Skip to main content
Log in

Orishchinite, a new terrestrial phosphide, the Ni-dominant analogue of allabogdanite

  • Original Paper
  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

Orishchinite is a new terrestrial phosphide discovered in pyrometamorphic rocks of the Daba-Siwaqa combustion complex in West Jordan. The mineral occurs as an accessory phase in the fused clinopyroxene-plagioclase rock (paralava) texturally resembling gabbro-dolerite. Orishchinite forms resorbed equant grains up to 0.2 mm outrimmed with 0.1–0.2 thick zones of substituting murashkoite, FeP. Chemical composition (electron microprobe, wt%): Ni 38.49, Fe 22.38, Co 0.47, Mo 18.80, P 19.46, Total 99.60, corresponding to the empirical formula (Ni1.04Fe0.64Mo0.31Co0.01)Σ2.00P on the basis of 3 apfu. The simplified formula is (Ni,Fe,Mo)2P and the ideal one is Ni2P. Macroscopically, orishchinite grains have yellowish-white colour with metallic lustre. The mineral is brittle. In reflected light, orishchinite is yellowish-white and non-pleochroic. It is very weakly anisotropic (ΔR589 = 1.3%). Reflectance values for the wavelengths recommended by the Commission on Ore Mineralogy of the International Mineralogical Association are [Rmax/Rmin (%), λ (nm)]: 48.1/47.5, 470; 50.6/49.4, 546; 52.1/50.8, 589; 54.4/52.9.1, 650. The crystal structure was solved and refined to R1 = 0.016 based on 224 unique observed [I ≥ 2σ(I)] reflections. Orishchinite is orthorhombic, space group Pnma, a 5.8020(7), b 3.5933(4), c 6.7558(8) Å, V 140.85(3) Å3, Z = 4, Dx = 7.695 g cm-3. The strongest lines of the powder X-ray diffraction pattern [(d, Å) (I, %) (hkl)] are: 2.265(100)(112), 2.201(16)(202), 2.142(55)(211), 2.100(35)(103), 1.909(21)(013), 1.811(19)(113), 1.796(31)(020). Orishchinite is dimorphous with transjordanite (hexagonal Ni2P) and can be considered the Ni-dominant analogue of allabogdanite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abzalov MZ, van der Heyden A, Saymeh A, Abuqudaira M (2015) Geology and metallogeny of Jordanian uranium deposits. Appl Earth Sci 124:63–77

    Article  Google Scholar 

  • Alqudah M, Hussein MA, Boorn S, van den, Podlaha OG, Mutterlose J (2015) Biostratigraphy and depositional setting of Maastrichtian–Eocene oil shales from Jordan. Mar Petrol Geol 60:87–104

    Article  Google Scholar 

  • Berry LG (1971) The silver-arsenide deposits of the Cobalt-Gowganda region, Ontario. Can Mineral 11:1–429

    Google Scholar 

  • Bindi L, Zaccarini F, Ifandi E, Tsikouras B, Stanley C, Garuti G, Mauro D (2020) Grammatikopoulosite, NiVP, a New Phosphide from the Chromitite of the Othrys Ophiolite. Greece Minerals 10:131

    Google Scholar 

  • Bogoch R, Gilat A, Yoffe O, Ehrlich S (1999) Rare earth trace element distributions in the Mottled Zone complex, Israel. Isr J Earth Sci 48:225–234

    Google Scholar 

  • Borodaev YuS, Bogdanov YuA, Vyal’sov LN (1982) New nickel-free variety of schreibersite Fe3P. Zap Vsesoyuzn Mineral Obsch 111(6):682–687 (in Russian)

    Google Scholar 

  • Britvin SN, Rudashevsky NS, Krivovichev SV, Burns PC, Polekhovsky YuS (2002) Allabogdanite, (Fe,Ni)2P, a new mineral from the Onello meteorite: the occurrence and crystal structure. Am Mineral 87:1245–1249

    Article  Google Scholar 

  • Britvin SN, Murasko MN, Vapnik Ye P, Krivovichev YuS SV (2015) Earth’s phosphides in Levant and insights into the source of Archean prebiotc phosphorus. Sci Rep 5:8355

    Article  Google Scholar 

  • Britvin SN, Dolivo-Dobrovolsky DV, Krzhizhanovskaya MG (2017a) Software for processing the X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zap Ross Mineral Obshch 146:104–107 (in Russian)

    Google Scholar 

  • Britvin SN, Murashko MN, Vapnik E, Polekhovsky YuS, Krivovichev SV (2017b) Barringerite Fe2P from pyrometamorphic rocks of the Hatrurim Formation, Israel. Geol Ore Depos 59:619–625

    Article  Google Scholar 

  • Britvin SN, Murashko MN, Vapnik Ye, Polekhovsky YuS, Krivovichev SV, Vereshchagin OS, Vlasenko NS, Shilovskikh VV, Zaitsev AN (2019a) Zuktamrurite, FeP2, a new mineral, the phosphide analogue of löllingite, FeAs2. Phys Chem Miner 46:361–369

    Article  Google Scholar 

  • Britvin SN, Vapnik Ye, Polekhovsky YuS, Krivovichev SV, Krzhizhanovkaya MG, Gorelova LA, Vereshchagin OS, Shilovskikh VV, Zaitsev AN (2019b) Murashkoite, FeP, a new terrestrial phosphide from pyrometamorphic rocks of the Hatrurim Formation, Southern Levant. Mineral Petrol 113:237–248

    Article  Google Scholar 

  • Britvin SN, Shilovskikh VV, Pagano R, Vlasenko NS, Zaitsev AN, Krzhizhanovskaya MG, Lozhkin MS, Zolotarev AA, Gurzhiy VV (2019c) Allabogdanite, the high-pressure polymorph of (Fe,Ni)2P, a stishovite-grade indicator of impact processes in the Fe–Ni–P system. Sci Rep 9:1047

    Article  Google Scholar 

  • Britvin SN, Murashko MN, Vapnik Ye, Polekhovsky YuS, Krivovichev SV, Krzhizhanovskaya MG, Vereshchagin OS, Shilovskikh VV, Vlasenko NS (2020a) Transjordanite, Ni2P, a new terrestrial and meteoritic phosphide, and natural solid solutions barringerite–transjordanite (hexagonal Fe2P–Ni2P). Am Mineral 105:428–436

    Article  Google Scholar 

  • Britvin SN, Murashko MN, Vapnik Ye, Polekhovsky YuS, Krivovichev SV, Vereshchagin OS, Shilovskikh VV, Vlasenko NS, Krzhizhanovskaya MG (2020b) Halamishite, Ni5P4, a new terrestrial phosphide in the Ni–P system. Phys Chem Miner 2020:3

    Article  Google Scholar 

  • Britvin SN, Murashko MN, Vapnik Ye P, Krivovichev YuS, Vereshchagin SV, Shilovskikh OS, Krzhizhanovskaya VV MG (2020c) Negevite, the pyrite-type NiP2, a new terrestrial phosphide. Am Mineral 105:422–427

    Article  Google Scholar 

  • Britvin SN, Krzhizhanovskaya MG, Zolotarev AA, Gorelova LA, Obolonskaya EV, Vlasenko NS, Shilovskikh VV, Murashko MN (2021a) Crystal chemistry of schreibersite, (Fe,Ni)3P. Am Mineral 106:1520–1529

    Article  Google Scholar 

  • Britvin SN, Murashko MN, Vapnik Ye, Vlasenko NS, Krzhizhanovskaya MG, Vereshchagin OS, Bocharov VN, Lozhkin MS (2021b) Cyclophosphates, a new class of native phosphorus compounds, and some insights into prebiotic phosphorylation on early Earth. Geology 49:382–386

    Article  Google Scholar 

  • Britvin SN, Vereshchagin OS, Shilovskikh VV, Krzhizhanovskaya MG, Gorelova LA, Vlasenko NS, Pakhomova AS, Zaitsev AN, Zolotarev AA, Bykov M, Lozhkin MS, Nestola F (2021c) Discovery of terrestrial allabogdanite (Fe,Ni)2P, and the effect of Ni and Mo substitution on the barringerite-allabogdanite high-pressure transition. Am Mineral 106:944–952

    Article  Google Scholar 

  • Britvin SN, Murashko MN, Krzhizhanovskaya MG, Vereshchagin OS, Vapnik Ye, Shilovskikh VV, Lozhkin MS, Obolonskaya EV (2022a) Nazarovite, Ni12P5, a new terrestrial and meteoritic mineral structurally related to nickelphosphide, Ni3P. Am Mineral. doi https://doi.org/10.2138/am-2022-8219

    Article  Google Scholar 

  • Britvin SN, Murashko MN, Vereshchagin OS, Vapnik Ye, Shilovskikh VV, Vlasenko NS, Permyakov VV (2022b) Expanding the speciation of terrestrial molybdenum: discovery of polekhovskyite, MoNiP2, and insights into the sources of Mo-phosphides in the Dead Sea Transform area. Am Mineral. doi: https://doi.org/10.2138/am-2022-8261

    Article  Google Scholar 

  • Britvin SN, Vlasenko NS, Aslandukov A, Aslandukovа A, Dubrovinsky L, Gorelova LA, Krzhizhanovskaya MG, Vereshchagin OS, Bocharov VN, Shelukhina YuS, Lozhkin MS, Zaitsev AN, Nestola F (2022c) Natural cubic perovskite, Ca(Ti,Si,Cr)O3–δ, a versatile potential host for rock-forming and less common elements up to Earth’s mantle pressure. Am Mineral. doi: https://doi.org/10.2138/am-2022-8186

    Article  Google Scholar 

  • Bruker (2004) SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA

    Google Scholar 

  • Bruker (2005) APEX2. Bruker AXS Inc., Madison, Wisconsin, USA

  • Burg A, Starinsky A, Bartov Y, Kolodny Y (1992) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Isr J Earth Sci 40:107–124

    Google Scholar 

  • Burisch M, Gerdes A, Walter BF, Neumann U, Fettel M, Markl G (2017) Methane and the origin of five-element veins: mineralogy, age, fluid inclusion chemistry and ore forming processes in the Odenwald, SW Germany. Ore Geol Rev 81:42–61

    Article  Google Scholar 

  • Buseck PR (1969) Phosphide from meteorites: barringerite, a new iron–nickel mineral. Science 165:169–171

    Article  Google Scholar 

  • Chen K, Jin Z, Peng Z (1983) The discovery of iron barringerite, (Fe2P), in China. Sci Geol Sin 1983:199–202

    Google Scholar 

  • Dera P, Lavina B, Borkowski LA, Prakapenka VB, Sutton SR, Rivers ML, Downs RT, Boctor NZ, Prewitt CT (2008) High-pressure polymorphism of Fe2P and its implications for meteorites and Earth’s core. Geophys Res Lett 35:L10301

    Article  Google Scholar 

  • Dera P, Lavina B, Borkowski LA, Prakapenka VB, Sutton SR, Rivers ML, Downs RT, Prewitt CT (2009) Structure and behavior of the barringerite Ni end-member, Ni2P, at deep Earth conditions and implications for natural Fe-Ni phosphides in planetary cores. J Geophys Res Solid Earth 2009:114

    Google Scholar 

  • Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JA, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Cryst 42:339–341

    Article  Google Scholar 

  • Eremenko GK, Polkanov YuA, Gevork’yan VKh (1974) Cosmogenic minerals in Poltava deposits of Konka-Yalynskoy depression in North-Azov region. Mineralogiya Osadochnikh Obrazovaniy 1:66–76 (in Russian)

    Google Scholar 

  • Essene EJ, Fisher DC (1986) Lightning strike fusion- extreme reduction and metal-silicate liquid immiscibility. Science 234:189–193

    Article  Google Scholar 

  • Fleurance S, Cuney M, Malartre M, Reyx J (2013) Origin of the extreme polymetallic enrichment (Cd, Cr, Mo, Ni, U, V, Zn) of the Late Cretaceous–Early Tertiary Belqa Group, central Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 369:201–219

    Article  Google Scholar 

  • Geller YI, Burg A, Halicz L, Kolodny Y (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chem Geol 334:25–36

    Article  Google Scholar 

  • Gilat A (1994) Tectonic and associated mineralization activity, Southern Judea, Israel. Geol Surv Isr Rep GSI/19/94, Jerusalem, 322 p

  • Grapes R (2011) Pyrometamorphism. Springer-Verlag, Berlin Heidelberg, p 365

    Google Scholar 

  • Gross S (1977) The mineralogy of the Hatrurim Formation, Israel. Bull Geol Surv Israel 70:1–80

    Google Scholar 

  • Guérin R, Sergent M, Chaudron G (1975) Synthese et étude radiocristallographique des systemes MP – MoP et MP – WP (M = element 3d). Compt Rend Acad Sci C 281:777–780

    Google Scholar 

  • Guérin R, Sergent M (1977) Nouveaux arseniures et phosphures ternaires de molybdene ou de tungstene et d’elements 3d, de formule: M2 – xMexX (M = élément 3d; Me = Mo. P) Mater Res Bull 12:381–388 W; X = As

    Article  Google Scholar 

  • Ifandi E, Zaccarini F, Tsikouras B, Grammatikopoulos T, Garuti G, Karipi S, Hatzipanagiotou K (2018) First occurrences of Ni-V-Co phosphides in chromitite of Agios Stefanos mine, Othrys ophiolite. Greece Ofioliti 43:131–145

    Google Scholar 

  • Issar A, Eckstein Y, Bogoch R (1969) A possible thermal spring deposit in the Arad area, Israel. Isr J Earth Sci 18:17–20

    Google Scholar 

  • Ivanov AV, Zolensky ME, Saito A, Ohsumi K, MacPherson GJ, Yang SV, Kononkova NN, Mikouchi T (2000) Florenskyite, FeTiP, a new phosphide from the Kaidun meteorite. Am Mineral 85:1082–1086

    Article  Google Scholar 

  • Khoury HN, Salameh EM, Clark ID (2014) Mineralogy and origin of surficial uranium deposits hosted in travertine and calcrete from central Jordan. Appl Geochem 43:49–65

    Article  Google Scholar 

  • Kolodny Y, Burg A, Geller YI, Halicz L, Zakon Y (2014) Veins in the combusted metamorphic rocks, Israel; weathering or a retrograde event? Chem Geol 385:140–155

    Article  Google Scholar 

  • Kumar S, Krishnamurthy A, Bipin K, Srivastava K, Daa A, Paranjpe S (2004) Magnetization and neutron diffraction studies on FeCrP. Pramana 63:199–205

    Article  Google Scholar 

  • Leblanc M (1986) Co–Ni arsenide deposits, with accessory gold, in ultramafic rocks from Morocco. Can J Earth Sci 23:1592–1602

    Article  Google Scholar 

  • Litasov KD, Bekker TB, Sagatov NE, Gavryushkin PN, Krinitsyn PG, Kuper KE (2020) (Fe,Ni)2P allabogdanite can be an ambient pressure phase in iron meteorites. Sci Rep 10:8956

    Article  Google Scholar 

  • Ma C, Beckett JR, Rossman GR (2014) Monipite, MoNiP, a new phosphide mineral in a Ca-Al-rich inclusion from the Allende meteorite. Am Mineral 99:198–205

    Article  Google Scholar 

  • Martin L, Leemann L, Milodowski A, Mader U, Münch B, Giroud N (2016) A natural cement analogue study to understand the long-term behaviour of cements in nuclear waste repositories: Maqarin (Jordan). Appl Geochem 71:20–34

    Article  Google Scholar 

  • Martin-Crespo T, Vindel E, Lopez-Garcia JA, Cardellach E (2004) As–(Ag) sulphide veins in the Spanish Central System: further evidence for a hydrothermal event of Permian age. Ore Geol Rev 25:199–219

    Article  Google Scholar 

  • Minyuk PS, Plyashkevich AA, Subbotnikova TV, Al’shevskiy AV (2014) The magnetism of mineral phases of the Kolyma fulgurite. In «The paleomagnetism and magnetism of rocks»,Proc Intern School–Seminar7–12 Oct 2013, Kazan State Univ, Kazan, Russia,156–162(in Russian)

  • Murashko MN, Vapnik Y, Polekhovsky YP, Shilovskikh VV, Zaitsev AN, Vereshchagin OS, Britvin SN (2019) Nickolayite, IMA 2018 – 126. Mineral Mag 83:143–147 CNMNC Newsletter No. 47, February 2019, page 146

    Google Scholar 

  • Miyawaki R, Hatert F, Pasero M, Mills SJ (2019) IMA 16-F: Changes to CNMNC procedures regarding combustion products forming on burning coal dumps. CNMNC Newsl No 50; Mineral Mag 83:619

    Google Scholar 

  • Nishanbaev TP, Rochev AV, Kotlyarov VA (2002) Iron phosphides from the burned coal dumps of Chelyabinsk coal basin. Uralsky Geol J 25(1):105–114 (Russian)

    Google Scholar 

  • Novikov I, Vapnik Ye, Safonova I (2013) Mud volcano origin of the Mottled Zone, Southern Levant. Geosci Front 4:597–619

    Article  Google Scholar 

  • Oliynyk AO, Lomnytska YF, Dzevenko MV, Stoyko SS, Mar A (2013) Phase Equilibria in the Mo-Fe-P System at 800°C and Structure of Ternary Phosphide (Mo1 – xFex)3P (0.10 ≤ x ≤ 0.15). Inorg Chem 52:983–991

    Article  Google Scholar 

  • Orishchin SV, Kuz’ma YuB (1982) Interaction between the components in the ternary system W-Co-P. Soviet Powder Metall Metal Ceram 21(5):395–397

    Article  Google Scholar 

  • Orishchin SV, Babizhetskii VS, Kuz’ma YuB (1998) Preparation and Structure of Re3P4 Crystals. Inorg Mater 34(12):1227–1230

    Google Scholar 

  • Orishchin SV, Babizhetskii VS, Kuz’ma YuB (2000) Reinvestigation of the NiP2 structure. Crystallogr Rep 45(6):894–895

    Article  Google Scholar 

  • Orishchin SV, Zhak OV, Budnik SL, Kuz’ma YuB (2002) The Y-Fe-P system. Zhurn Neorg Khim 47(9):1541–1545

    Google Scholar 

  • Pasek MA, Block K, Pasek V (2012) Fulgurite morphology: a classification scheme and clues to formation. Contrib Mineral Petrol 164:477–492

    Article  Google Scholar 

  • Pauly H (1969) White cast iron with cohenite, schreibersite and sulphides from Tertiary basalts on Disko, Greenland. Medd Dansk Geol For 19:8–26

    Google Scholar 

  • Pedersen AK (1981) Armalcolite-bearing Fe-Ti oxide assemblages in graphite-equilibrated salic volcanic rocks with native iron from Disko, Central West Greenland. Contrib Mineral Petrol 77:307–324

    Article  Google Scholar 

  • Peretyazhko IS, Savina EA, Khromova EA (2021) Low–pressure (> 4 MPa) and high–temperature (> 1250°C) incongruent melting of marly limestone: formation of carbonate melt and melilite–nepheline paralava in the Khamaryn–Khural–Khiid combustion metamorphic complex, East Mongolia. Contrib Mineral Petrol 176:38

    Article  Google Scholar 

  • Plyashkevich AA, Minyuk PS, Subbotnikova TV, Alshevsky AV (2016) Newly Formed Minerals of the Fe-P-S System in Kolyma Fulgurite. Dokl Russ Acad Sci Earth Sci 467:380–383

    Article  Google Scholar 

  • Rundqvist S, Nawapong PC (1966) The crystal structure of ZrFeP and related compounds. Acta Chem Scand 20:2250–2254

    Article  Google Scholar 

  • Savina EA, Peretyazhko IS, Khromova EA, Glushkova VE (2020) Melted rocks (clinkers and paralavas) of Khamaryn-Khural-Khiid combustion metamorphic complex in Eastern Mongolia: mineralogy, geochemistry and genesis. Petrology 28(5):431–457

    Article  Google Scholar 

  • Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C71:3–8

    Google Scholar 

  • Sideridis A, Zaccarini F, Grammatikopoulos T, Tsitsanis P, Tsikouras B, Pushkarev E, Garuti G, Hatzipanagiotou K (2018) First occurrences of Ni-phosphides in chromitites from the ophiolite complexes of Alapaevsk, Russia and Gerakini Ormylia. Greece Ofioliti 43:75–84

    Google Scholar 

  • Stoe (2003) WinXPOW, v. 2.08. STOE & Cie GmbH, Darmstadt

    Google Scholar 

  • Vapnik Ye, Sharygin V, Sokol E, Shagam R (2007) Paralavas in a combustion metamorphic complex, Hatrurim Basin, Israel. GSA Reviews in Engineering Geology XVIII:133–153

    Google Scholar 

  • Vereshchagin OS, Pankin DV, Smirnov MB, Vlasenko NS, Shilovskikh VV, Britvin SN (2021) Raman spectroscopy: A promising tool for the characterization of transition metal phosphides. J Alloys Compd 853:156468

    Article  Google Scholar 

  • Wilson AJC (1992) International Tables for Crystallography: Mathematical, Physical, and Chemical Tables; International Union of Crystallography, vol 3. Chester, UK

  • Xiong F, Xu X, Mugnaioli E, Gemmi M, Wirth R, Grew ES, Robinson PT, Yang J (2020a) Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: Is this evidence for super-reduced mantle-derived fluids? Eur J Mineral 32:557–574

    Article  Google Scholar 

  • Yang JS, Bai WJ, Rong H, Zhang ZM, Xu ZQ, Fang QS, Yang BG, Li TF, Ren YF, Chen SY, Hu J-Z, Su JF, Mao HK (2005) Discovery of Fe2P alloy in garnet peridotite from the Chinese Continental Scientific Drilling Project (CCSD) main hole. Acta Petrol Sin 21:271–276

    Google Scholar 

  • Zaccarini F, Pushkarev E, Garuti G, Kazakov I (2016) Platinum-group minerals and other accessory phases in chromite deposits of the Alapaevsk ophiolite, Central Urals. Russia Minerals 6:108

    Google Scholar 

  • Zaccarini F, Bindi L, Ifandi E, Grammatikopoulos T, Stanley C, Garuti G, Mauro D (2019a) Tsikourasite, Mo3Ni2P1 + x (x < 0.25), a new phosphide from the chromitite of the Othrys ophiolite. Greece Minerals 9:248

    Google Scholar 

  • Zaccarini F, Ifandi E, Tsikouras B, Grammatikopoulos T, Garuti G, Mauro D, Bindi L, Stanley C (2019b) Occurrences of of new phosphides and sulfide of Ni, Co, V, and Mo from chromitite of the Othrys ophiolite complex (Central Greece). Per Ital Mineral 2019:88

  • Zolensky ME, Gounelle M, Mikouchi T, Ohsumi K, Le L, Hagiya K, Tachikawa O (2008) Andreyivanovite: a second new phosphide from the Kaidun meteorite. Am Mineral 93:1295–1299

    Article  Google Scholar 

Download references

Acknowledgements

The instrumental and computational facilities for the study were provided by the Scientific Park of Saint-Petersburg State University: Centre for X-ray diffraction studies; Geomodel; Centre for Diagnostics of Functional Materials; Resource Center of Nanotechnology. The authors are thankful to Federica Zaccarini and an anonymous referee for careful examination and discussion of manuscript contents, that substantially improved the final article version. This research was carried out under financial support of the Russian Science Foundation, grant 18-17-00079.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey N. Britvin.

Additional information

Editorial handling: L. Bindi

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Britvin, S.N., Murashko, M.N., Vapnik, Y. et al. Orishchinite, a new terrestrial phosphide, the Ni-dominant analogue of allabogdanite. Miner Petrol 116, 369–378 (2022). https://doi.org/10.1007/s00710-022-00787-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-022-00787-x

Keywords

Navigation