Skip to main content

Advertisement

Log in

Spatiotemporal and teratological analyses of diatom assemblages from sediments contaminated with industrial effluents in the St. Lawrence River near Cornwall (Ontario, Canada)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Throughout the twentieth century, waterfront industries in Cornwall (Ontario, Canada) discharged significant quantities of mercury (Hg) and other industrial effluents to the St. Lawrence River (SLR), which accumulated in downstream sediments and currently persist in some nearshore areas. While a great deal of research has investigated the bioavailability and movement of this legacy Hg up the food web, considerably less is understood about its impacts on the algae that live on these contaminated sediments. This study examined diatom (Bacillariophyceae) responses to present-day and historical sedimentary contamination on the SLR at Cornwall. Surface sediments collected from contaminated zones and upstream reference sites were analyzed alongside a dated sediment core from a contaminated area to evaluate the diatom community assemblage shifts and cell deformations (teratologies) in response to elevated concentrations of sedimentary Hg and other contaminants. Results suggest that elevated sedimentary metal concentrations have a small but significant effect on diatom community assemblage structure and incidence of teratologies. However, it appears that excess nutrient loading from waterfront industry was historically a more important driver of diatom assemblage structure than other industrial effluents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source pollution. Lower panels: Locations of surface sediment collection sites. The blue square in Zone 1 indicates the sediment core collection site. Satellite imagery from the Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014 (Ontario Ministry of Natural Resources and Forestry, 2015)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Anderson, J., C. de Barros, J. Drouillard, M. Eckersley, B. Helliar, H. Lickers, J. Marsden, J. Milnes, K. Pritchard, & L. Richman, 1992. Remedial action plan for the St. Lawrence River (Cornwall) area of concern. Stage 1 report: environmental conditions and problem definitions. Retrieved from https://stlawrenceriverrap.ca/e-library/.

  • Armstrong, Z., K. E. Moir, M. J. S. Windle, J. J. Ridal & B. F. Cumming, 2021. Ecological change associated with historic industrial activity in the St Lawrence River at Cornwall, ON: a paleo-ecotoxicological assessment using subfossil chironomid assemblages. Journal of Great Lakes Research. https://doi.org/10.1016/j.jglr.2021.04.006.

    Article  Google Scholar 

  • Battarbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2002. Diatoms. In Smol, J. P., H. J. B. Birks, W. M. Last, R. S. Bradley & K. Alverson (eds), Tracking Environmental Change Using Lake Sediments, Developments in Paleoenvironmental Research Springer, Amsterdam: 155–202.

    Google Scholar 

  • Benidickson, J., 2018. The Evolution of Canadian Water Law and Policy: Securing Safe and Sustainable Abundance (SSRN Scholarly Paper No. ID 3107713). Social Science Research Network, Rochester

  • Bennett, K. D., 1996. Determination of the number of zones in a biostratigraphical sequence. New Phytologist 132: 155–170.

    CAS  PubMed  Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008a. Modelling directional spatial processes in ecological data. Ecological Modelling 215: 325–336.

    Google Scholar 

  • Blanchet, F. G., P. Legendre & D. Borcard, 2008b. Forward selection of explanatory variables. Ecology 89: 2623–2632.

    PubMed  Google Scholar 

  • Blanchet, F. G., P. Legendre, R. Maranger, D. Monti & P. Pepin, 2011. Modelling the effect of directional spatial ecological processes at different scales. Oecologia 166: 357–368.

    PubMed  Google Scholar 

  • Boik, R. J., 1987. The Fisher-Pitman permutation test: A non-robust alternative to the normal theory F test when variances are heterogeneous. British Journal of Mathematical and Statistical Psychology 40: 26–42.

    Google Scholar 

  • Borcard, D., P. Legendre & P. Drapeau, 1992. Partialling out the spatial component of ecological variation. Ecology 73: 1045–1055.

    Google Scholar 

  • Burton, G. A., Jr., 2010. Metal bioavailability and toxicity in sediments. Critical Reviews in Environmental Science and Technology 40: 852–907.

    CAS  Google Scholar 

  • Canário, J., L. Poissant, N. O’Driscoll, J. Ridal, T. Delongchamp, M. Pilote, P. Constant, J. Blais & D. Lean, 2008. Mercury partitioning in surface sediments of the Upper St. Lawrence River (Canada): evidence of the importance of the sulphur chemistry. Water Air and Soil Pollution 187: 219–231.

    Google Scholar 

  • Cantonati, M., N. Angeli, L. Virtanen, A. Z. Wojtal, J. Gabrieli, E. Falasco, I. Lavoie, S. Morin, A. Marchetto, C. Fortin & S. Smirnova, 2014. Achnanthidium minutissimum (Bacillariophyta) valve deformities as indicators of metal enrichment in diverse widely-distributed freshwater habitats. Science of the Total Environment 475: 201–215.

    CAS  PubMed  Google Scholar 

  • Cattaneo, A., Y. Couillard, S. Wunsam & C. Fortin, 2011. Littoral diatoms as indicators of recent water and sediment contamination by metals in lakes. Journal of Environmental Monitoring 13: 572–582.

    CAS  PubMed  Google Scholar 

  • Cerisier, A., J. Vedrenne, I. Lavoie & S. Morin, 2019. Assessing the severity of diatom deformities using geometric morphometry. Botany Letters 166: 32–40.

    CAS  Google Scholar 

  • Choy, E. S., P. V. Hodson, L. M. Campbell, A. R. Fowlie & J. Ridal, 2008. Spatial and temporal trends of mercury concentrations in young-of-the-year spottail shiners (Notropis hudsonius) in the St. Lawrence River at Cornwall, ON. Archives of Environmental Contamination and Toxicology 54: 473–481.

    CAS  PubMed  Google Scholar 

  • Clarke, K. R. & R. H. Green, 1988. Statistical design and analysis for a “biological effects” study. Marine Ecology Progress Series 46: 213–226.

    Google Scholar 

  • Conder, J. M., P. C. Fuchsman, M. M. Grover, V. S. Magar, & M. H. Henning, 2015. Critical review of mercury sediment quality values for the protection of benthic invertebrates. Environmental Toxicology and Chemistry 34: 6–21.

  • Cribbie, R., R. Wilcox, C. Bewell & H. Keselman, 2007. Tests for treatment group equality when data are nonnormal and heteroscedastic. Journal of Modern Applied Statistical Methods. https://doi.org/10.22237/jmasm/1177992660.

    Article  Google Scholar 

  • Dale, M. R. T. & M.-J. Fortin, 2002. Spatial autocorrelation and statistical tests in ecology. Ecoscience 9: 162–167.

    Google Scholar 

  • Day, R. W. & G. P. Quinn, 1989. Comparisons of treatments after an analysis of variance in ecology. Ecological Monographs 59: 433–463.

    Google Scholar 

  • de Barros, C. & Anderson, J., 2010. The 2005 Cornwall Sediment Strategy. Report by the Ontario Ministry of the Environment and Environment Canada

  • de Paiva Magalhães, D., M. R. da Costa Marques, D. F. Baptista & D. F. Buss, 2015. Metal bioavailability and toxicity in freshwaters. Environmental Chemistry Letters 13: 69–87.

    Google Scholar 

  • Deleebeeck, N. M. E., F. De Laender, V. A. Chepurnov, W. Vyverman, C. R. Janssen & K. A. C. De Schamphelaere, 2009. A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters. Water Research 43: 1935–1947.

    CAS  PubMed  Google Scholar 

  • Delongchamp, T. M., D. R. S. Lean, J. J. Ridal & J. M. Blais, 2009. Sediment mercury dynamics and historical trends of mercury deposition in the St. Lawrence River area of concern near Cornwall, Ontario Canada. Science of the Total Environment 407: 4095–4104.

    CAS  PubMed  Google Scholar 

  • Dixit, S. S., J. P. Smol, J. C. Kingston & D. F. Charles, 1992. Diatoms: powerful indicators of environmental change. Environmental Science and Technology 26: 22–33.

    CAS  Google Scholar 

  • Dranguet, P., C. Cosio, S. L. Faucheur, D. H. Peter, J.-L. Loizeau, V.-G. Ungureanu & I. V. Slaveykova, 2017. Biofilm composition in the Olt River (Romania) reservoirs impacted by a chlor-alkali production plant. Environmental Science: Processes & Impacts 19: 687–695.

    CAS  Google Scholar 

  • Dray, S., D. Bauman, G. Blanchet, D. Borcard, S. Clappe, G. Guenard, T. Jombart, G. Larocque, P. Legendre, N. Madi, & H. H. Wagner, 2019. Adespatial: multivariate multiscale spatial analysis. R package version 0.3-4. https://CRAN.R-project.org/package=adespatial

  • Dressler, M., G. Verweij, S. Kistenich, M. Kahlert & P. Werner, 2015. Applied use of taxonomy: lessons learned from the first German intercalibration exercise for benthic diatoms. Acta Botanica Croatica 74: 211–232.

    CAS  Google Scholar 

  • Falasco, E., F. Bona, G. Badino, L. Hoffmann & L. Ector, 2009. Diatom teratological forms and environmental alterations: a review. Hydrobiologia 623: 1–35.

    CAS  Google Scholar 

  • Fathi, A. A., 2002. Toxicological response of the green alga Scenedesmus bijuga to mercury and lead. Folia Microbiologica 47: 667–671.

    CAS  PubMed  Google Scholar 

  • Fernández, M. R., G. Martín, J. Corzo, A. de la Linde, E. García, M. López & M. Sousa, 2018. Design and testing of a new diatom-based index for heavy metal pollution. Archives of Environmental Contamination and Toxicology 74: 170–192.

    PubMed  Google Scholar 

  • Fligner, M. A. & G. E. Policello II., 1981. Robust rank procedures for the Behrens–Fisher problem. Journal of the American Statistical Association 76: 162–168.

    Google Scholar 

  • Fortin, M.-J. & M. R. T. Dale, 2005. Spatial Analysis: A Guide for Ecologists, Cambridge University Press, Cambridge:

    Google Scholar 

  • Fowlie, A. R., P. V. Hodson & M. B. C. Hickey, 2008. Spatial and seasonal patterns of mercury concentrations in fish from the St. Lawrence River at Cornwall, Ontario: implications for monitoring. Journal of Great Lakes Research 34: 72–85.

    CAS  Google Scholar 

  • Franklin, N. M., J. L. Stauber, R. P. Lim & P. Petocz, 2002. Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): The effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environmental Toxicology and Chemistry 21: 2412–2422.

    CAS  PubMed  Google Scholar 

  • Games, P. A. & J. F. Howell, 1976. Pairwise multiple comparison procedures with unequal N’s and/or variances: a Monte Carlo Study. Journal of Educational Statistics 1: 113–125.

    Google Scholar 

  • Garren, S. T., 2019. jmuOutlier: Permutation tests for nonparametric statistics. R package version 2.2. https://CRAN.R-project.org/package=jmuOutlier.

  • Gilbert, B. & J. R. Bennett, 2010. Partitioning variation in ecological communities: do the numbers add up? Journal of Applied Ecology 47: 1071–1082.

    Google Scholar 

  • Glew, J. R., 1991. Miniature gravity corer for recovering short sediment cores. Journal of Paleolimnology 5: 285–287.

    Google Scholar 

  • Gold, C., A. Feurtet-Mazel, M. Coste & A. Boudou, 2003. Impacts of Cd and Zn on the development of periphytic diatom communities in artificial streams located along a river pollution gradient. Archives of Environmental Contamination and Toxicology 44: 189–197.

    CAS  PubMed  Google Scholar 

  • Gonçalves, S., S. F. P. Almeida, E. Figueira & M. Kahlert, 2019. Valve teratologies and Chl c in the freshwater diatom Tabellaria flocculosa as biomarkers for metal contamination. Ecological Indicators 101: 476–485.

    Google Scholar 

  • Gorski, P. R., D. E. Armstrong, J. P. Hurley & D. P. Krabbenhoft, 2008. Influence of natural dissolved organic carbon on the bioavailability of mercury to a freshwater alga. Environmental Pollution 154: 116–123.

    CAS  PubMed  Google Scholar 

  • Grimm, E. C., 1987. CONISS: a FORTRAN 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13: 13–35.

    Google Scholar 

  • Guiry, M. D., G. M. Guiry, 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 10 March 2020. [WWW Document].

  • Hamilton, P. B., I. Lavoie, S. Alpay & K. Ponader, 2015. Using diatom assemblages and sulfur in sediments to uncover the effects of historical mining on Lake Arnoux (Quebec, Canada): a retrospective of economic benefits vs environmental debt. Frontiers in Ecology and Evolution. https://doi.org/10.3389/fevo.2015.00099.

    Article  Google Scholar 

  • Hannan, P. J. & C. Patouillet, 1972. Effect of mercury on algal growth rates. Biotechnology and Bioengineering 14: 93–101.

    CAS  Google Scholar 

  • Harriss, R. C., D. B. White & R. B. Macfarlane, 1970. Mercury compounds reduce photosynthesis by plankton. Science 170: 736–737.

    CAS  PubMed  Google Scholar 

  • Hayes, A. F., 1996. Permutation test is not distribution-free: testing Ho: ρ = 0. Psychological Methods 1: 184–198.

    Google Scholar 

  • Hirst, H., I. Jüttner & S. J. Ormerod, 2002. Comparing the responses of diatoms and macro- invertebrates to metals in upland streams of Wales and Cornwall. Freshwater Biology 47: 1752–1765.

    CAS  Google Scholar 

  • Hodson, P. V., K. Norris, M. Berquist, L. M. Campbell & J. J. Ridal, 2014. Mercury concentrations in amphipods and fish of the Saint Lawrence River (Canada) are unrelated to concentrations of legacy mercury in sediments. Science of the Total Environment 494–495: 218–228.

    PubMed  Google Scholar 

  • Holm, S., 1979. A Simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6: 65–70.

    Google Scholar 

  • Horowitz, A. J., 1985. A Primer on Trace Metal-Sediment Chemistry, US Government Printing Office, Washington, DC:

    Google Scholar 

  • Hudon, C., A. Armellin, P. Gagnon & A. Patoine, 2010. Variations in water temperatures and levels in the St. Lawrence River (Québec, Canada) and potential implications for three common fish species. Hydrobiologia 647: 145–161.

    Google Scholar 

  • Ingersoll, C.G., MacDonald, D.D., 1999. An assessment of sediment injury in the west branch of the Grand Calumet River, Volume I. MacDonald Environmental Sciences Limited

  • Juggins, S., 2017. rioja: Analysis of Quaternary Science Data, R package version (0.9-21). (http://cran.r-project.org/project=rioja)

  • Klaus, J. E., C. R. Hammerschmidt, D. M. Costello & G. A. Burton, 2016. Net methylmercury production in 2 contrasting stream sediments and associated accumulation and toxicity to periphyton. Environmental Toxicology and Chemistry 35: 1759–1765.

    CAS  PubMed  Google Scholar 

  • Koppen, J. D., 1975. A morphological and taxonomic consideration of Tabellaria (bacillariophyceae) from the Northcentral United States. Journal of Phycology 11: 236–244.

    Google Scholar 

  • Krammer, K. & H. Lange-Bertalot, 1991a. Bacillariophyceae. 3: Teil: Centrales, Fragilariaceae, Eunotiaceae, in: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds), Süßwasserflora von Mitteleuropa, Band 2/3. Stuttgart

  • Krammer, K., & H. Lange-Bertalot, 1991b. Bacillariophyceae. 4: Teil: Achnanthaceae, in: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds), Süßwasserflora von Mitteleuropa, Band 2/4. Stuttgart

  • Krammer, K. & H. Lange-Bertalot, 1988. Bacillariophyceae. 2: Teil: Bacillariaceae, Epithmiaceae, Surirellaceae, in: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds), Süßwasserflora von Mitteleuropa, Band 2/2. Stuttgart

  • Krammer, K. & H. Lange-Bertalot, 1986. Bacillariophyceae. 1: Teil: Naviculaceae, in: Ettl, H., Gärtner, G., Gerloff, J., Heynig, H., Mollenhauer, D. (Eds), Süßwasserflora von Mitteleuropa, Band 2/1. Stuttgart

  • Kruskal, J. B., 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.

    Google Scholar 

  • Lapointe, D. & J. J. Ridal, 2019. Mercury concentrations in sentinel fish exposed to contaminated sediments under a natural recovery strategy within the St. Lawrence River Area of Concern at Cornwall, Ontario, Canada. Archives of Environmental Contamination and Toxicology 76: 216–230.

    CAS  PubMed  Google Scholar 

  • Lavoie, I., P. B. Hamilton, S. Morin, S. Kim Tiam, M. Kahlert, S. Gonçalves, E. Falasco, C. Fortin, B. Gontero, D. Heudre, M. Kojadinovic-Sirinelli, K. Manoylov, L. K. Pandey & J. C. Taylor, 2017. Diatom teratologies as biomarkers of contamination: are all deformities ecologically meaningful? Ecological Indicators 82: 539–550.

    CAS  Google Scholar 

  • Lavoie, I., M. Lavoie & C. Fortin, 2012. A mine of information: Benthic algal communities as biomonitors of metal contamination from abandoned tailings. Science of the Total Environment 425: 231–241.

    CAS  PubMed  Google Scholar 

  • Lavoie, I., S. Morin, V. Laderriere, L.-E. Paris & C. Fortin, 2019. Assessment of diatom assemblages in close proximity to mining activities in Nunavik, Northern Quebec (Canada). Environments 6: 74.

    Google Scholar 

  • Legendre, P., N. L. Oden, R. R. Sokal, A. Vaudor & J. Kim, 1990. Approximate analysis of variance of spatially autocorrelated regional data. Journal of Classification 7: 53–75.

    Google Scholar 

  • Leguay, S., I. Lavoie, J. L. Levy & C. Fortin, 2016. Using biofilms for monitoring metal contamination in lotic ecosystems: The protective effects of hardness and pH on metal bioaccumulation. Environmental Toxicology and Chemistry 35: 1489–1501.

    CAS  PubMed  Google Scholar 

  • Luís, A. T., P. Teixeira, S. F. P. Almeida, J. X. Matos & E. F. da Silva, 2011. Environmental impact of mining activities in the Lousal area (Portugal): Chemical and diatom characterization of metal-contaminated stream sediments and surface water of Corona stream. Science of the Total Environment 409: 4312–4325.

    PubMed  Google Scholar 

  • MacDonald, D. D., C. G. Ingersoll & T. A. Berger, 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Archives of Environmental Contamination and Toxicology 39: 20–31.

    CAS  PubMed  Google Scholar 

  • Markich, S. J., A. R. King & S. P. Wilson, 2006. Non-effect of water hardness on the accumulation and toxicity of copper in a freshwater macrophyte (Ceratophyllum demersum): how useful are hardness-modified copper guidelines for protecting freshwater biota? Chemosphere 65: 1791–1800.

    CAS  PubMed  Google Scholar 

  • Medley, C. N. & W. H. Clements, 1998. Responses of diatom communities to heavy metals in streams: the influence of longitudinal variation. Ecological Applications 8: 631–644.

    Google Scholar 

  • Milani, D. & L. Grapentine, 2015. Benthic conditions in the St. Lawrence River at Cornwall Area of Concern 2012 and trends from 1997 to 2012 (No. WSTD Contribution No. 09-555). Environment Canada, Water Science and Technology Directorate, Burlington

  • Moir, K. E., M. J. S. Windle, B. F. Cumming & J. J. Ridal, 2021. Nearshore sedimentary mercury concentrations reflect legacy point sources and variable sedimentation patterns under a natural recovery strategy. Environmental Toxicology and Chemistry 40: 1788–1799.

    CAS  PubMed  Google Scholar 

  • Monteiro, M. T., R. Oliveira & C. Vale, 1995. Metal stress on the plankton communities of Sado River (Portugal). Water Research 29: 695–701.

    CAS  Google Scholar 

  • Morin, S., A. Cordonier, I. Lavoie, A. Arini, S. Blanco, T. T. Duong, E. Tornés, B. Bonet, N. Corcoll, L. Faggiano, M. Laviale, F. Pérès, E. Becares, M. Coste, A. Feurtet-Mazel, C. Fortin, H. Guasch & S. Sabater, 2012. Consistency in diatom response to metal-contaminated environments. In Guasch, H., A. Ginebreda & A. Geiszinger (eds), Emerging and Priority Pollutants in Rivers: Bringing Science into River Management Plans, The Handbook of Environmental Chemistry Springer, Berlin: 117–146.

    Google Scholar 

  • Oksanen, J., F. G. Blanchet, M. Friendly, M., Kindt, R., P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs, H. Wagner, 2019. vegan: Community Ecology Package. R package version 2.5-4. http://cran.R-project.org/package=vegan

  • Ontario Ministry of Natural Resources and Forestry, 2015. Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014, Ontario, Peterborough:

    Google Scholar 

  • Ontario Ministry of the Environment, 1979. Concentration of mercury in sediments and fish in the St. Lawrence River 1975.

  • Pandey, L. K. & E. A. Bergey, 2018. Metal toxicity and recovery response of riverine periphytic algae. Science of the Total Environment 642: 1020–1031.

    CAS  PubMed  Google Scholar 

  • Paradis, E. & K. Shliep, 2018. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526–528.

    Google Scholar 

  • Pelletier, M., 2010. Sediment Quality Monitoring in Lake Saint-François. Scientific and Technical Report. Environment Canada—Science and Technology Branch. Quebec Water Quality Monitoring and Surveillance. 66 p.

  • Persaud, D., R, Jaagumagi, A. Hayton, 1993. Guidelines for the protection and management of aquatic sediment quality in Ontario. Ontario Ministry of Environment and Energy

  • Peters, G. 2018. userfriendlyscience: Quantitative analysis made accessible. R package version 0.7.2. https://doi.org/10.17605/osf.io/txequ.

  • Peterson, H. G., F. P. Healey & R. Wagemann, 1984. Metal toxicity to algae: a highly pH dependent phenomenon. Canadian Journal of Fisheries and Aquatic Sciences 41: 974–979.

    CAS  Google Scholar 

  • Potapova, M. G. & D. F. Charles, 2002. Benthic diatoms in USA rivers: distributions along spatial and environmental gradients. Journal of Biogeography 29: 167–187.

    Google Scholar 

  • PRIMER-E Ltd., 2008. PRIMER-E v.6.1.11. Plymouth, United Kingdom.

  • R Core Team, 2018. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Rai, L. C., J. P. Gaur & H. D. Kumar, 1981. Phycology and heavy-metal pollution. Biological Reviews 56: 99–151.

    CAS  Google Scholar 

  • Rao, C. R., 1995. A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió 19: 23–63.

    Google Scholar 

  • Razavi, N. R., J. J. Ridal, W. de Wit, M. B. C. Hickey, L. M. Campbell & P. V. Hodson, 2013. Ebullition rates and mercury concentrations in St. Lawrence river sediments and a benthic invertebrate. Environmental Toxicology and Chemistry 32: 857–865.

    CAS  PubMed  Google Scholar 

  • Reavie, E. D. & J. P. Smol, 1998. Freshwater diatoms from the St Lawrence River. In Lange-Bertalot, H. & P. Kociolek (eds), Biblioteca Diatomologica: Band 41. Gebruder Borntraeger, Stuttgart.

    Google Scholar 

  • Richman, L. A. 2007a. 2004 sediment characterization: Cornwall zone 1 & 2 sediment sampling (Technical memorandum). Ontario Ministry of the Environment.

  • Richman, L. A. 2007b. 2004 sediment characterization: Cornwall oil tank storage area (Technical memorandum). Ontario Ministry of the Environment.

  • Rust, S. W. & M. A. Fligner, 1984. A modification of the Kruskal-Wallis statistic for the generalized Behrens-Fisher problem. Communications in Statistics-Theory and Methods 13: 2013–2027.

  • Ruxton, G. D. & G. Beauchamp, 2008. Time for some a priori thinking about post hoc testing. Behavioral Ecology 19: 690–693.

    Google Scholar 

  • Shepard, R. N., 1962. The analysis of proximities: Multidimensional scaling with an unknown distance function I. Psychometrika 27: 125–140.

    Google Scholar 

  • Shirkhani, H. 2018. Hydrodynamic modelling and spatially distributed 3D aDcp measurements for the St. Lawrence River. Report prepared for Environment and Climate Change Canada and the Ontario Ministry of the Environment and Climate Change, Ottawa

  • Šidák, Z., 1967. Rectangular confidence regions for the means of multivariate normal distributions. Journal of the American Statistical Association 62: 626–633.

    Google Scholar 

  • Sigmon, C. F., H. J. Kania & R. J. Beyers, 1977. Reductions in biomass and diversity sesulting from exposure to mercury in artificial streams. Journal of the Fisheries Research Board of Canada 34: 493–500.

    CAS  Google Scholar 

  • Singh, C. B. & S. P. Singh, 1992. Protective effects of Ca2+, Mg2+, Cu2+, and Ni2+ on mercury and methylmercury toxicity to a cyanobacterium. Ecotoxicology and Environmental Safety 23: 1–10.

    CAS  PubMed  Google Scholar 

  • Sivarajah, B., J. B. Korosi, J. M. Blais & J. P. Smol, 2019. Multiple environmental variables influence diatom assemblages across an arsenic gradient in 33 subarctic lakes near abandoned gold mines. Hydrobiologia 841: 133–151.

    CAS  Google Scholar 

  • Starodub, M. E., P. T. S. Wong, C. I. Mayfield & Y. K. Chau, 1987. Influence of complexation and pH on individual and combined heavy metal toxicity to a freshwater green alga. Canadian Journal of Fisheries and Aquatic Sciences 44: 1173–1180.

    CAS  Google Scholar 

  • Stratton, G. W., A. L. Huber & C. T. Corke, 1979. Effect of mercuric ion on the growth, photosynthesis, and nitrogenase activity of Anabaena inaequalis. Applied and Environmental Microbiology 38: 537–543.

    CAS  PubMed  PubMed Central  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2012. Canoco 5, Windows Release (5.00) Software for Multivariate Data Exploration, Testing, and Summarization, Biometris Plant Research International, Wageningen:

    Google Scholar 

  • Tolotti, R., S. Consani, C. Carbone, G. Vagge, M. Capello & L. Cutroneo, 2019. Benthic diatom community response to metal contamination from an abandoned Cu mine: case study of the Gromolo Torrent (Italy). Journal of Environmental Sciences 75: 233–246.

    Google Scholar 

  • Val, J., S. Muñiz, J. Gomà & E. Navarro, 2016. Influence of global change-related impacts on the mercury toxicity of freshwater algal communities. Science of The Total Environment, 5th Special Issue SCARCE: River Conservation under Multiple stressors: integration of ecological status, pollution and hydrological variability. Science of the Total Environment 540: 53–62.

    CAS  PubMed  Google Scholar 

  • Welch, B. L., 1951. On the comparison of several mean values: an alternative approach. Biometrika 38: 330–336.

    Google Scholar 

  • Wilde, K. L., J. L. Stauber, S. J. Markich, N. M. Franklin & P. L. Brown, 2006. The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.). Archives of Environmental Contamination and Toxicology 51: 174.

    CAS  PubMed  Google Scholar 

  • Windle, M. J. S., 2019. Pugnose shiner and other minnows in the Upper St. Lawrence River. Final report prepared for the Ontario Ministry of Natural Resources and Forestry (MNRF) Species at Risk Stewardship Fund (SARSF). Project SARSF_68_17_SLRIES2

  • Yang, H., R. J. Flower & R. W. Battarbee, 2009. Influence of environmental and spatial variables on the distribution of surface sediment diatoms in an upland loch, Scotland. Acta Botanica Croatica 68: 367–380.

    Google Scholar 

  • Yang, J.-R. & H. C. Duthie, 1993. Morphology and ultrastructure of teratological forms of the diatoms Stephanodiscus niagarae and S. parvus (Bacillariophyceae) from Hamilton Harbour (Lake Ontario, Canada). Hydrobiologia 269–270: 57–66.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Matthew Windle and Crystal Martell for detailed planning and execution of fieldwork. The authors would additionally like to thank Dr. Alexandre Poulain and Dr. Emmanual Yurnvihoze for the analysis of mercury samples and Dr. Jules Blais and Linda Kimpe for radiometric dating of the sediment core.

Funding

This research was supported by a Natural Sciences and Engineering Research Council (NSERC) Canada Graduate Scholarship to Katherine Moir, an NSERC CREATE grant to Brian Cumming, and funding support from the Governments of Canada and Ontario under the Canada-Ontario Agreement for the Great Lakes (ECCC Project #GCXE17P162, MOECC Project #COA-4015G-16/17).

Author information

Authors and Affiliations

Authors

Contributions

KM performed diatom analyses, statistical analyses, spatial analyses, and wrote the manuscript. JR provided sediment samples and editorial assistance. BC supported laboratory work and provided editorial assistance. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Katherine E. Moir.

Ethics declarations

Conflict of interest

Jeffrey Ridal is an unpaid member of the Cornwall Sediment Strategy steering committee. The other authors declare that they have no personal or financial conflicts of interests associated with any results or interpretations in this manuscript.

Additional information

Handling Editor: Jasmine Saros

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10750_2021_4792_MOESM1_ESM.eps

Connection diagram for asymmetric eigenvector mapping, with edges linking sites in reference areas (top), Zone 1 (middle left), Zone 3 (middle right), and Zone 2 (bottom). Inset panels (not to scale) show linkage details in areas too small to represent on the main figure. Red circles encompassing two or more sites indicate that all possible connections exist between these sites. Gray arrows and edges represent connections to an upstream site 0. Refer to Fig. 1 for zone locations. Supplementary file1 (EPS 302 kb)

10750_2021_4792_MOESM2_ESM.png

Nonmetric multidimensional scaling (NMDS) of diatom assemblage data across surface sediment sites. Sites are symbolized by depth (color; darker = deeper sites) and by location (shape; reference = circles, zone 1 = squares, zone 2 = inverted triangles, zone 3 = upright triangles), while species are indicated with gray vectors. Species included are those that are present in ≥ 2% relative abundance in five or more sites. NMDS stress = 0.21. Diatom species codes are as follows: AMINUS = Achnanthes minuscula, AMINUT = Achnanthidium minutissimum, APED = Amphora pediculus, CNEO = Cocconeis neothumensis, CPLA = Cocconeis placentula complex, EMIC = Encyonopsis microcephala, EMIN = Encyonema minutum, FCAP = Fragilaria capucina, FMES = Fragilaria mesolepta, KCLE = Karayevia clevei, NCRY = Navicula cryptotenella, NSLR = Navicula sp. 2 SLR, NDIS = Nitzschia dissipata, NLAC = Nitzschia lacuum, NPAL = Nitzschia palea, PLAN = Planothidium lanceolatum, PBRE = Pseudostaurosira brevistriata, SSUB = Sellaphora submuralis, SCON = Staurosira construens complex, SPIN = Staurosira pinnata complex, SMAR = Staurosirella martyi. Supplementary file2 (PNG 310 kb)

10750_2021_4792_MOESM3_ESM.tif

Changes in the Cornwall Canal and waterfront industry over time. Top panel: 1958; middle panel: 1960; bottom panel: 2014. The red circle indicates the location of the Z1S2 core. Imagery in the top and middle panels from the Queen’s University Air Photo Library. A15993, photos 62-80, 1958 (top); A17087, photos 19-32, Ottawa, Ontario: Department of Energy, Mines, and Resources, 1960. Bottom panel imagery from the Digital Raster Acquisition Project Eastern Ontario (DRAPE) 2014. Peterborough, Ontario: Ontario Ministry of Natural Resources and Forestry. Supplementary file3 (TIF 292188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moir, K.E., Ridal, J.J. & Cumming, B.F. Spatiotemporal and teratological analyses of diatom assemblages from sediments contaminated with industrial effluents in the St. Lawrence River near Cornwall (Ontario, Canada). Hydrobiologia 849, 1417–1436 (2022). https://doi.org/10.1007/s10750-021-04792-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04792-7

Keywords

Navigation