Skip to main content
Log in

Hydrothermal Single Crystal Growth and Structural Investigation of the Nepheline and Kalsilite Stuffed Tridymite Species

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

A series of high-quality single crystals of the formula NaxK1−xAlSiO4 were synthesized using a high temperature hydrothermal method. This enabled the detailed single crystal study of four examples of this class of compounds, namely KAlSiO4, Na0.10K0.90AlSiO4 Na3KAl4Si4O16 and NaAlSiO4. The potassium-containing species all had fully ordered AlO4 and SiO4 tetrahedral sites that led to formation of polar acentric structures. In contrast NaAlSiO4 displayed the unusual feature of an exceptionally large and complex unit cell along with complete disordering of the Al and Si sites. This led to the formation of a centrosymmetric structure, that is also a new polymorph of the NaAlSiO4 composition. The polymorphism of hydrothermal KAlSiO4 was also examined in light of the crystal’s synthetic and thermal histories. The study also revealed a structural sensitivity toward the degree of Na/K substitution in the lattice. The strong tendency to form polar acentric structures makes understanding these structures of great interest. These detailed structures resolved a considerable degree of previous structural ambiguity within this nominally simple class of compounds.

Graphical Abstract

Structural subtleties are examined in the nepheline–kalsilite series of NaxK1−xAlSiO4, revealing changes in the resulting structure according to synthetic method, thermal history, and alkali metal substitution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

CCDC 2106945–2106948 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre and FIZ Karlsruhe via www.ccdc.cam.ac.uk/data_request/cif. The authors declare that all other data supporting the findings of this study are available within the article and its Supplementary Information files.

References

  1. Palmer DC (1994) Stuffed derivatives of the silica polymorphs. Rev Mineral Geochem 29(1):83–122

    CAS  Google Scholar 

  2. Takada A, Glaser KJ, Bell RG, Catlow CRA (2018) Molecular dynamics study of tridymite. IUCrJ 5(3):325–334. https://doi.org/10.1107/S2052252518004803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Buerger MJ (1954) The stuffed derivatives of the silica structures. Am Mineral 39:600–614

    CAS  Google Scholar 

  4. Morris RV, Vaniman DT, Blake DF, Gellert R, Chipera SJ, Rampe EB, Ming DW, Morrison SM, Downs RT, Treiman AH, Yen AS, Grotzinger JP, Achilles CN, Bristow TF, Crisp JA, Marais DJD, Farmer JD, Fendrich KV, Frydenvang J, Graff TG, Morookian J-M, Stolper EM, Schwenzer SP (2016) Silicic volcanism on mars evidenced by tridymite in high-SiO2 sedimentary rock at gale crater. Proc Natl Acad Sci USA 113(26):7071–7076. https://doi.org/10.1073/pnas.1607098113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hippler B, Böhm H (1989) Structure investigation on sodium-nephelines. Z Kristallogr Cryst Mater 187:39–53

    Article  CAS  Google Scholar 

  6. Brown WL, Cesbron F (1972) Trinepheline; a new synthetic modification in the nepheline group. Z Kristallogr Cryst Mater. https://doi.org/10.1524/zkri.1972.136.16.468

    Article  Google Scholar 

  7. Klaska KH (1974) Strukturuntersuchugen an Tribymitabkommlingen. PhD Thesis, Universitat Hamburg, Germany

  8. von Jarchow O, Reese HH, Saalfeld H (1966) Hydrothermalsynthesen von Zeolithen Der Sodalith-Und Cancrinitgruppe. Neues Jahrb Mineral Mh 10:289–297

    Google Scholar 

  9. Selker P, Bartsh HH, Klaska R (1985) Struktur Und Hydrothermalsynthesen von NaAlSiO4-Modifikationen. Z Kristallogr 170:175–176

    Google Scholar 

  10. Kahlenberg V, Bohm H (1998) Crystal structure of hexagonal trinepheline—a new synthetic NaAlSiO4 modification. Am Mineral 83:631–637

    Article  CAS  Google Scholar 

  11. Vulic P, Kahlenberg V, Konzett J (2008) On the existence of a Na-deficient monoclinic trinepheline with composition Na7.85Al7.85Si8.15O32. Am Mineral 93(7):1072–1079. https://doi.org/10.2138/am.2008.2702

    Article  CAS  Google Scholar 

  12. Balassone G, Kahlenberg V, Altomare A, Mormone A, Rizzi R, Saviano M, Mondillo N (2014) Nephelines from the Somma-Vesuvius Volcanic Complex (Southern Italy): crystal-chemical, structural and genetic investigations. Mineral Petrol 108(1):71–90. https://doi.org/10.1007/s00710-013-0290-6

    Article  CAS  Google Scholar 

  13. Gregorkiewitz M (1984) Crystal structure and Al/Si-ordering of a synthetic nepheline. Bull minéral 107(3–4):499–507

    Article  CAS  Google Scholar 

  14. Merlino S, Franco E, Mattia C, Pasero M, De Gennaro M (1985) The crystal structure of panunzite (natural tetrakalsilite). Neues Jahrb Mineral 7:322–328

    Google Scholar 

  15. Cellai D, Bonazzi P, Carpenter MA (1997) Natural kalsilite KAlSiO4 with P31c symmetry: crystal structure and twinning. Am Mineral 82:276–279

    Article  CAS  Google Scholar 

  16. Andou Y, Kawahara A (1984) The refinement of the structure of synthetic kalsilite. Mineral J 12(4):153–161. https://doi.org/10.2465/minerj.12.153

    Article  CAS  Google Scholar 

  17. Becerro AI, Escudero A, Mantovani M (2009) The hydrothermal conversion of kaolinite to kalsilite: influence of time, temperature, and pH. Am Mineral 94(11–12):1672–1678. https://doi.org/10.2138/am.2009.3284

    Article  CAS  Google Scholar 

  18. Dollase WA, Freeborn WP (1977) The structure of KAlSiO4 with P63mc symmetry. Am Mineral 62:420–421

    Google Scholar 

  19. Gregorkiewitz M, Li Y, White TJ, Withers RL, Sobrados I (2008) The structure of “Orthorhombic” KAlSiO4–O1: evidence for Al–Si order from MAS NMR data combined with Rietveld refinement and electron microscopy. Can Mineral 46(6):1511–1526. https://doi.org/10.3749/canmin.46.6.1511

    Article  CAS  Google Scholar 

  20. Khomyakov AP, Nechelyustov GN, Sokolova E, Bonaccorsi E, Merlino S, Pasero M (2002) Megakalsilite, a new polymorph of KAlSiO4 from the Khibina alkaline massif, Kola Peninsula, Russia: mineral description and crystal structure. Can Mineral 40(3):961–970. https://doi.org/10.2113/gscanmin.40.3.961

    Article  CAS  Google Scholar 

  21. Byrappa K, Yoshimura M (2001) Handbook of hydrothermal technology: a technology for crystal growth and materials processing. Noyes Publications, Norwich

    Google Scholar 

  22. Halasyamani PS, Poeppelmeier KR (1998) Noncentrosymmetric oxides. Chem Mater 10(10):2753–2769. https://doi.org/10.1021/cm980140w

    Article  CAS  Google Scholar 

  23. Tran TT, Yu H, Rondinelli JM, Poeppelmeier KR, Halasyamani PS (2016) Deep ultraviolet nonlinear optical materials. Chem Mater 28(15):5238–5258. https://doi.org/10.1021/acs.chemmater.6b02366

    Article  CAS  Google Scholar 

  24. Winkler HGF (1947) On the synthesis of nepheline. Am Mineral 32:131–136

    CAS  Google Scholar 

  25. Iwasaki F, Iwasaki H (2002) Historical review of quartz crystal growth. J Cryst Growth 237:820–827. https://doi.org/10.1016/S0022-0248(01)02043-7

    Article  Google Scholar 

  26. Thompson RJ (2007) Crystal clear: the struggle for reliable communications technology in World War II. IEEE Press, Wiley-Interscience, Hoboken

    Google Scholar 

  27. Becker P (1998) Borate materials in nonlinear optics. Adv Mater 10(13):979–992. https://doi.org/10.1002/(SICI)1521-4095(199809)10:13%3c979::AID-ADMA979%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  28. Terry RJ, Vinton D, McMillen CD, Kolis JW (2018) A cesium rare-earth silicate Cs3RESi6O15 (RE=Dy–Lu, Y, In): the parent of an unusual structural class featuring a remarkable 57 Å unit cell axis. Angew Chem Int Ed 57(8):2077–2080. https://doi.org/10.1002/anie.201708798

    Article  CAS  Google Scholar 

  29. McMillen DC, Kolis WJ (2016) Hydrothermal synthesis as a route to mineralogically-inspired structures. Dalton Trans 45(7):2772–2784. https://doi.org/10.1039/C5DT03424H

    Article  CAS  PubMed  Google Scholar 

  30. Fulle K, Sanjeewa LD, McMillen CD, Kolis JW (2017) Crystal chemistry and the role of ionic radius in rare earth tetrasilicates: Ba2RE2Si4O12F2 (RE = Er3+–Lu3+) and Ba2RE2Si4O13 (RE = La3+–Ho3+). Acta Crystallogr B 73(5):907–915. https://doi.org/10.1107/S2052520617009544

    Article  CAS  Google Scholar 

  31. Mann JM, McMillen CD, Kolis JW (2015) Crystal chemistry of alkali thorium silicates under hydrothermal conditions. Cryst Growth Des 15(6):2643–2651. https://doi.org/10.1021/cg5017164

    Article  CAS  Google Scholar 

  32. Lee C-S, Lin C-H, Wang S-L, Lii K-H (2010) [Na7UIVO2(UVO)2(UV/VIO2)2Si4O16]: a mixed-valence uranium silicate. Angew Chem Int Ed 49(25):4254–4256. https://doi.org/10.1002/anie.201001095

    Article  CAS  Google Scholar 

  33. Terry RJ, McMillen CD, Chen X, Wen Y, Zhu L, Chumanov G, Kolis JW (2018) Hydrothermal single crystal growth and second harmonic generation of Li2SiO3, Li2GeO3 and Li2Si2O5. J Cryst Growth 493:58–64. https://doi.org/10.1016/j.jcrysgro.2018.02.028

    Article  CAS  Google Scholar 

  34. Bruker (2015) APEX3. Bruker AXS, Madison

    Google Scholar 

  35. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr C 71(1):3–8. https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  36. Momma K, Izumi F (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J Appl Crystallogr 44(6):1272–1276. https://doi.org/10.1107/S0021889811038970

    Article  CAS  Google Scholar 

  37. Tuttle OF, Smith JV (1958) The nepheline–kalsilite system; II, phase relations. Am J Sci 256(8):571–589. https://doi.org/10.2475/ajs.256.8.571

    Article  CAS  Google Scholar 

  38. Bannister FA, Hey MH (1931) A chemical, optical, and X-ray study of nepheline and kaliophilite. Mineral Mag 22(134):569–608. https://doi.org/10.1180/minmag.1931.022.134.03

    Article  CAS  Google Scholar 

  39. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32(5):751–767. https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  40. Kawahara A, Andou Y, Marumo F, Okuno M (1987) The crystal structure of high temperature form of kalsilite (KAlSiO4) at 950°C. Mineral J 13(5):260–270. https://doi.org/10.2465/minerj.13.260

    Article  CAS  Google Scholar 

  41. Cellai D, Gesing T, Wruck B, Carpenter AM (1999) X-ray study of the trigonal → hexagonal phase transition in metamorphic kalsilite. Am Mineral. https://doi.org/10.2138/am-1999-11-1223

    Article  Google Scholar 

  42. Simmons WB, Peacor DR (1972) Refinement of the crystal structure of a volcanic nepheline. Am Mineral 57(11–12):1711–1719

    CAS  Google Scholar 

  43. Foreman N, Peacor DR (1970) Refinement of the nepheline structure at several temperatures. Z Kristallogr Cryst Mater 132(1–6):45–70. https://doi.org/10.1524/zkri.1970.132.16.45

    Article  CAS  Google Scholar 

  44. Buerger MJ, Klein GE, Donnay G (1954) Determination of the crystal structure of nepheline. Am Mineral 39:805–818

    Google Scholar 

  45. Antao SM, Hassan I (2010) Nepheline: structure of three samples from the Bancroft area, Ontario, obtained using synchrotron high-resolution powder X-ray diffraction. Can Mineral 48(1):69–80. https://doi.org/10.3749/canmin.48.1.69

    Article  CAS  Google Scholar 

  46. Hassan I, Antao SM, Hersi AAM (2003) Single-crystal XRD, TEM, and thermal studies of the satellite reflections in nepheline. Can Mineral 41(3):759–783. https://doi.org/10.2113/gscanmin.41.3.759

    Article  CAS  Google Scholar 

  47. Henderson CMB, Roux J (1977) Inversions in sub-potassic nephelines. Contrib Mineral Petrol 61(3):279–298. https://doi.org/10.1007/BF00376702

    Article  CAS  Google Scholar 

  48. Henderson CMB, Thompson AB (1980) The low-temperature inversion in sub-potassic nephelines. Am Mineral 65:970–980

    Google Scholar 

  49. Schneider H, Flörke OW, Stoeck R (1994) The NaAlSiO4 nepheline–carnegieite solid-state transformation. Z Kristallogr Cryst Mater 209(2):113–117

    Article  CAS  Google Scholar 

  50. Liebau F (1985) Structural chemistry of silicates: structure, bonding, and classification. Springer, Berlin

    Book  Google Scholar 

  51. Gatta GD, Angel RJ, Carpenter MA (2010) Low-temperature behavior of natural kalsilite with P31c symmetry: an in situ single-crystal X-ray diffraction study. Am Mineral 95(7):1027–1034. https://doi.org/10.2138/am.2010.3478

    Article  CAS  Google Scholar 

  52. Gatehouse BM (1989) Structure of CsAlTiO4—a compound with TiO4 tetrahedra. Acta Crystallogr C 45(11):1674–1677. https://doi.org/10.1107/S010827018900418X

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to the National Science Foundation NSF-DMR1808371 for financial support of the synthesis and crystal growth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. Kolis.

Ethics declarations

Conflict of interest

CDM is an Associate Editor with Journal of Chemical Crystallography, and was excluded from the peer review process.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terry, R.J., McMillen, C.D. & Kolis, J.W. Hydrothermal Single Crystal Growth and Structural Investigation of the Nepheline and Kalsilite Stuffed Tridymite Species. J Chem Crystallogr 53, 25–37 (2023). https://doi.org/10.1007/s10870-022-00940-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00940-6

Keywords

Navigation