Skip to main content
Log in

Potassic-hastingsite, KCa2(Fe2+4Fe3+)(Si6Al2)O22(OH)2, from the Keshiketeng Banner, Inner Mongolia, China: description of the neotype and its implication

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Potassic-hastingsite (IMA2018–160), ideally KCa2(Fe2+4Fe3+)(Si6Al2)O22(OH)2,was discovered in Danailingou, Inner Mongolia, China. Potassic-hastingsite is black to dark green with a vitreous luster, brittle with conchoidal fracture. The {110} cleavage is perfect and the calculated density is 3.541 g·cm−3. It is biaxial negative with α = 1.708 (2), β = 1.716 (3) and γ = 1.718 (3). Combined electron probe,icro-analyser (EPMA) and Mössbauer spectroscopy data yielded 35.02 wt% SiO2, 0.35 wt% TiO2, 10.69 wt% Al2O3, 0.03 wt% Cr2O3, 7.33 wt% Fe2O3, 26.08 wt% FeO, 11.35 wt% CaO, 0.43 wt% MnO, 0.23 wt% MgO, 0.061 wt% Na2O, 2.79 wt% K2O, F 0.00 wt%, Cl 2.79 wt%, Cl ≡ O − 0.67 wt%, and H2O+ 1.43 wt%, resulting in an analytical total of 98.66 wt%. The empirical structural formula, calculated based of the assumption of a total of 24 anions per formula unit and OH + F + Cl = 2 atoms per formula unit (apfu) at the W site is A(K0.61Na0.20Ca0.07)0.88BCa2.00C(Fe2+3.72Fe3+0.94Al0.12Mn0.06Mg0.06Ti0.04Ni0.01)4.96T(Si5.97Al2.03)O22(OH1.14Cl0.86). The derived simplified formula is (K,Na,□)Ca2(Fe2+,Fe3+)5[(Si,Al)6Al2]O22(OH,Cl)2. Potassic-hastingsite is monoclinic, space group C2/m, with the unit-cell parameters a = 9.9405(7) Å; b = 18.2561(19) Å; c = 5.3501(3) Å; β = 105.117(5)°; V = 937.304(11) Å3; Z = 2. The structure was solved (R1 0.044) using all measured independent data and the reflections with I>2σ (I). The strongest six X-ray powder-diffraction lines [d in Å; (I/I0); (hkl)] are 8.504 (100) (110), 3.417 (35) (131), 3.155 (60) (310), 2.735 (70) (151), 2.623 (35) (061) and 2.570 (35) (\( \overline{2} \)02).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide–(REE–Cu–Au–U) mineralization. Geology 24:259–262

    Article  Google Scholar 

  • Barton MD, Johnson DA (2000) Alternative brine sources for Fe-oxide (Cu-Au) systems: implications for hydrothermal alteration and metals. In: Hydrothermal Iron oxide copper-gold and related deposits: a global perspective. Australian Mineral Foundation, Perth, pp 43–60

    Google Scholar 

  • Billings M (1928) The chemistry, optics and genesis of the hastingsite group of amphiboles. Am Mineral 13:287–296

    Google Scholar 

  • Bojar HP, Walter F (2006) Fluoro-magnesiohastingsite from Dealul Uroi (Hunedoara county, Romania): mineral structure of a new amphibole end-member. Eur J Mineral 18:503–508

    Article  Google Scholar 

  • Burke EAJ, Leake BE (2004) “Named amphiboles”: a new category of amphiboles recognized by the international mineralogical association (IMA), and the proper order of prefixes to be used in amphibole names. Can Mineral 42:1881–1883

    Article  Google Scholar 

  • Castelli D (1988) Chloropotassium ferro-pargasite from Sesia–Lanzo marbles (Western Italian Alps): a record of highly saline fluids. Rend Soc Ital Mineral Petrol 43:129–138

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1997). Rock-forming minerals: double-chain silicates, vol 2B. 2nd edn, Geol Soc London, 764 pp

  • Giesting PA, Filiberto MJ, Science P (2016) The formation environment of potassic chloro-hastingsite in the nakhlites MIL 03346 and pairs and NWA 5790: insights from terrestrial chloro-amphibole. Meteorit Planet Sci 51(11):2127–2153

    Article  Google Scholar 

  • Gulyyaeva TY, Gorelikova NV, Karabtssov AA (1986) High potassium-chlorium-bearing hastingsite in skarns from Primorye, Far East USSR. Mineral Mag 50(358):724–728

    Article  Google Scholar 

  • Hawthorne FC (1983) The crystal chemistry of the amphiboles. Can Mineral 21:173–480

    Google Scholar 

  • Hawthorne FC, Grundy HD (1977) The crystal chemistry of the amphiboles. III. Refinement of the crystal structure of sub-silicic hastingsite. Mineral Mag 41:43–50

    Article  Google Scholar 

  • Hawthorne FC, Oberti R (2007) Classification of the amphiboles. In: Hawthorne FC, Oberti R, Della Ventura G, Mottana A (eds) Amphiboles: crystal chemistry, occurrence, and health issues, Rev Mineral Geochem, vol 67. Chantilly, Miner Soc Am, pp 55–88

    Chapter  Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Mineral 97:2031–2048

    Article  Google Scholar 

  • Heinrich W (1994) Potassium-fluor-richterite in metacherts from the Bufa del Diente contact-metamorphic aureole, NE-Mexico. Mineral Petrol 50:259–270

    Article  Google Scholar 

  • Hogarth DD (1997) Mineralogy of leucite-bearing dykes from Napoleon Bay, Baffin Island: multistage Proterozoic lamproites. Can Mineral 35:53–78

    Google Scholar 

  • Kamineni DC, Bonardi M, Rao AT (1982) Halogenbearing minerals from Airport Hill, Visakhapatnam, India. Am Mineral 67:1001–1004

    Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Srensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms (recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks). Blackwell Scientific, Oxford, pp 14–22

    Google Scholar 

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellini G, Dudek A, Efremova S, Keller J, Lameyre J, Sabine PA, Schmid R, Sørensen H, Woolley AR (2002). A classification of igneous rocks and glossary of terms (recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks). 2nd edn, Cambridge University Press, pp 21–29; 90–91

  • Leake BE, Woolley AR, Arps CES, Birch WD, Gilbert MC, Grice JD, Hawthorne FC, Kato A, Kisch HJ, Krivovichev VG, Linthout K, Laird J, Mandarino JA, Maresch WV, Nickel EH, Rock NMS, Schumacher JC, Smith DC, Stephenson NCN, Ungaretti L, Whittaker EJW, Guo Y (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the international mineralogical association, commission on new minerals and mineral names. Can Mineral 35:219–246

    Google Scholar 

  • Leake BE, Woolley AR, Birch WD, Burke EAJ, Ferraris G, Grice JD, Hawthorne FC, Kisch HJ, Krivovichev VG, Schumacher JC, Stephenson NCN, Whittaker EJW (2003) Nomenclature of amphiboles: additions and revisions to the international mineralogical Association’s amphibole nomenclature. Can Mineral 41:1355–1370

    Article  Google Scholar 

  • Lupulescu MV (2009) Fluoro-potassichastingsite from the greenwood mine, Orange county, New York: a new end-member calcic amphibole. Can Mineral 47:909–916

    Article  Google Scholar 

  • Mandarino JA (1981) The Gladstone-dale relationship, part 4. The compatibility concept and its application. Can Mineral 19:441–450

    Google Scholar 

  • Mazdab FK (2003) The diversity and occurrence of potassium-dominant amphiboles. Can Mineral 41:1329–1344

    Article  Google Scholar 

  • McCubbin FM, Elardo SM, Shearer CK, Smirnov A, Hauri E, Draper D (2013) A petrogenetic model for the comagmatic origin of chassignites and nakhlites: inferences from chlorine-rich minerals, petrology, and geochemistry. Meteorit Planet Sci 48(5):819–853

    Article  Google Scholar 

  • Rancourt DG, Ping JY (1991) Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nucl Instrum Meth Phys Res B 58:85–97

    Article  Google Scholar 

  • Sautter V, Jambon A, Boudouma O (2006) Cl-amphibole in the nakhlite MIL 03346: evidence for sediment contamination in a Martian meteorite. Earth Planet Sci Lett 252(1):45–55

    Article  Google Scholar 

  • Semet MP (1973) A crystal-chemical study of synthetic magnesiohastingsite. Am Mineral 58:480–494

    Google Scholar 

  • Semet MP, Ernst WG (1981) Experimental stability relations of the hornblende magnesio-hastingsite. Geol Soc Am Bull 92:71–74

    Article  Google Scholar 

  • Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  • Suwa K, EnamiI M, Horiuchi T (1987) Chlorine-rich potassium hastingsite from west Ongul Island, Lützow Holm Bay, East Antarctica. Mineral Mag 51:709–714

    Article  Google Scholar 

  • Wang JB, Wang YW, Wang LJ (1998) The PGE mineralization related to amphibalite and prospecting in the Danaiingou area, Inner Mongolia. Geol Explor Non-Ferr Met 7(3):142–145 (in Chinese with English abstract)

    Google Scholar 

  • Wang YW, Wang JB, Wang LJ (2000) The petrologic characteristics of hornblendite in Danailinggoa, Inner Mongolia. Geol Rev 46(3):301–306 (in Chinese with English abstract)

    Google Scholar 

  • Yu M, Feng CY, Liu HC, Li DW, Zhao YM, Li DX, Liu JN, Wang H (2015) The significance of mineralization and geochemistry of the Cl-rich amphiboles from Galinge iron deposit in Qinghai Province. Acta Petrol Mineral 34(5):721–740 (in Chinese with English abstract)

    Google Scholar 

  • Žáček V (2007) Potassian hastingsite and potassichastingsite from garnet-hedenbergite skarn at Vlastějovice, Czech Republic. Neues Jb Mineral Abh 184(2):161–168

    Google Scholar 

  • Zaitsev AN, Avdontseva EY, Britvin SN, Demeny A, Homonnay Z, Jeffries TE, Keller J, Krivovichev VG, Markl G, Platonova NV, Sidra OI, Spratt J, Vennemann T (2013) Oxo-magnesio-hastingsite, NaCa2(Mg2Fe33+ )(Al2Si6)O22O2, a new anhydrous amphibole from the Deeti volcanic cone, Gregory rift, northern Tanzania. Mineral Mag 77(6):2773–2792

    Article  Google Scholar 

Download references

Acknowledgements

Thanks are due to Qu Kai for his help in the analytical work and writing the manuscript. Constructive comments of two anonymous experts and journal editor Nikita V. Chukanov are gratefully acknowledged. This study was supported in the framework of China Geological Survey project DD20190054 and Sichuan Science and Technology project 2019YJ0270.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangming Ren.

Additional information

Editorial handling: N. V. Chukanov

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Li, G., Shi, J. et al. Potassic-hastingsite, KCa2(Fe2+4Fe3+)(Si6Al2)O22(OH)2, from the Keshiketeng Banner, Inner Mongolia, China: description of the neotype and its implication. Miner Petrol 114, 403–412 (2020). https://doi.org/10.1007/s00710-020-00717-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-020-00717-9

Keywords

Navigation