Skip to main content
Log in

Thermal behavior of some cyclic anhydrides: an important characterization for synthesis in the polymer field

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Polyfunctional cyclic organic anhydrides are widely used in different fields, especially in monomer synthesis and therefore polymers applications. However, there is a lack in the literature about their thermal and spectroscopic characterization, which can lead researchers to a misunderstanding result, interpretation, and even spoiling yield values when there is a mixture between anhydride and its respective acid. Thus, in the present paper, it was evaluated a complete and depth thermal and spectroscopic characterization of some anhydrides (maleic, succinic, phthalic, naphthalic, pyromellitic, and benzophenone). In addition, it was demonstrated how to identify the acid presence, and how to recovery the anhydride (when possible) by thermal analysis. Lastly, it was demonstrated case studies about the importance of knowing the anhydrides properties to verify residual anhydrides in final products, anhydrides recovering as well as parallel reactions in polymer synthesis using some organocatalysts. Furthermore, UV–vis results exhibited absorption bands for each anhydride, which can be helpful for researches about aggregation-induced emission observed in some luminescent materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kariyawasam LS, Hartley CS. Dissipative assembly of aqueous carboxylic acid anhydrides fueled by carbodiimides. J Am Chem Soc. 2017;139:11949–55.

    CAS  PubMed  Google Scholar 

  2. Kumar S, Samal SK, Mohanty S, Nayak SK. Study of curing kinetics of anhydride cured petroleum-based (DGEBA) epoxy resin and renewable resource based epoxidized soybean oil (ESO) systems catalyzed by 2-methylimidazole. Thermochim Acta. 2017;654:112–20.

    CAS  Google Scholar 

  3. Zhang X, Wang X. Polybutylene succinate/cellulose nanocrystals: Role of phthalic anhydride in squeeze oriented bionanocomposites. Carbohydr Polym. 2018;196:254–61.

    CAS  PubMed  Google Scholar 

  4. Kummari A, Pappuru S, Chakraborty D. Fully alternating and regioselective ring-opening copolymerization of phthalic anhydride with epoxides using highly active metal-free Lewis pairs as a catalyst. Polym Chem. 2018;9:4052–62.

    CAS  Google Scholar 

  5. Mosaa ZA, Zimam EH. Thermal stability of novel maleimide polymers based on dapsone. Sys Rev Pharm. 2021;12:447–57.

    CAS  Google Scholar 

  6. He M, Xu D, Li C, Ma Y, Dai X, Pan X, Fan J, He Z, Gui S, Dong X, Li Y. Cell wall bulking by maleic anhydride for wood durability improvement. Forests. 2020;11:367.

    Google Scholar 

  7. Shang C, Wei N, Zhuo H, Shao Y, Zhang Q, Zhanga Z, Wang H. Highly emissive poly (maleic anhydride-alt-vinyl pyrrolidone) with molecular weight-dependent and excitation-dependent fluorescence. J Mater Chem C. 2017;5:8082–90.

    CAS  Google Scholar 

  8. Zhou X, Luo W, Nie H, Xu L, Hu R, Zhao Z, Qin A, Tang BZ. Oligo (maleic anhydride): a platform for unveiling the mechanism of clusteroluminescence of non-aromatic polymers. J Mater Chem C. 2017;5:4775–9.

    CAS  Google Scholar 

  9. Nagaraja A, Jalageri MD, Puttaiahgowda YM, Reddy KR, Raghu AV. A review on various maleic anhydride antimicrobial polymers. J Microbiol Methods. 2019;163:105650.

    CAS  PubMed  Google Scholar 

  10. Tupa MV, Altuna L, Herrera ML, Foresti ML. Preparation and characterization of modified starches obtained in acetic anhydride/tartaric acid medium. Starch Stärke. 2020;72:1900300.

    CAS  Google Scholar 

  11. Quintero-Castañoa VD, Castellanos-Galeano FJ, Álvarez-Barreto CI, Lucas-Aguirre JC, Bello-Pérez LA, Rodríguez-Garcia ME. Starch from two unripe plantains and esterified with octenyl succinic anhydride (OSA): partial characterization. Food Chem. 2020;315:126241.

    Google Scholar 

  12. Schulz C, Roy SC, Wittich K, d’Alnoncourt RN, Linke S, Strempel VE, Frak B, Glaum R, Rosowski F. αII-(V1-xWx)OPO4 catalysts for the selective oxidation of n-butane to maleic anhydride. Catal Today. 2019;333:113–9.

    CAS  Google Scholar 

  13. Shcherban ND, Diyuk EA, Sydorchuk VV. Synthesis and catalytic activity of vanadium phosphorous oxides systems supported on silicon carbide for the selective oxidation of n-butane to maleic anhydride. React Kinet Mech. 2019;126:975–85.

    CAS  Google Scholar 

  14. Alarcon RT, Gaglieri C, de-Souza OA, Rinaldo D, Bannach G. Microwave-assisted syntheses of vegetable oil-based monomer: a cleaner, faster, and more energy efficient route. J Polym Environ. 2020;28:1265–1278.

  15. Eren T, Kusefoglu SH, Wool R. Polymerization of maleic anhydride–modified plant oils with polyols. J Appl Polym Sci. 2003;90:197–202.

    CAS  Google Scholar 

  16. Zovi O, Lecamp L, Loutelier-Bourhis C, Lange CM, Bunel C. A solventless synthesis process of new UV-curable materials based on linseed oil. Green Chem. 2011;13:1014–22.

    CAS  Google Scholar 

  17. Stefanoiu F, Candy L, Vaca-Garcia C, Borredon E. Kinetics and mechanism of the reaction between maleic anhydride and fatty acid esters and the structure of the products. Euro J Lipid Sci Technol. 2008;110:441–7.

    CAS  Google Scholar 

  18. Pires OAB, Alarcon RT, Gaglieri C, da Silva-Filho LC, Bannach G. Synthesis and characterization of a biopolymer of glycerol and macadamia oil. J Therm Anal Calorim. 2019;137:161–70.

    CAS  Google Scholar 

  19. Benvenuta-Tapia JJ, Vivaldo-Lima E, Tenorio-Lopez JA, Vargas-Hernandez MA, Vazquez-Torres H. Kinetic analysis of the RAFT copolymerization of styrene and maleic anhydride by differential scanning calorimetry. Thermochim Acta. 2018;667:93–101.

    CAS  Google Scholar 

  20. Chuang P, Nien Y. Synthesis and characterization of maleic anhydride grafted SEBS modified with ethanolamine, 2-amino-2-methyl-1-propanol or glycerine. J Polym Res. 2019;26:66.

    Google Scholar 

  21. Mun HY, Jeong HC, Lee JH, Won JH, Park HG, Oh BY, Seo DS. Poly(styrene–maleic anhydride) films as alignment layers for liquid crystal systems via ion-beam irradiation. RCS Adv. 2016;6:76743–7.

    CAS  Google Scholar 

  22. Zhao X, Luo W, Nie H, Xu L, Hu R, Zhao Z, Qin A, Tang BZ. Oligo(maleic anhydride)s: a platform for unveiling the mechanism of clusteroluminescence of non-aromatic polymers. J Mater Chem C. 2017;5:4775–9.

    Google Scholar 

  23. Lin L, Liang J, Xu Y, Wang S, Xiao M, Sun L, Meng Y. Fully alternating sustainable polyesters from epoxides and cyclic anhydrides: economical and metal-free dual catalysis. Green Chem. 2019;21:2469–77.

    CAS  Google Scholar 

  24. Lv J, Zhu C, Qiu H, Zhang J, Gu C, Feng J. Robust icephobic epoxy coating using maleic anhydride as a crosslinking agent. Prog Org Coat. 2020;142:105561.

    CAS  Google Scholar 

  25. Wen S, Zheng F, Shen M, Shi XY. Surface modification and PEGylation of branched polyethyleneimine for improved biocompatibility. J Appl Polym Sci. 2013;128:3807–13.

    CAS  Google Scholar 

  26. Sun D, Ding J, Xiao C, Chen J, Zhuang X, Chen X. pH-Responsive reversible PEGylation improves performance of antineoplastic. Agent Adv Healthc Mater. 2015;22:844–55.

    Google Scholar 

  27. Braz EMA, Silva SCCC, Brito CARS, Brito LM, Barreto HM, Carvalho FAA, Santos-Junior LS, Lobo AO, Osajima JA, Souza KS, Silva-Filho EC. Spectroscopic, thermal characterizations and bacteria inhibition of chemically modified chitosan with phthalic anhydride. Mater Chem Phys. 2020;240:122053–160. https://doi.org/10.1016/j.matchemphys.2019.122053.

    Article  CAS  Google Scholar 

  28. Franklin A, Barclay TG, Song Y, Parikh A, Petrovsky N. Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. React Func Polym. 2018;134:104–11.

    Google Scholar 

  29. Deng J, Liu Y, Liu S, Zeng G, Tan X, Huang B. Competitive adsorption of Pb (II), Cd (II) and Cu (II) onto chitosan-pyromellitic dianhydride modified biochar. J Colloid Interface Sci. 2017;506:355–64.

    CAS  PubMed  Google Scholar 

  30. Li Y, Wu X, Song J, Li J, Shao Q, Cao N, Guo Z. Reparation of recycled acrylonitrile- butadiene-styrene by pyromellitic dianhydride: reparation performance evaluation and property analysis. Polymer. 2017;124:41–7.

    CAS  Google Scholar 

  31. Anand T, Kumar A, Sahoo SK. A new Al3+ selective fluorescent turn-on sensor based on hydrazide-naphthalic anhydride conjugate and its application in live cells imaging. Spectrochim Acta A Mol Biomol Spectrosc. 2018;204:105–12.

    CAS  PubMed  Google Scholar 

  32. Li J, Wang J, Sun J, Bai S, Wu X. Grafting of derivatives of naphthalic anhydride onto amine-modified surfaces of dense nanosilica and their fractal features for luminescent performance. J Lumin. 2019;206:547–53.

    CAS  Google Scholar 

  33. Hosseinnezhad M, Grahari M, Shaki H, Movahedi J. Investigation of DSSCs Performance: The Effect of 1,8-naphthalimide Dyes and Na-doped TiO2. Prog Color Coat. 2020;13:177–85.

    CAS  Google Scholar 

  34. Noirbent G, Dumur F. Recent advances on naphthalic anhydrides and 1,8-naphthalimide-based photoinitiators of polymerization. Eur Polym J. 2020;132:109702.

    CAS  Google Scholar 

  35. Nicolescu A, Airinei A, Georgescu E, Georgescu F, Tigoianu R, Oancea F, Deleanu C. Synthesis, photophysical properties and solvatochromic analysis of some naphthalene-1,8-dicarboxylic acid derivatives. J Molecul Liquid. 2020;303:112626.

    Google Scholar 

  36. Zhang T, Wu Y, Ma X. Tunable multicolor room-temperature phosphorescence including white-light emission from amorphous copolymers. Chem Eng J. 2021;412:128689.

    CAS  Google Scholar 

  37. Al-kutubi H, Gascon J, Sudhçlter EJR, Rassaei L. Electrosynthesis of metal organic frameworks: challenges and opportunities. ChemeletroChem. 2015;2:462474.

    Google Scholar 

  38. Yang Y. An electrodeposited lanthanide MOF thin film as a luminescent sensor for carbonate detection in aqueous solution. J Mater Chem C. 2014;2:8683–90.

    Google Scholar 

  39. Baruah AM, Karmakar A, Baruah JB. Ring opening reactions of pyromellitic dianhydride for the synthesis of first row transition metal dicarboxylate complexes. Polyhedron. 2007;26:4479–88.

    CAS  Google Scholar 

  40. Pati PB, Su-Il I, Haining T. Visible light–driven hydrogen production by carbon based polymeric materials, visible-light photocatalysis of carbon-based materials, Y. Yao (2017) DOI: https://doi.org/10.5772/intechopen.70444

  41. Afinjuomo F, Barclay TG, Song Y, Parikh A, Petrovscky N. Synthesis and characterization of a novel inulin hydrogel crosslinked with pyromellitic dianhydride. React Funct Polym. 2019;134:104–11.

    CAS  Google Scholar 

  42. Hasegawa M, Tokunaga R, Hashimoto K, Ishii J. Crosslinkable polyimides obtained from a reactive diamine and the effect of crosslinking on the thermal properties. React Funct Polym. 2019;139:181–8.

    CAS  Google Scholar 

  43. Riga EK, Saar JS, Erath R, Hechenbichler M, Lienkamp K. On the limits of benzophenone as cross-linker for surface-attached polymer hydrogels. Polyme MDPI. 2017;9:686.

    Google Scholar 

  44. Thiruvasagam P. Synthesis, characterization, and properties of novel diol monomers and processable thermally stable polyimides. Colloid Polym Sci. 2015;293:1101–9.

    CAS  Google Scholar 

  45. Zhu X, Zhang L, Zou G, Chen Q, Guo Y, Liang S, Hu L, North M, Xie H. Carboxylcellulose hydrogel confined-Fe3O4 nanoparticles catalyst for Fenton-Like degradation of Rhodamine B. Int J Biol Macromol. 2021;180:792–803.

    CAS  PubMed  Google Scholar 

  46. Clayden J, Greeves N, Warren S. Organic Chemistry. 2nd ed. Oxford. 2012

  47. Cai X, Lin Y, Li Y, Chen X, Wang Z, Zhao X, Huang S, Zhao Z, Tang BZ. BioAIEgens derived from rosin: ho does molecular motion affect their photophysical processes in solid state? Natur Commun. 2021;12:1773.

    CAS  Google Scholar 

  48. Alarcon RT, Gaglieri C, Santos GC, Moralles AC, Morgon NH, Souza AR, Bannach G. AIE effect by oxygen clustering in vegetable oil-based polymers. ChemSelect. 2021;6:7838–44.

    CAS  Google Scholar 

  49. Suman GR, Pandey M, Chakravarthy ASJ. Review on new horizons of aggregation induced emission: from design to development. Mater Chem Front. 2021;5:1541.

    Google Scholar 

  50. Yang Q, Lan T, He W. Recent progress in reaction-based fluorescent probes for active sulfur small molecules. Dyes Pig. 2021;186:108997.

    CAS  Google Scholar 

  51. Lin Y, Zhang D, Li L, Zhang Y. Novel multifunctional hybrid molecules constructed from β-carboline and naphthalene anhydride: aggregation, deaggregation and fluorescence detection. ChemSelect. 2021;6:1887–93.

    CAS  Google Scholar 

  52. Silverstein RM, Webster FX, Kiemle DJ, Bryce DL. Spectrometric identification of organic compounds. 8th ed. Hoboken: Wiley; 2005.

    Google Scholar 

  53. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR. Introduction to spectroscopy. cengage learning boston, 2015.

  54. Mirone P, Chiorboli P. Infrared and Raman spectra and vibrational of maleic anhydride. Spectrochim Acta. 1962;18:1425–32.

    CAS  Google Scholar 

  55. Wang L, Zhang F, Gao X, Luo T, Xu L, Liu G. Solubility and dissolution thermodynamics of phthalic anhydride in organic solvents at 283–313 K 1. Russ J Phys Chem A. 2017;91:1432–8.

    CAS  Google Scholar 

  56. Boronat MDSVFT. Thermal and mechanical characterization of epoxy resins (ELO and ESO) cured with anhydrides. J Am Oil Chem Soc. 2012;89:1521–1528.

  57. Haillot D, Bauer T, Kröner U, Tamme R. Thermal analysis of phase change materials in the temperature range 120–150 °C. Thermochim Acta. 2011;513:49–59.

    CAS  Google Scholar 

  58. Kumar MS, Vijayaraghavan GV, Rajesh K, Krishnan S. Influence of different solvents on the growth, thermal and dielectric properties of Phthalic acid single crystals. Mater Res Innov. 2020;24:1–11.

    Google Scholar 

  59. Kundu S, Kumari N, Soni SR, Ranjan S, Kumar R, Sharon A, Ghosh A. Enhanced solubility of telmisartan phthalic acid cocrystals within the pH range of a systemic absorption site. ACS Omega. 2018;3:15380–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Sigma Aldrich. https://www.sigmaaldrich.com/BR/pt/product/aldrich/412287?context=product. Accessed 31 May 2021.

  61. Yue L, Amirkhosravi M, Gong X, Gray TG, Zloczwer IM. Recycling epoxy by vitrimerization: influence of an initial thermoset chemical structure. ACS Sus Chem Eng. 2020;8:12706–12.

    CAS  Google Scholar 

  62. Li K, Ping T, Zhang H, Zhang J, Chen J, Gao F. Quantitative evaluation of the non-thermal effect in microwave induced polymer curing. RSC Adv. 2021;11:3740.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Rosu L, Mustata F, Rosu D, Varganici CD, Rosca I, Rusu T. Bio-based coatings from epoxy resins crosslinked with a rosin acid derivative for wood thermal and anti–fungal protection. Prog Org Coat. 2021;151:106008.

    CAS  Google Scholar 

  64. Chennapuram M, Yoshida Y, Endo T. Curing behavior and properties of epoxy monomers with ethylenediaminetetraacetic dianhydride. J Appl Polym Sci. 2022;139:e51626.

    Google Scholar 

  65. Gaglieri C, Alarcon RT, Moura A, Magri R, Silva-Filho LC, Bannach G. Green and efficient modification of grape seed oil to synthesize renewable monomers. J Braz Chem Soc. 2021;32:2120–31.

    CAS  Google Scholar 

  66. Ding C, Shuttleworth PS, Makin S, Clark JH, Matharu AS. New insights into the curing of epoxidized linseed oil with dicarboxylic acids. Green Chem. 2015;17:4000–8.

    CAS  Google Scholar 

Download references

Funding

São Paulo Research Foundation -FAPESP (Grants: 2017/08820–8, 2018/03460–6 and 2020/00906–3), and Conselho Nacional de Desenvolvimento Científico e Tecnológico- CNPq (grant 301857/2018–0).

Author information

Authors and Affiliations

Authors

Contributions

Caroline Gaglieri was involved in conceptualization, data curation, investigation, validation, visualization, writing original draft, writing—review and editing. Aniele de Moura contributed to investigation, visualization, writing original draft, writing—review and editing. Rafael Turra Alarcon was involved in conceptualization, investigation, validation, writing original draft, writing—review and editing. Raquel Magri contributed to investigation, writing original draft. Gilbert Bannach was involved in conceptualization, funding acquisition, investigation, project administration, validation, writing—review and editing.

Corresponding author

Correspondence to Gilbert Bannach.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 797 KB)

Supplementary file2 (MP4 5543 KB)

Supplementary file3 (MP4 19378 KB)

Supplementary file4 (MP4 12518 KB)

Supplementary file5 (MP4 2051 KB)

Supplementary file6 (MP4 4199 KB)

Supplementary file7 (MP4 9124 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaglieri, C., de Moura, A., Alarcon, R.T. et al. Thermal behavior of some cyclic anhydrides: an important characterization for synthesis in the polymer field. J Therm Anal Calorim 147, 9095–9106 (2022). https://doi.org/10.1007/s10973-022-11213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-022-11213-x

Keywords

Navigation