fishbein MC, Hwang C, Lin SF, Chen PS (2010) Intrinsic cardiac nerve activity and paroxysmal atrial tachyarrhythmia in ambulatory dogs. Circulation 121:2615–2623

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shen MJ, Choi EK, Tan AY, Han S, Shinohara T, Maruyama M, Chen LS, Shen C, Hwang C, Lin SF, Chen PS (2011) Patterns of baseline autonomic nerve activity and the development of pacing-induced sustained atrial fibrillation. Heart Rhythm 8:583–589

    Article  PubMed  Google Scholar 

  29. Shen MJ, Shinohara T, Park HW, Frick K, Ice DS, Choi EK, Han S, Maruyama M, Sharma R, Shen C, Fishbein MC, Chen LS, Lopshire JC, Zipes DP, Lin SF, Chen PS (2011) Continuous low-level vagus nerve stimulation reduces stellate ganglion nerve activity and paroxysmal atrial tachyarrhythmias in ambulatory canines. Circulation 123:2204–2212

    Article  PubMed  PubMed Central  Google Scholar 

  30. Armour JA (2004) Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol 287:R262–R271

    Article  CAS  PubMed  Google Scholar 

  31. Armour JA (2008) Potential clinical relevance of the ‘little brain’ on the mammalian heart. Exp Physiol 93:165–176

    Article  CAS  PubMed  Google Scholar 

  32. Armour JA, Richer LP, Page P, Vinet A, Kus T, Vermeulen M, Nadeau R, Cardinal R (2005) Origin and pharmacological response of atrial tachyarrhythmias induced by activation of mediastinal nerves in canines. Auton Neurosci 118:68–78

    Article  CAS  PubMed  Google Scholar 

  33. Ardell JL, Butler CK, Smith FM, Hopkins DA, Armour JA (1991) Activity of in vivo atrial and ventricular neurons in chronically decentralized canine hearts. Am J Physiol 260:H713–H721

    CAS  PubMed  Google Scholar 

  34. Zhang Y, Scherlag BJ, Lu Z, Niu GD, Yamanashi WS, Hogan C, Fields J, Ghias M, Lazzara R, Jackman WM, Po S (2009) Comparison of atrial fibrillation inducibility by electrical stimulation of either the extrinsic or the intrinsic autonomic nervous systems. J Interv Card Electrophysiol 24:5–10

    Article  PubMed  Google Scholar 

  35. Patterson E, Jackman WM, Beckman KJ, Lazzara R, Lockwood D, Scherlag BJ, Wu R, Po S (2007) Spontaneous pulmonary vein firing in man: relationship to tachycardia-pause early afterdepolarizations and triggered arrhythmia in canine pulmonary veins in vitro. J Cardiovasc Electrophysiol 18:1067–1075

    Article  PubMed  Google Scholar 

  36. Scherlag BJ, Po S (2006) The intrinsic cardiac nervous system and atrial fibrillation. Curr Opin Cardiol 21:51–54

    Article  PubMed  Google Scholar 

  37. Coumel P, Attuel P, Lavallee J, Flammang D, Leclercq JF, Slama R (1978) The atrial arrhythmia syndrome of vagal origin. Arch Mal Coeur Vaiss 71:645–656

    CAS  PubMed  Google Scholar 

  38. Amar D, Zhang H, Miodownik S, Kadish AH (2003) Competing autonomic mechanisms precede the onset of postoperative atrial fibrillation. J Am Coll Cardiol 42:1262–1268

    Article  PubMed  Google Scholar 

  39. Bettoni M, Zimmermann M (2002) Autonomic tone variations before the onset of paroxysmal atrial fibrillation. Circulation 105:2753–2759

    Article  PubMed  Google Scholar 

  40. Tomita T, Takei M, Saikawa Y, Hanaoka T, Uchikawa S, Tsutsui H, Aruga M, Miyashita T, Yazaki Y, Imamura H, Kinoshita O, Owa M, Kubo K (2003) Role of autonomic tone in the initiation and termination of paroxysmal atrial fibrillation in patients without structural heart disease. J Cardiovasc Electrophysiol 14:559–564

    Article  PubMed  Google Scholar 

  41. Tan AY, Zhou S, Ogawa M, Song J, Chu M, Li H, Fishbein MC, Lin SF, Chen LS, Chen PS (2008) Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation 118:916–925

    Article  PubMed  PubMed Central  Google Scholar 

  42. Patterson E, Lazzara R, Szabo B, Liu H, Tang D, Li YH, Scherlag BJ, Po SS (2006) Sodium-calcium exchange initiated by the Ca2+ transient: an arrhythmia trigger within pulmonary veins. J Am Coll Cardiol 47:1196–1206

    Article  CAS  PubMed  Google Scholar 

  43. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  CAS  PubMed  Google Scholar 

  44. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92:1954–1968

    Article  CAS  PubMed  Google Scholar 

  45. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, Garrigue S, Le Mouroux A, Le Metayer P, Clementy J (1998) Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 339:659–666

    Article  CAS  PubMed  Google Scholar 

  46. Shen MJ, Coffey AC, Straka S, Adams DE, Wagner DB, Kovacs RJ, Clark M, Shen C, Chen LS, Everett TH, Lin SF, Chen PS (2017) Simultaneous recordings of intrinsic cardiac nerve activity and skin sympathetic nerve activity from human patients during the postoperative period. Heart Rhythm 14:1587–1593

    Article  PubMed  PubMed Central  Google Scholar 

  47. Romanov A, Pokushalov E, Ponomarev D, Bayramova S, Shabanov V, Losik D, Stenin I, Elesin D, Mikheenko I, Strelnikov A, Sergeevichev D, Kozlov B, Po SS, Steinberg JS (2019) Long-term suppression of atrial fibrillation by botulinum toxin injection into epicardial fat pads in patients undergoing cardiac surgery: three-year follow-up of a randomized study. Heart Rhythm 16:172–177

    Article  PubMed  Google Scholar 

  48. Lo LW, Scherlag BJ, Chang HY, Lin YJ, Chen SA, Po SS (2013) Paradoxical long-term proarrhythmic effects after ablating the “head station” ganglionated plexi of the vagal innervation to the heart. Heart Rhythm 10:751–757

    Article  PubMed  Google Scholar 

  49. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, Ferguson TB, Ford E, Furie K, Gillespie C, Go A, Greenlund K, Haase N, Hailpern S, Ho PM, Howard V, Kissela B, Kittner S, Lackland D, Lisabeth L, Marelli A, McDermott MM, Meigs J, Mozaffarian D, Mussolino M, Nichol G, Roger VL, Rosamond W, Sacco R, Sorlie P, Thom T, Wasserthiel-Smoller S, Wong ND, Wylie-Rosett J (2010) Heart disease and stroke statistics—2010 update: a report from the American Heart Association. Circulation 121:e46–e215

    PubMed  Google Scholar 

  50. Yanowitz F, Preston JB, Abildskov JA (1966) Functional distribution of right and left stellate innervation to the ventricles. Production of neurogenic electrocardiographic changes by unilateral alteration of sympathetic tone. Circ Res 18:416–428

    Article  CAS  PubMed  Google Scholar 

  51. Opthof T, Ramdat Misier AR, Coronel R, Vermeulen JT, Verberne HJ, Frank RGJ, Moulijn AC, van Capelle FJL, Janse MJ (1991) Dispersion of refractoriness in canine ventricular myocardium. Effects of sympathetic stimulation. Circ Res 68:1204–1215

    Article  CAS  PubMed  Google Scholar 

  52. Tomaselli GF, Zipes DP (2004) What causes sudden death in heart failure? Circ Res 95:754–763

    Article  CAS  PubMed  Google Scholar 

  53. Barber MJ, Mueller TM, Henry D, Felten SY, Zipes DP (1983) Transmural myocardial infarction in the dog produces sympathectomy in non-infarcted myocardium. Circulation 67:787–796

    Article  CAS  PubMed  Google Scholar 

  54. Cao JM, Chen LS, KenKnight BH, Ohara T, Lee MH, Tsai J, Lai WW, Karagueuzian HS, Wolf PL, Fishbein MC, Chen PS (2000) Nerve sprouting and sudden cardiac death. Circ Res 86:816–821

    Article  CAS  PubMed  Google Scholar 

  55. Chen PS, Chen LS, Cao JM, Sharifi B, Karagueuzian HS, Fishbein MC (2001) Sympathetic nerve sprouting, electrical remodeling and the mechanisms of sudden cardiac death. Cardiovasc Res 50:409–416

    Article  CAS  PubMed  Google Scholar 

  56. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS (2000) Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101:1960–1969

    Article  CAS  PubMed  Google Scholar 

  57. Swissa M, Zhou S, Gonzalez-Gomez I, Chang CM, Lai AC, Cates A, Fishbein MC, Karagueuzian HS, Chen PS, Chen LS (2004) Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol 43:858–864

    Article  PubMed  Google Scholar 

  58. Zhou S, Chen LS, Miyauchi Y, Miyauchi M, Kar S, Kangavari S, Fishbein MC, Sharifi B, Chen PS (2004) Mechanisms of cardiac nerve sprouting after myocardial infarction in dogs. Circ Res 95:76–83

    Article  CAS  PubMed  Google Scholar 

  59. Han S, Kobayashi K, Joung B, Piccirillo G, Maruyama M, Vinters HV, March K, Lin SF, Shen C, Fishbein MC, Chen PS, Chen LS (2012) Electroanatomic remodeling of the left stellate ganglion after myocardial infarction. J Am Coll Cardiol 59:954–961

    Article  PubMed  PubMed Central  Google Scholar 

  60. Liu YB, Wu CC, Lu LS, Su MJ, Lin CW, Lin SF, Chen LS, Fishbein MC, Chen PS, Lee YT (2003) Sympathetic nerve sprouting, electrical remodeling, and increased vulnerability to ventricular fibrillation in hypercholesterolemic rabbits. Circ Res 92:1145–1152

    Article  CAS  PubMed  Google Scholar 

  61. Zhou S, Jung BC, Tan AY, Trang VQ, Gholmieh G, Han SW, Lin SF, Fishbein MC, Chen PS, Chen LS (2008) Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm 5:131–139

    Article  PubMed  Google Scholar 

  62. Tan AY, Zhou S, Ogawa M, Song J, Chu M, Li H, Fishbein MC, Lin SF, Chen LS, Chen PS (2008) Neural mechanisms of paroxysmal atrial fibrillation and paroxysmal atrial tachycardia in ambulatory canines. Circulation 118:916–925

    Article  PubMed  PubMed Central  Google Scholar 

  63. Cao JM, Fishbein MC, Han JB, Lai WW, Lai AC, Wu TJ, Czer L, Wolf PL, Denton TA, Shintaku IP, Chen PS, Chen LS (2000) Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101:1960–1969

    Article  CAS  PubMed  Google Scholar 

  64. Zhou S, Jung BC, Tan AY, Trang VQ, Gholmieh G, Han SW, Lin SF, Fishbein MC, Chen PS, Chen LS (2008) Spontaneous stellate ganglion nerve activity and ventricular arrhythmia in a canine model of sudden death. Heart Rhythm 5:131–139

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark J. Shen MD.

Ethics declarations

Conflict of interest

M.J. Shen declares that he has no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies mentioned were performed in accordance with the ethical standards indicated in each case.

Additional information

figure qr

Scan QR code & read article online

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, M.J. The cardiac autonomic nervous system: an introduction. Herzschr Elektrophys 32, 295–301 (2021). https://doi.org/10.1007/s00399-021-00776-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00399-021-00776-1

Keywords

Schlüsselwörter

Navigation