Skip to main content

Advertisement

Log in

Rose cyanidin 3,5-di-O-glucoside-assisted gold nanoparticles, their antiradical and photocatalytic activities

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cyanidin 3,5-di-O-glucoside anthocyanin was extracted from red rose flower petals and used as reducing and capping agent for the green synthesis of anisotropic gold nanoparticles (Au NPs). Transmission electron microscope (TEM) images indicated that the Au NPs have large number of small spheres of gold. Surface plasmon resonance band position strongly depended on the [HAuCl4] and [anthocyanin]. Cationic surfactant distinctly changed the shape, size, number of NPs, and size distribution of Au nanodisks at room temperature. Conventional techniques were used to the estimate the antiradical and antimicrobial activities of the cyanidin 3,5-di-O-glucoside anthocyanin and gold NPs. The 2,2-diphenyl-l-picrylhydrazyl nitrogen radical (DPPH·), two bacteria strains (Staphylococcus aureus and Escherichia coli), and two yeast strains (Candida albicans ATCC 10231 and Candida parapsilosis ATCC 22019) were used to determine the antioxidant and antimicrobial properties of CTAB-capped gold NPs. Eosin yellow photocatalytic degradation followed apparent first-order kinetics with activation energies of 54.4 kJ/mol and 39.5 kJ/mol, respectively, for oxidative and sunlight catalyzed paths. The photocatalytic rates drastically inhibited with scavengers, demonstrating that the reactive radical oxygen species (HO· and O2·), holes (h+) and electrons (e) played major role in the degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Scheme 3
Scheme 4
Scheme 5
Fig. 4
Fig. 5
Scheme 6
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 7
Scheme 8
Scheme 9

Similar content being viewed by others

References

  1. M.-C. Daniel, D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

    CAS  Google Scholar 

  2. A. Henglein, D. Meisel, Radiolytic control of the size of colloidal gold nanoparticles. Langmuir 14, 7392–7394 (1998)

    CAS  Google Scholar 

  3. K. Esumi, K. Matsuhisa, K. Torigoe, Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template. Langmuir 11, 3285–3287 (1995)

    CAS  Google Scholar 

  4. D.V. Goia, E. Matijevic, Tailoring the particle size of monodispersed colloidal gold. Coll. Surf. A 146, 139–152 (1999)

    CAS  Google Scholar 

  5. K. Jadhav, H.R. Rajeshwari, S. Deshpande, S. Jagwani, D. Dhamecha, S. Jalalpure, K. Subburayan, D. Baheti, Phytosynthesis of gold nanoparticles: characterization, biocompatibility, and evaluation of its osteoinductive potential for application in implant dentistry. Mater. Sci. Eng. C 93, 664–670 (2018)

    CAS  Google Scholar 

  6. M.S. Bakshi, F. Possmayer, N.O. Petersen, Role of different phospholipids in the synthesis of pearl-necklace-type gold-silver bimetallic nanoparticles as bioconjugate materials. J. Phys. Chem. C 111, 14113–14124 (2007)

    CAS  Google Scholar 

  7. M.S. Bakshi, H. Kaur, T.S. Banipal, N. Singh, G. Kaur, Biomineralization of gold nanoparticles by lysozyme and cytochrome c and their applications in protein film formation. Langmuir 26, 13535–13544 (2010)

    CAS  Google Scholar 

  8. M.S. Bakshi, Colloidal micelles of block copolymers as nanoreactors, templates for gold nanoparticles, and vehicles for biomedical applications. Adv. Coll. Interface Sci. 213, 1–20 (2014)

    CAS  Google Scholar 

  9. B. Nikoobakht, M.A. El-Sayed, Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003)

    CAS  Google Scholar 

  10. S. Khademi, S. Sarkar, A. Shakeri-Zadeh, N. Attaran, S. Kharrazi, M. RezaAy, H. Ghadiri, Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells. Mater. Sci. Eng. C 89, 182–193 (2018)

    CAS  Google Scholar 

  11. Z. Shervani, Y. Yamamoto, Carbohydrate-directed synthesis of silver and gold nanoparticles: effect of the structure of carbohydrates and reducing agents on the size and morphology of the composites. Carbohydr. Res. 346, 651–694 (2011)

    CAS  Google Scholar 

  12. P.C. Pandey, G. Pandey, A. Walcarius, 3-Aminopropyltrimethoxysilane mediated solvent induced synthesis of gold nanoparticles for biomedical applications. Mater. Sci. Eng. C 79, 45–54 (2017)

    CAS  Google Scholar 

  13. Z. Khan, T. Singh, J.I. Hussain, A.A. Hashmi, Au(III)-CTAB reduction by ascorbic acid: preparation and characterization of gold nanoparticles. Coll. Surf. B 104, 11–17 (2013)

    CAS  Google Scholar 

  14. M.N. Khan, T.A. Khan, S.A. Al-Thabaiti, Z. Khan, Spectrophotometric evidence to the formation of AuCl4-CTA complex and synthesis of gold nano-flowers with tailored surface textures. Spectrochim. Acta A 149, 889 (2015)

    CAS  Google Scholar 

  15. L. Longenberger, G. Mills, Formation of metal particles in aqueous solutions by reactions of metal complexes with polymers. J. Phys. Chem. 99, 475–478 (1995)

    CAS  Google Scholar 

  16. X. Liu, M. Atwater, J. Wang, Q. Huo, Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Coll. Surf. B 58, 3–7 (2007)

    CAS  Google Scholar 

  17. P.-L. Kuo, C.-C. Chen, M.-W. Jao, Effects of polymer micelles of alkylated polyethylenimines on generation of gold nanoparticles. J. Phys. Chem. B 109, 9445–9450 (2005)

    CAS  Google Scholar 

  18. M.H. Mashhadizadeh, R.P. Talemi, Synergistic effect of magnetite and gold nanoparticles onto the response of a label-free impedimetric hepatitis B virus DNA biosensor. Mater. Sci. Eng. C 59, 773–781 (2016)

    CAS  Google Scholar 

  19. B. Kumar, K. Smita, L. Cumbal, J. Camacho, E. Hernández-Gallegos, M. G. Chavez-Lopez, M. Grijalva, K. Andrade, One pot phytosynthesis of gold nanoparticles using Genipa americana fruit extract and its biological applications. Mater. Sci. Eng. C 62, 725–731 (2016)

    CAS  Google Scholar 

  20. S.P. Dubey, M. Lahtinen, M. Sillanpaa, Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem. 45, 1065–1071 (2010)

    CAS  Google Scholar 

  21. R. Geetha, T. Ashokkumar, S. Tamilselvan, K. Govindaraju, M. Sadiq, G. Singaravelu, Green synthesis of gold nanoparticles and their anticancer activity. Cancer Nano 4, 91–98 (2013)

    Google Scholar 

  22. C.H. Eugster, E. Marki-Fischer, The chemistry of rose pigments. Angew. Chem. Int. Ed. Engl. 30, 654–672 (1991)

    Google Scholar 

  23. M.H. Eikani, F. Golmohammad, S. Rowshanzamir, M. Mirza, Recovery of water-soluble constituents of rose oil using simultaneous distillation-extraction. Flavour Fragr. J. 20, 555–558 (2005)

    CAS  Google Scholar 

  24. R. Nowak, M. Olech, Ł. Pecio, W. Oleszek, R. Los, A. Malm, J. Rzymowska, Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. J. Sci. Food Agric. 94, 560–567 (2014)

    CAS  Google Scholar 

  25. M.S. Bakshi, Nanoshape control tendency of phospholipids and proteins: Protein-nanoparticle composites, seeding, self-aggregation, and their applications in bionanotechnology and nanotoxicology. J. Phys. Chem. C 115, 13947–13960 (2011)

    CAS  Google Scholar 

  26. S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Coll. Interface Sci. 275, 496–502 (2004)

    CAS  Google Scholar 

  27. N.R. Jana, L. Gearheart, C.J. Murphy, Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1386–1389 (2001)

    Google Scholar 

  28. V.L. Singleton, J.A. Jr Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    CAS  Google Scholar 

  29. J.B. Harbornem, Spectral methods of characterizing anthocyanins. Biochem. J. 70, 22–28 (1958)

    Google Scholar 

  30. T. Fulehi, F.J. Francis, Quantitative methods for anthocyanins. 1. Extraction and determination of total Anthocyanin in cranberries. J. Food Sci. 33, 72–77 (1968)

    Google Scholar 

  31. Z. Zaheer, Eco-friendly walnut shell powder based facile fabrication of Ag-nanodisks, and their interaction with bovine serum albumin. J. Photochem. Photobiol. B 193, 8–17 (2019)

    CAS  Google Scholar 

  32. J. Xiao, L. Qi, Surfactant-assisted, shape-controlled synthesis of gold nanocrystals. Nanoscale 3, 1383–1396 (2011)

    CAS  Google Scholar 

  33. L. Li, Z. Wang, T. Huang, J. Xie, L. Qi, Porous gold nano belts templated by metal-surfactant complex nanobelts. Langmuir 26, 12330–12335 (2010)

    CAS  Google Scholar 

  34. F. Bodker, S. Morup, S. Linderoth, Surface effects in metallic iron nanoparticles. Phys. Rev. Lett. 72, 282–285 (1994)

    CAS  Google Scholar 

  35. M. Liu, P. Guyot-Sionnest, Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 109, 22192–22200 (2005)

    CAS  Google Scholar 

  36. T.K. Sau, C.J. Murphy, Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126, 8648–8649 (2004)

    CAS  Google Scholar 

  37. J.H. Lee, H.-J. Lee, M.-G. Choung, Anthocyanin compositions and biological activities from the red petals of Korean edible rose (Rosa hybrida cv Noblered). Food Chem. 129, 272–278 (2011)

    CAS  Google Scholar 

  38. M. Noruzi, D. Zare, K. Khoshnevisan, D. Davoodi, Rapid green synthesis of gold nanoparticles using rosa hybrida petal extract at room temperature. Spectrochemica. Acta A 79, 1461–1465 (2011)

    CAS  Google Scholar 

  39. H.E. Khoo, A. Azlan, S.T. Tang, S.M. Lim, Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 61, 1361779 (2017)

    Google Scholar 

  40. A. Castaneda-Ovando, M.L. Pacheco-Hernandez, M.E. Paez-Hernandez, J.A. Rodriguez, C.A. Galan-Vidal, Chemical studies of anthocyanins: a review. Food Chem. 113, 859–871 (2009)

    CAS  Google Scholar 

  41. R.L. Scalzo, A. Genna, F. Branca, M. Chedin, H. Chassaigne, Anthocyanin composition of cauliflower (Brassica oleracea L. var. botrytis) and cabbage (B. oleracea L. var. capitata) and its stability in relation to thermal treatments. Food Chem. 107, 136–144 (2008)

    Google Scholar 

  42. Y. Cai, M. Sun, H. Wu, R. Huang, H. Corke, Characterization and quantification of betacyanin pigments from diverse amaranthus species. J. Agric. Food Chem. 46, 2063–2070 (1998)

    CAS  Google Scholar 

  43. N. Ahmadiani, R.J. Robbins, T.M. Collins, M.M. Giusti, Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage. Food Chem. 197, 900–906 (2016)

    CAS  Google Scholar 

  44. A. Mahal, P. Khullar, H. Kumar, G. Kaur, N. Singh, M. Jelokhani-Niaraki, M.S. Bakshi, Green Chemistry of zein protein toward the synthesis of bioconjugated nanoparticles: understanding unfolding, fusogenic behavior, and hemolysis. ACS Sustain. Chem. Eng. 1, 627–639 (2013)

    CAS  Google Scholar 

  45. B. Rodriguez-Gonzalez, P. Mulvaney, L.M. Liz-Marzan, An electrochemical model for gold colloid formation via citrate reduction. Z. Phys. Chem. 221, 415–426 (2007)

    CAS  Google Scholar 

  46. S. Mondal, M.E. De Anda Reyes, U. Pal, Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light. RSC Adv. 7, 8633–8645 (2017)

    CAS  Google Scholar 

  47. H. Zhu, X. Chen, Z. Zheng, X. Ke, E. Jaatinen, J. Zhao, C. Guo, T. Xie, D. Wang, Mechanism of supported gold nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Chem. Commun. 48, 7524–7526 (2009)

    Google Scholar 

  48. B. Tian, Q. Lei, B. Tian, W. Zhang, Y. Cui, Y. Tian, UV-driven overall water splitting using unsupported gold nanoparticles as photocatalysts. Chem. Commun. 54, 1845–1848 (2018)

    CAS  Google Scholar 

  49. R. Nowak, M. Olech, L. Pecio, W. Oleszek, R. Los, A. Malmc, J. Rzymowska, Cytotoxic, antioxidant, antimicrobial properties and chemical composition of rose petals. J. Sci. Food Agric. 94, 560–567 (2014)

    CAS  Google Scholar 

  50. J.A. He, M.M. Giusti, Anthocyanins: Natural colorants with health promoting properties. Annu. Rev. Food Sci. Technolo. 1, 163–186 (2010)

    CAS  Google Scholar 

  51. P. Natarajan, P. Sukthankar, J. Changstrom, C.S. Holland, S. Barry, W.B. Hunter, C.M. Sorensen, J.M. Tomich, Synthesis and characterization of multifunctional branched amphiphilic peptide bilayer conjugated gold nanoparticles. ACS Omega 3, 11071–11083 (2018)

    CAS  Google Scholar 

  52. I. Sondi, B. Salopek-Sondi, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Coll. Interface Sci. 275, 177–182 (2004)

    CAS  Google Scholar 

  53. Rahisuddin, S.A. Al-Thabaiti, Z. Khan, N. Manzoor, Biosynthesis of silver nanoparticles and its antibacterial and antifungal activities towards gram-positive, gram-negative bacterial strains and different species of candida fungus. Bioprocess Biosyst. Eng. 38, 1773–1781 (2015)

    CAS  Google Scholar 

  54. A.I. Lopez-Lorente, S. Cardenas, Z.I. Gonzalez-Sanchez, Effect of synthesis, purification and growth determination methods on the antibacterial and antifungal activity of gold nanoparticles. Mater. Sci. Eng. C 103, 109805 (2019)

    CAS  Google Scholar 

  55. T. Pal, S. De, N.R. Jana, N. Pradhan, R. Mandal, A. Pal, A.E. Beezer, J.C. Mitchel, Organized media as redox catalysts. Langmuir 14, 4724–4730 (1998)

    CAS  Google Scholar 

  56. N. Pradhan, A. Pal, T. Pal, Silver nanoparticle catalyzed reduction of aromatic nitro compounds. Coll. Surf. A 196, 247–257 (2002)

    CAS  Google Scholar 

  57. G. Li, K.H. Wong, X. Zhang, C. Hu, J.C. Yu, R.C.Y. Chan, P.K. Wong, Degradation of acid orange 7 using magnetic AgBr under visible light: The roles of oxidizing species. Chemosphere 76, 1185–1191 (2009)

    CAS  Google Scholar 

  58. K. Yamada, K. Miyajima, F. Mafune, Thermionic emission of electrons from gold nanoparticles by nanosecond pulse-laser excitation of interband. J. Phys. Chem. C 111, 11246–11251 (2007)

    CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. (D-178-274-1439). The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoya Zaheer.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aazam, E.S., Zaheer, Z. Rose cyanidin 3,5-di-O-glucoside-assisted gold nanoparticles, their antiradical and photocatalytic activities. J Mater Sci: Mater Electron 31, 8780–8795 (2020). https://doi.org/10.1007/s10854-020-03413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03413-8

Navigation