Skip to main content

Advertisement

Log in

Biodiversity and community structure of Late Pleistocene foraminifera from Kish Island, Persian Gulf (Iran)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The raised coral reef sequences at Kish Island provide a rare window into the depositional setting and paleoenvironment of a high-latitude, shallow-water coral reef that developed under turbid conditions in the Persian Gulf during Marine Isotope Stage 7 (~200 to 250 ka). Six sedimentary facies and eight foraminiferal assemblages can be identified throughout the sequence. A ninth assemblage can be defined for the modern subtidal realm. At the base of the sequence is a marl rich in hyaline foraminifera (Elphidium, Ammonia, Asterorotalia, Bulimina, Nonion, and Quinqueloculina) and ostracods, which was deposited in about 30–40 m water depth in a turbid deltaic setting. Shallowing resulted in the marl becoming sandy, and changing to a mollusc-rich facies with rare foraminifera (mostly smaller miliolid taxa) that formed the substrate for coral recruitment. The coral marl layer contains many large corals embedded in situ in an aggregate and coralline algae-rich marl. Two abundance peaks in the foraminifera occur at the base and mid-way through this layer, which also correspond to a change from Murrayinella-dominated to Placopsilina-dominated assemblages, indicating deepening and more open-marine conditions, but elevated turbidity. Towards the top of the layer, abundance of foraminifera decreases and miliolid foraminifera become dominant. The top-most layer is dominated by coral and mollusc fragments and has an Amphistegina-rich reef-related assemblage. Of the Late Pleistocene foraminiferal assemblages, the Murrayinella-, Pararotalia-, and Placopsilina-dominated assemblages are no longer present in the modern gulf for unknown reasons. Of the other five assemblages, only the Amphistegina assemblage is found within proximity to the modern Kish Island. The Elphidium and Asterorotalia-Bulimina assemblages are from deeper areas of the gulf. The Ammonia and Quinqueloculina assemblages occur in lagoonal sediments on the Arabian side of the gulf. Like the modern Persian Gulf, the diversity of foraminifera was low (~80 common species) during the Pleistocene and does not correlate with foraminiferal abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Al-Ghadban AN, Abdali F (1998) Sedimentation rate and bioturbation in the Arabian Gulf. Environ Int 24:23–31

    Article  Google Scholar 

  • Al-Rifaiy IA, Cherif OH (1988) The fossil coral reefs of Al-Aqaba, Jordan. Facies 18:219–230

    Article  Google Scholar 

  • Badawi A, Schmiedl G, Hemleben C (2005) Impact of late quaternary environmental changes on deep-sea benthic foraminiferal faunas of the Red Sea. Mar Micropaleont 58:13–30

    Article  Google Scholar 

  • Bicchi E, Debenay JP, Pagés J (2002) Relationship between benthic foraminiferal assemblages and environmental factors in atoll lagoons of the Central Tuamotu Archipelago (French Polynesia). Coral Reefs 21:275–290

    Google Scholar 

  • Brewer PG, Dyrssen D (1985) Chemical oceanography of the Persian Gulf. Prog Oceanogr 14:41–55

    Article  Google Scholar 

  • Cherif OH, Al-Ghadban AN, Al-Rifaiy IA (1997) Distribution of foraminifera in the Arabian Gulf. Micropaleontology 43:253–280

    Article  Google Scholar 

  • Chivas AR, Garcia A, van der Kaars S, Couapel MJJ, Holt S, Reeves JM, Wheeler DJ, Switzer AD, Murray-Wallace CV, Banerjee D, Price DM, Wang SX, Pearson G, Edgar NT, Beaufort L, De Deckker P, Lawson E, Cecil CB (2001) Sea-level and environmental changes since the last interglacial in the Gulf of Carpentaria, Australia: an overview. Quat Int 83:19–46

    Article  Google Scholar 

  • Coles SL, Fadlallah YH (1991) Reef coral survival and mortality at low temperatures in the Arabian Gulf: new species-specific lower temperature limits. Coral Reefs 9:231–237

    Article  Google Scholar 

  • Crame JA (1980) Succession and diversity in the Pleistocene coral reefs of the Kenya coast. Palaeontology 23:1–37

    Google Scholar 

  • Crame JA (1981) Ecological stratification in the Pleistocene coral reefs of the Kenya coast. Palaeontology 24:609–646

    Google Scholar 

  • Debenay J-P (2000) Foraminifers of paralic tropical environments. Micropaleontol 46(suppl 1):153–160

    Google Scholar 

  • Dullo WC (1990) Facies, fossil record and age of Pleistocene reefs along the Red Sea (Saudi Arabia). Facies 22:1–46

    Article  Google Scholar 

  • Ellis BF, Messina A (1940) et seq. Catalogue of foraminifera. American Museum of Natural History, New York (1940 and suppl)

  • Ghazban F (2007) Petroleum geology of the Persian Gulf. Tehran University and National Iranian Oil Company, Tehran, p 707

    Google Scholar 

  • Gischler E, Lomando AJ (2005) Offshore sedimentary facies of a modern carbonate ramp, Kuwait, northwestern Arabian-Persian Gulf. Facies 50:443–462

    Article  Google Scholar 

  • Haake FW (1975) Miliolinen (Foram.) in Oberflächensedimenten des Persischen Golfes. Meteor Forsch Ergeb Reihe C 21:15–51

    Google Scholar 

  • Haig DW (1997) Foraminifera from Exmouth Gulf, Western Australia. J R Soc Western Aust 80:263–280

    Google Scholar 

  • Hallock P (2000) Larger Foraminifers as indicators of coral reef vitality. In: Martin R (ed) Environmental micropaleontology. Topics Geobiol 15:121–150

  • Hallock P, Lidz BH, Cockey-Burkhard EM, Donnelly KB (2003) Foraminifera as bioindicators in coral reef assessment and monitoring: the FORAM index. Environ Monit Assess 81:221–238

    Article  Google Scholar 

  • Hammer O, Harper DAT, Ryan PD (2001) PAST: palaeontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):1–9

    Google Scholar 

  • Haunold TG, Baal C, Piller WE (1998) Larger foraminifera. In: Piller WE, Haunold TG (eds) The northern Bay of Safaga (Red Sea, Egypt), an actuopalaeontological approach. V. Foraminifera. Abh Senck Naturforsch Gesellsch 548:155–180

  • Hohenegger J (1994) Distribution of living larger Foraminifera NW of Sesoko-Jima, Okinawa, Japan. Mar Ecol 15:291–334

    Article  Google Scholar 

  • Hohenegger J, Yordanova E, Nakano Y, Tatzreiter F (1999) Habitats of larger foraminifera on the upper slope of Sesoko Island, Okinawa, Japan. Mar Micropaleont 36:109–168

    Article  Google Scholar 

  • Hottinger L, Halicz E, Reiss Z (1993) Recent Foraminiferida from the Gulf of Aqaba. Red Sea. Slov Akad Znan Umetnosti, Ljubljana, p 179

    Google Scholar 

  • Houbolt JJHC (1957) Surface sediments of the Persian Gulf near the Qatar Peninsula. Thesis, State Univ Utrecht, p 113

  • Javaux EJ, Scott DB (2003) Illustration of modern benthic foraminifera from Bermuda and remarks on distribution in other subtropical/tropical areas. Palaeont Electron 6(4):1–29

    Google Scholar 

  • Kim J-M, Kucera M (2000) Benthic foraminifer record of environmental changes in the Yellow Sea (Hwanghae) during the last 15, 000 year. Q Sci Rev 19:1067–1085

    Article  Google Scholar 

  • Lambeck K (1996) Shoreline reconstructions for the Persian Gulf since the last glacial maximum. Earth Planet Sci Lett 142:43–57

    Article  Google Scholar 

  • Langer M, Hottinger L (2000) Biogeography of selected “larger” foraminifera. Micropaleontology 46(Suppl 1):105–127

    Google Scholar 

  • Langer M, Lipps JH (2003) Foraminiferal distribution and diversity, Madang reef and lagoon, Papua New Guinea. Coral Reefs 22:143–154

    Article  Google Scholar 

  • Lobegeier MK (2002) Benthic foraminifera of the family Calcarinidae from Green Island Reef, Great Barrier Reef Province. J Foram Res 32:201–216

    Article  Google Scholar 

  • Loeblich AR, Tappan H (1987) Foraminiferal genera and their classification. Van Nostrand Reinhold, New York, p 970

    Google Scholar 

  • Loeblich AR, Tappan H (1994) Foraminifera of the Sahul Shelf. Cushman Found Foram Res Spec Pub 31:1–661

    Google Scholar 

  • Lomando AJ (1999) Structural influence on facies trends of carbonate inner ramp systems, examples from the Kuwaiti-Saudi Arabian coast of the Arabian Gulf and northern Yucatan, Mexico. GeoArabia 4:339–360

    Google Scholar 

  • Lutze GF (1974) Benthische Foraminiferen in Oberflächen-Sedimenten des Persischen Golfes. Teil: Arten. Meteor Forsch Ergeb Reihe C 7:1–66

    Google Scholar 

  • Lutze G, Wolf R (1975) Persian Gulf foraminifera, depth distribution and sea level change. Marit Sedim, Spec Publ 1:425–429

    Google Scholar 

  • Lutze G, Grabert B, Seibold E (1971) Lebendbeobachtungen an Gross-Foraminiferen (Heterostegina) aus dem Persichen Gulf. Teil Arten. Meteor Forsch Ergeb Reihe C 6:21–40

    Google Scholar 

  • Meandro Consultant Engineers (2006) Report on the engineering geology and earthquake risk assessment of Kish Island. Unpubl Rep Kish Island Authority (in Farsi)

  • Melguen M (1973) Corresponding analysis for recognition of facies in homogeneous sediments off an Iranian river mouth. In: Purser BH (ed) The Persian Gulf. Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer, Berlin Heidelberg New York, pp 99–114

    Google Scholar 

  • Melis R, Violanti D (2006) Foraminiferal biodiversity and Holocene evolution of the Phetchaburi coastal area (Thailand Gulf). Mar Micropaleont 61:94–115

    Article  Google Scholar 

  • Mossadegh ZK, Haig DW, Allan T, Adabi MH, Sadeghi A (2009) Salinity changes during Late Oligocene to Early Miocene Asmari Limestone deposition, Zagros Mountains, Iran. Palaeogeogr Palaeoclimat Palaeoecol 272:17–36

    Article  Google Scholar 

  • Motiei H, (1993) Stratigraphy of Zagros. Treatise on the geology of Iran no. 1, Ministry mines metals. Geol Surv Iran, Tehran, p 199 (in Farsi)

  • Murray JW (1965) The Foraminiferida of the Persian Gulf. 2. The Abu Dhabi Region. Palaeogeogr Palaeoclimatol Palaeoecol 1:307–332

    Article  Google Scholar 

  • Murray JW (1966a) The Foraminiferida of the Persian Gulf. 4. Khor Al Bazam. Palaeogeogr Palaeoclimatol Palaeoecol 2:153–169

    Article  Google Scholar 

  • Murray JW (1966b) The Foraminiferida of the Persian Gulf. 3. The Halat Al Bahrani Region. Palaeogeogr Palaeoclimatol Palaeoecol 2:59–68

    Article  Google Scholar 

  • Murray JW (1966c) The Foraminiferida of the Persian Gulf. 5. The shelf off the trucial coast. Palaeogeogr Palaeoclimatol Palaeoecol 2:267–278

    Article  Google Scholar 

  • Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, Cambridge, p 426

    Book  Google Scholar 

  • Nigam R, Saraswat R, Kurtarka SR (2006) Laboratory experiment to study the effect of salinity variations on benthic foraminiferal species—Pararotalia nipponica (Asano). J Geol Soc India 67:41–46

    Google Scholar 

  • Nomura R, Takayanagi Y (2000) The suprageneric classification of the foraminiferal genus Murrayinella and a new species from Japan. Paleont Res 4:171–181

    Google Scholar 

  • Orpin AR, Haig DW, Woolfe KJ (1999) Sedimentary and foraminiferal facies in Exmouth Gulf, in arid tropical northwestern Australia. Austral J Earth Sci 46:607–621

    Article  Google Scholar 

  • Pandolfi JM (1996) Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology 22:152–176

    Google Scholar 

  • Pandolfi JM (1999) Response of Pleistocene coral reefs to environmental change over long temporal scales. Am Zool 39:113–130

    Google Scholar 

  • Parker JH (2009) Taxonomy of foraminifera from Ningaloo Reef, Western Australia. Mem Assoc Austral Palaeont 36:1–812

    Google Scholar 

  • Parker JH, Gischler E (2011) Modern foraminiferal distribution and diversity in two atolls from the Maldives, Indian Ocean. Mar Mircopaleont 78:30–49

    Article  Google Scholar 

  • Pillai CSG (1977) The structure, formation and species diversity of south Indian reefs. Proc 3rd Int Coral Reef Symp 2:47–53

    Google Scholar 

  • Pirazzoli PA, Reyss JL, Dontugne M, Haghipour A, Hilgers A, Kasper HU, Nazari H, Preusser F, Radtke U (2004) Quaternary coral-reef terraces from Kish and Qeshm Islands, Persian Gulf: new radiometric ages and tectonics implications. Quat Int 120:15–27

    Article  Google Scholar 

  • Playford PE (2004) Geology and hydrology of Rottnest Island, Western Australia. In: Vacher HL, Quinn T (eds) Geology and hydrology of carbonate islands. Develop Sediment 54:783–810

  • Purkis SJ, Renegar DA, Riegl BM (2011) The most temperature-adapted corals have an Achilles’ Heel. Mar Poll Bull 62:246–250

    Article  Google Scholar 

  • Purser BH (1973) Sedimentation around bathymetric highs in the southern Persian Gulf. In: Purser BH (ed) The Persian Gulf. Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer, Berlin Heidelberg New York, pp 157–178

    Google Scholar 

  • Reiss Z, Hottinger L (1984) The Gulf of Aqaba—ecological micropaleontology. Ecol Stud, 50. Springer, Berlin Heidelberg New York, p 354 (Ecol Stud, 50)

    Google Scholar 

  • Renema W (2006) Habitat variables determining the occurrence of large benthic foraminifera in the Berau area (East Kalimantan, Indonesia). Coral Reefs 25:351–359

    Article  Google Scholar 

  • Renema W, Troelstra SR (2001) Larger foraminifera distribution on a mesotrophic carbonate shelf in SW Sulawesi (Indonesia). Palaeogeogr Palaeoclimatol Palaeoecol 175:125–146

    Article  Google Scholar 

  • Renema W, Hoeksema BW, van Hinte JE (2001) Larger benthic foraminifera and their distribution patterns on the Spermonde shelf, South Sulawesi. Zool Verh (Leiden) 334:115–150

    Google Scholar 

  • Saidova KM (2010) Benthic foraminifer communities of the Persian Gulf. Oceanology 50:61–66

    Article  Google Scholar 

  • Sanders D, Baron-Szabo RC (2005) Scleractinian assemblages under sediment input: their characteristics and relation to the nutrient input concept. Palaeogeogr Palaeoclimatol Palaeoecol 216:139–181

    Article  Google Scholar 

  • Sarnthein M (1972) Sediments and history of the postglacial transgression in the Persian Gulf and northwest Gulf of Oman. Mar Geol 12:245–366

    Article  Google Scholar 

  • Sarnthein M, Walger E (1973) Classification of modern marl sediments in the Persian Gulf by factor analysis. In: Purser BH (ed) The Persian Gulf. Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer, Berlin Heidelberg New York, pp 81–89

    Google Scholar 

  • Seibold E, Diester L, Fütterer D, Lange H, Müller P, Werner F (1973) Holocene sediments and sedimentary processes in the Iranian part of the Persian Gulf. In: Purser BH (ed) The Persian Gulf. Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer, Berlin Heidelberg New York, pp 57–80

    Google Scholar 

  • Sheppard C, Al-Husiani M, Al-Jamali F, Al-Yamani F, Baldwin R, Bishop J, Benzoni F, Dutrieux E, Dulvy NK, Durvasula SRV, Jones DA, Loughland R, Medio D, Nithyanandan M, Pilling GM, Polikarpov I, Price ARG, Purkis S, Riegl B, Saburova M, Samimi Namin K, Taylor O, Wilson S, Zainal K (2010) The Gulf: a young sea in decline. Mar Poll Bull 60:13–38

    Article  Google Scholar 

  • Shinn EA (1969) Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology 12:109–144

    Article  Google Scholar 

  • Stainforth RM (1952) Ecology of arenaceous foraminifera. Micropaleontol 6:1–42

    Google Scholar 

  • Stoffers P, Ross DA (1979) Late Pleistocene and Holocene sedimentation in the Persian Gulf–Gulf of Oman. Sediment Geol 23:181–208

    Article  Google Scholar 

  • Strasser A, Strohmenger C (1997) Early diagenesis in Pleistocene coral reefs, southern Sinai, Egypt: response to tectonics, sea-level and climate. Sedimentology 44:537–558

    Article  Google Scholar 

  • Szarek R, Kuhnt W, Kawamura H, Kitizato H (2006) Distribution of Recent benthic foraminifera on the Sunda Shelf (South China Sea). Mar Micropaleont 61:171–195

    Article  Google Scholar 

  • Uchupi E, Swift SA, Ross DA (1999) Late quaternary stratigraphy, paleoclimate and neotectonism of the Persian Arabian/Gulf region. Mar Geol 160:1–23

    Article  Google Scholar 

  • Uthicke S, Nobes K (2008) Benthic foraminifera as indicators for terrestrial runoff: a foram index for the GBR. Estuar Coast Shelf Sci 78:763–773

    Article  Google Scholar 

  • Uthicke S, Thompson A, Schaffelke B (2010) Effectiveness of benthic foraminiferal and coral assemblages as water quality indicators on inshore reefs of the Great Barrier Reef, Australia. Coral Reefs 29:209–225

    Article  Google Scholar 

  • Wagner E, van der Togt C (1973) Holocene sediment types and their distribution in the southern Persian Gulf. In: Purser BH (ed) The Persian Gulf. Holocene carbonate sedimentation and diagenesis in a shallow epicontinental sea. Springer, Berlin Heidelberg New York, pp 123–156

    Google Scholar 

  • Walkden G, Williams A (1998) Carbonate ramps and the Pleistocene–Recent depositional systems of the Arabian Gulf. In: Wright VP, Burchette TP (eds) Carbonate ramps. Geol Soc Spec Publ 149:43–53

  • Walker SE, Parsons-Hubbard K, Richardson-White S, Brett C, Powell E (2011) Alpha and beta diversity of encrusting foraminifera that recruit to long-term experiments along a carbonate platform to shelf gradient: paleoecological and paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol. doi:10.1016/j.palaeo.2011.04.028

  • Waller HO (1960) Foraminiferal biofacies off the south China coast. J Paleont 34:1164–1182

    Google Scholar 

  • Woodroffe SA, Horton BP, Larcombe P (2005) Contemporary intertidal foraminifera distributions of Cleveland Bay, Central Great Barrier Reef shelf, Australia: implications for sea-level reconstructions. J Foram Res 35:259–270

    Article  Google Scholar 

  • Zheng S (1990) Foraminiferal fauna trends and assemblages of the Bohai Sea, Huanghai Sea and East China Sea. Bull Mar Sci 47:192–212

    Google Scholar 

Download references

Acknowledgments

This study was funded under project A3.1 of the Biodiversity and Climate Research Centre (LOEWE), Frankfurt, Germany. Dr. Hamid Rezai from the Iranian National Centre for Oceanography (INCO) helped to initiate this study, and his advice and suggestions are greatly appreciated. Assistance in the field was provided by Mustafa Khoeniy, Kaveh Samimi, and Ali Mirshahidi. Mr. Khoeniy is especially acknowledged for helping with contacts to the necessary authorities and for general advice about Kish Island. Ms. Mohammadi and Mr. Shirani of the Kish Island Authority are thanked for providing data and information about Kish Island. Export permits were issued by INCO, and permission to conduct the field-work on Kish Island was provided by the Kish Island Authority. Thin-sections were prepared by Matthias Rehbein, Anja Isaak, Maria Bladt, and Eckehard Gottwald. We are grateful to journal reviewers Romana Melis and Christian Dullo for their comments that improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Karimi Mossadegh.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mossadegh, Z.K., Parker, J. & Gischler, E. Biodiversity and community structure of Late Pleistocene foraminifera from Kish Island, Persian Gulf (Iran). Facies 58, 339–365 (2012). https://doi.org/10.1007/s10347-011-0286-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-011-0286-9

Keywords

Navigation