Skip to main content
Log in

Tuning the Basic Properties of ZnAl Hydrotalcites Modified with Ce Applied to Transesterification of Soybean Oil

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The basicity of ZnAl hydrotalcite type materials was modified through the incorporation of Ce into their structure and used as heterogeneous catalysts in the transesterification of soybean oil. A series of novel ZnAl–Ce(X) catalysts was synthesized by the co-precipitation method varying the loading of Ce (X = Ce/Al molar ratio). The larger ionic radius of Ce3+ (1.01 Å) compared with Al3+ (0.53 Å) and Zn2+ (0.72 Å), hinders the appropriate incorporation of Ce3+ in the brucite-like structure, causing a small segregation of Ce3+ as CeO2. However, the concentration of basic sites (acid–basic Lewis pairs) and specific surface area of the ZnAl–Ce(0.0) sample were enhanced with the incorporation of Ce, improving its catalytic activity. The most appropriate Ce loading was obtained with a Ce/Al molar ratio of 0.03, which was attributed to its large surface area, along with a higher amount of acid–basic Lewis pairs related to the presence of aluminum in pentahedral coordination. Thus, the total amount of basic sites (OH and M–O) of ZnAl–Ce(0.03) was triplicated, leading to a FAME yield of 80% with this catalyst, which represents an increase of 11.3% when compared with the ZnAl hydrotalcite without Ce.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8.
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Datta A, Mandal B (2016) A comprehensive review of biodiesel as an alternative fuel for compression ignition engine. Renew Sustain Energy Rev 57:799–821. https://doi.org/10.1016/j.rser.2015.12.170

    Article  CAS  Google Scholar 

  2. Hassan MM, Rahman MM (2017) Performance and emission characteristics of biodiesel-diesel blend and environmental and economic impacts of biodiesel production: a review. Renew Sustain Energy Rev 74:938–948. https://doi.org/10.1016/j.rser.2017.03.045

    Article  CAS  Google Scholar 

  3. Sharma YC, Singh B, Korstad J (2011) Latest developments on application of heterogeneous basic catalysts for an efficient and eco friendly synthesis of biodiesel: a review. Fuel 90:1309–1324. https://doi.org/10.1016/j.fuel.2010.10.015

    Article  CAS  Google Scholar 

  4. Haziratul Mardhiah H, Chyuan Ong H, Masjuki HH, Lim S, Lee HV (2017) A review on latest developments and future prospects heterogeneous catalyst in biodiesel production from non-edible oils. Renew Sustain Energy Rev 67:1225–1236. https://doi.org/10.1016/j.rser.2016.09.036

    Article  CAS  Google Scholar 

  5. Sharma YC, Singh B, Korstad J (2011) Advancements in solid acid catalysts for ecofriendly and economically viable synthesis of biodiesel. Biofuel Bioprod Biorefining 5(1):69–92. https://doi.org/10.1002/bbb.253

    Article  CAS  Google Scholar 

  6. Al-Jammal N, Al-Hamamre Z, Alnaief M (2016) Manufacturing of zeolite bases catalyst from zeolite tuft for biodiesel production from waste sunflower oil. Renew Energy 93:449–459. https://doi.org/10.1016/j.renene.2016.03.018

    Article  CAS  Google Scholar 

  7. Volli V, Purkait MK (2015) Selective preparation of zeolite X and A from fly ash and its use as catalyst for biodiesel production. J Hazard Mater 297:101–111. https://doi.org/10.1016/j.jhazmat.2015.04.066

    Article  CAS  PubMed  Google Scholar 

  8. Kouzu M, Fujimori A, Suzuki T, Koshi K, Moriyasu H (2017) Industrial feasibility of powdery CaO catalyst for production of biodiesel. Fuel Process Technol 165:94–101. https://doi.org/10.1016/j.fuproc.2017.05.014

    Article  CAS  Google Scholar 

  9. Margellou A, Koutsouki A, Petrakis D, Vaimakis T, Manos G, Kontominas M, Pomonis PJ (2018) Enhanced production of biodiesel over MgO catalysts synthesized in the presence of Poly-Vinyl-Alcohol (PVA). Ind Crop Prod 114:146–153. https://doi.org/10.1016/j.indcrop.2018.01.079

    Article  CAS  Google Scholar 

  10. Salinas D, Sepúlveda C, Escalona N, Gfierro JLG, Pecchi G (2018) Sol–gel La2O3–ZrO2 mixed oxide catalysts for biodiesel production. J Energy Chem 27(2):565–572. https://doi.org/10.1016/j.jechem.2017.11.003

    Article  Google Scholar 

  11. Lara-García HA, Romero-Ibarra IC, Pfeiffer H (2014) Hierarchical Na-doped cubic ZrO2 synthesis by a simple hydrothermal route and its application in biodiesel production. J Solid State Chem 218:213–220. https://doi.org/10.1016/j.jssc.2014.06.040

    Article  CAS  Google Scholar 

  12. Sankaranarayanan S, Antonyraj CA, Kannan S (2012) Transesterification of edible, non-edible and used cooking oils for biodiesel production using calcined layered double hydroxides as reusable base catalysts. Bioresour Technol 109:57–62. https://doi.org/10.1016/j.biortech.2012.01.022

    Article  CAS  PubMed  Google Scholar 

  13. Cabrera-Munguía DA, González H, Gutiérrez-Alejandre A, Rico JL, Huirache-Acuña R, Maya-Yescas R, del Río RE (2017) Heterogeneous acid conversion of a tricaprylin-palmitic acid mixture over Al-SBA-15 catalysts: reaction study for biodiesel synthesis. Catal Today 282:195–203. https://doi.org/10.1016/j.cattod.2016.10.014

    Article  CAS  Google Scholar 

  14. Cabrera-Munguia DA, González H, Tzompantzi F, Gutiérrez-Alejandre A, Rico JL, Solis-Casados DA (2018) New insights on the basicity of ZnAl–Zr hydrotalcites at low temperature and their application in transesterification of soybean oil. J Mater Res 33(21):3614–3624. https://doi.org/10.1557/jmr.2018.312

    Article  CAS  Google Scholar 

  15. Cavani F, Trifiró F, Vaccari A (1991) Hydrotalcite-type anionic clays: Preparation, properties and applications. Catal Today 11:173–301. https://doi.org/10.1016/0920-5861(91)80068-K

    Article  CAS  Google Scholar 

  16. Sánchez-Cantú M, Pérez-Díaz LM, Maubert AM, Valente JS (2010) Dependence of chemical composition of calcined hydrotalcite-like compounds for SOX reduction. Catal Today 150:332–339. https://doi.org/10.1016/j.cattod.2009.09.010

    Article  CAS  Google Scholar 

  17. Jiang W, Lu HF, Qi T, Yan SL, Liang B (2010) Preparation, application, and optimization of Zn/Al complex oxides for biodiesel production under sub-critical conditions. Biotechnol Adv 28:620–627. https://doi.org/10.1016/j.biotechadv.2010.05.011

    Article  CAS  PubMed  Google Scholar 

  18. Rodrigues E, Pereira P, Martins T, Vargas F, Scheller J, Correa J, Del Nero J, Moreira SGC, Ertel-Ingrisch W, De Campos CP, Gigler A (2012) Novel rare earth (Ce and La) hydrotalcite like material: synthesis and characterization. Mater Lett 78:195–198. https://doi.org/10.1016/j.matlet.2012.03.025

    Article  CAS  Google Scholar 

  19. Gao P, Li F, Zhao N, Xiao F, Wei W, Zhong L, Sun Y (2013) Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Appl Catal A 468:442–452. https://doi.org/10.1016/j.apcata.2013.09.026

    Article  CAS  Google Scholar 

  20. Wang Z, Fongarland P, Lu G, Essayem N (2014) Reconstructed La, Y-, Ce modified MgAl-hydrotalcite as a solid base catalyst for aldol condensation: investigation of water tolerance. J Catal 318:108–118. https://doi.org/10.1016/j.jcat.2014.07.006

    Article  CAS  Google Scholar 

  21. Genty E, Brunet J, Pequeux R, Capelle S, Siffert S, Cousin R (2016) Effect of Ce substituted hydrotalcite-derived mixed oxides on total catalytic oxidation of air pollutant. Mater Today 3(2):277–281. https://doi.org/10.1016/j.matpr.2016.01.069

    Article  Google Scholar 

  22. Zhu J, Zhu Z, Zhang H, Lu H, Qiu Y, Zhu L, Küppers S (2016) Enhanced photocatalytic activity of Ce doped Zn–Al multi-metal oxide composites derived from layered double hydroxides precursors. J Colloid Interface Sci 481:144–157. https://doi.org/10.1016/j.jcis.2016.07.051

    Article  CAS  PubMed  Google Scholar 

  23. Xu M, Pan G, Meng Y, Guo Y, Wu T, Chen H (2019) Effect of Ce3+ on the photocatalytic activity of MAlCe ternary hydrotalcites-like compounds in methylene blue photodegradation. Appl Clay Sci 170:46–56. https://doi.org/10.1016/j.clay.2019.01.011

    Article  CAS  Google Scholar 

  24. Saikia P, Miah AT, Malakar M, Bordoloi A (2015) Enhanced catalytic activity of supported gold catalysts for oxidation of noxius environmental pollutant CO. Indian J Mater Sci 2015:1–10. https://doi.org/10.1155/2015/658346

    Article  Google Scholar 

  25. Yang S-Q, He J-P, Zhang N, Sui X-W, Zhang L, Yang Z-X (2018) Effect of rare-earth element modification on the performance of Cu/ZnAl catalysts derived from hydrotalcite precursor in methanol steam reforming. J Fuel Chem Technol 46(2):179–188. https://doi.org/10.1016/S1872-5813(18)30010-0

    Article  CAS  Google Scholar 

  26. Soares Días AP, Bernardo J, Felizardo P, Neiva Correia MJ (2012) Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites. Energy 41:344–353. https://doi.org/10.1016/j.energy.2012.03.005

    Article  CAS  Google Scholar 

  27. Zhang D, Zhang X, Li Y, Wang S, Wang X, Jiang Z (2018) Incorporation of Ce3+ ions into dodecatungstophosphoric acid for the production of biodiesel from waste cooking oil. Mater Sci Eng C 92:931–992. https://doi.org/10.1016/j.msec.2018.07.047

    Article  CAS  Google Scholar 

  28. Ambat I, Srivastava V, Haapaniemi E, Sillanpää M (2019) Nano-magnetic potasium impregnated ceria as catalyst for the biodiesel production. Renew Energy 139:1428–1436. https://doi.org/10.1016/j.renene.2019.03.042

    Article  CAS  Google Scholar 

  29. Thitsartarn W, Maneerung T, Kawi S (2015) Highly active and durable Ca-doped Ce-SBA-15 catalyst for biodiesel production. Energy 89:946–956. https://doi.org/10.1016/j.energy.2015.06.039

    Article  CAS  Google Scholar 

  30. Yan B, Zhang Y, Chen G, Shan R, Ma W, Liu C (2016) The utilization of hydroxyapatite supported CaO-CeO2 catalyst for biodiesel production. Energy Convers Manage 130:156–164. https://doi.org/10.1016/j.enconman.2016.10.052

    Article  CAS  Google Scholar 

  31. Fraile JM, García N, Mayoral JA, Pires E, Roldán L (2010) The basicity of mixed oxides and the influence of alkaline metals: the case of transesterification reactions. Appl Catal A 387(1–2):67–74. https://doi.org/10.1016/j.apcata.2009.05.031

    Article  CAS  Google Scholar 

  32. Rostam JM, Boudart M (1982) Experimental criterion for the absence of artifacts in the measurement of rates of heterogeneous catalytic reactions. Ind Eng Chem Fundam 21:438–447. https://doi.org/10.1021/i100008a022

    Article  Google Scholar 

  33. Turianicova E, Kañuchova M, Zorkovská A, Holub M, Bujnakova Z, Dutková E, Baláž M, Findoráková L, Balintová M, Obut A (2016) CO2 utilization for fast preparation of nanocrystalline hydrozincite. J CO Util 16:328–335. https://doi.org/10.1016/j.jcou.2016.08.007

    Article  CAS  Google Scholar 

  34. Liu H, Le Q (2016) Synthesis and performance of cerium oxide as anode materials for lithium ion batteries by a chemical precipitation method. J Alloy Compd 669:1–7. https://doi.org/10.1016/j.jallcom.2016.01.235

    Article  CAS  Google Scholar 

  35. Seftel EM, Popovici E, Mertens M, De Witte K, Van Tendeloo G, Cool P, Vansant EF (2008) Zn-Al layered double hydroxides: synthesis, characterization and photocatalytic application. Microporous Mesoporous Mater 113:296–304. https://doi.org/10.1016/j.micromeso.2007.11.029

    Article  CAS  Google Scholar 

  36. Koilraj P, Kannan S (2010) Phosphate uptake behavior of ZnAlZr ternary layered double hydroxides through surface precipitation. J Colloid Interface Sci 341:289–297. https://doi.org/10.1016/j.jcis.2009.09.059

    Article  CAS  PubMed  Google Scholar 

  37. Velu S, Sabde DP, Shah N, Sivasanker S (1998) New hydrotalcite-like anionic clays containing Zr4+ in the layers: Synthesis and physicochemical properties. Chem Mater 10:3451–3458

    Article  CAS  Google Scholar 

  38. Della Mea GB, Matte LP, Thill AS, Lobato FO, Benvenutti EV, Arenas LT, Jürguensen A, Hergenröder R, Poletto F, Bernardi F (2017) Tuning the oxygen vacancy population of cerium oxide (CeO2x, 0 %3c x %3c 0.5) nanoparticles. Appl Surf Sci 422:1102–1112. https://doi.org/10.1016/j.apsusc.2017.06.101

    Article  CAS  Google Scholar 

  39. López T, Ramos E, Bosch P, Asomoza M, Gómez R (1997) DTA and TGA characterization of sol–gel hydrotalcites. Mater Lett 30:279–282. https://doi.org/10.1016/S0167-577X(96)00214-5

    Article  Google Scholar 

  40. Hegel P, Andreatta A, Pereda S, Bottini S, Brignole EA (2008) High pressure phase equilibria of supercritical alcohols with triglycerides, fatty esters and cosolvents. Fluid Phase Equilibr 266:31–37. https://doi.org/10.1016/j.fluid.2008.01.016

    Article  CAS  Google Scholar 

  41. Sanna R, Medas D, Poddda F, Meneghini C, Casu M, Lattanzi P, Scorciapino MA, Floris C, Cannas C, de Giudici G (2015) Binding of bis-(2-ethylhexyl) phthalate at the surface of hydrozincite nanocrystals: an example of organic molecules absorption onto nanocrystalline minerals. J Colloid Interface Sci 457:298–306. https://doi.org/10.1016/j.jcis.2015.07.016

    Article  CAS  PubMed  Google Scholar 

  42. Álvarez MG, Chimentᾶo RJ, Barrabés N, Föttinger K, Gispert-Guirado F, Kleymenov E, Tichit D, Medina F (2013) Structure evolution of layered double hydroxides by ultrasound induced reconstruction. Appl Clay Sci 83–84:1–11. https://doi.org/10.1016/j.clay.2013.08.006

    Article  CAS  Google Scholar 

  43. Coster D, Fripiat JJ (1993) Memory effects in gel-solid transformations: coordinately unsaturated Al sites in nanosized aluminas. Chem Mater 5:1204–1210. https://doi.org/10.1021/cm00033a004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors greatly appreciate the financial support by CIC-UMSNH. DACM thanks CONACyT for the Grant No. (487883) received during the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Munguia, D.A., González, H., Barreto-Gutiérrez, M. et al. Tuning the Basic Properties of ZnAl Hydrotalcites Modified with Ce Applied to Transesterification of Soybean Oil. Catal Lett 150, 1957–1969 (2020). https://doi.org/10.1007/s10562-020-03099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03099-x

Keywords

Navigation