Skip to main content
Log in

Characterization of the complete mitochondrial genome of Paecilomyces variotii and comparative evolutionary mitochondriomics of 36 fungi

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Backgroud

Paecilomyces variotii has important economic value in stimulating crop growth, biodegradation, and other aspects. Up to now, there are no research reports on its mitochondrial genome.

Methods and results

The mitochondrial genome of Paecilomyces variotii was determined with the next-generation sequencing method (Illumina, NovaSeq), and its characteristics were analyzed using various bioinformatics approaches. The length of complete mitochondrial genome sequence of P. variotii is 40,965 bp and consists of 14 protein-coding genes, 2 ribosomal RNA genes, 1 ribosomal protein S3 gene, 26 transport RNA genes. The results of phylogenetics analysis using Bayesian inference and Maximum likelihood methods showed that P. variotii belongs to the Eurotiales order in the Thermoascaceae family, and 9 genera within the Eurotiomycetes class were effectively distinguished with high support rates (bootstrap value > 92% and posterior probabilities > 99%). The analysis of synonymous substitution rates and nonsynonymous substitution rates indicated that the Ka/Ks values of the 14 PCGs in the mitochondrial genomes of the two orders in the Eurotiomycetes class ranged from 0 to 0.4333.

Conclusions

This study revealed the structural and sequence information characteristics of the mitochondrial genome of P. variotii, and the phylogenetic results strongly support its classification within the family Thermoascaceae, consistent with traditional morphological taxonomy studies. The 14 PCGs in the mitochondrial genomes of the two orders in the Eurotiomycetes class are subject to strong purifying (negative) selection. The results of this research provides an important molecular basis for the development of genomics, evolutionary genetics and molecular markers of P. variotii in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All referred data of this MitoGenome Announcements is submitted to NCBI (National Center for Biotechnology Information Database). Themitogenome of P. variotii (GenBank accession number: OP402841) is published in the NCBI.

References

  1. Houbraken J, Verweij PE, Rijs AJMM, Borman AM, Sanson RA (2010) Identification of Paecilomyces Variotii in clinical samples and settings. J Clin Microbiol 48(8):2754–2761

    Article  PubMed  PubMed Central  Google Scholar 

  2. Houbraken J, Samson RA, Frisvad JC (2006) In: Hocking AD, Pitt JI, Samson RA, Thrane U (eds) Byssochlamys: signif-icance of heat resistance and mycotoxin production. Advances in food mycology: advances in experimental medicine and biology, vol 571. Springer Science-Business Media: New York, USA,, pp 211–224

  3. Kantarcioğlu AS, Hatemi G, Yücel A, De Hoog GS, Mandel NM (2003) Paecilomyces Variotii central nervous system infection in a patient with cancer. Mycoses 46(1–2):45–50

    Article  PubMed  Google Scholar 

  4. Marzec A, Heron LG, Pritchard RC, Butcher RH, Powell HR, Disney AP, Tosolini FA (1993) Paecilomyces Variotii in peritoneal dialysate. J Clin Microbiol 31(9):2392–2395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee J, Yew WW, Chiu CSW, Wong PC, Wong CF, Wang EP (2002) Delayed sternotomy wound infection due to Paecilomyces Variotii in a lung transplant recipient. J Heart Lung Transpl 21(10):1131–1134

    Article  Google Scholar 

  6. Tu BDZB, Dong XM, Fu GH, Liu EM, Jing JG, Tian YM (1996) Mycology identification of calf lung infection caused by Paecilomyces. Chin J Vet Med 22(12):17–18

    Google Scholar 

  7. Chai YQ, Zhang LR, Zhang H, Chen ZA, Chen LF (2000) Preliminary study on biological activities of metabolites from entomogenous fungi. J Nanjing Agric Univ 23(3):37–40

    CAS  Google Scholar 

  8. Mochizuki K (1999) Purification and characterization of 5-oxo-L-prolinase from Paecilomyces varioti F-1, an ATP-dependent hydrolase active with L-2-oxothiazolidine-4-carboxylic acid. Arch Microbiol 172:182–185

    Article  CAS  PubMed  Google Scholar 

  9. Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E (2017) The role of mitochondria in metabolism and cell death. Biochem Bioph Res Co 482(3):426–431

    Article  CAS  Google Scholar 

  10. Liu C, Sheng YY, Jiang B, Lu QY, HanLH (2022) Mitochondrial genome characteristics and evolution of Ganoderma fungi. J Sou Agri 53(10):2876–2884

    Google Scholar 

  11. Li SS, Wang D, Fang ML, Zhang Y (2022) Evident presence of heteroplasmy in the mitochondrial genomes of the nematode-trapping fungus Arthrobotrys oligospora. Mycosystema 41(4):529–545

    Google Scholar 

  12. Nie RE, Yang XK (2014) Research progress in mitochondrial genomes of Coleoptera. Acta Entomol Sin 57(7):860–868

    CAS  Google Scholar 

  13. Wang J (2017) Comparative mitogenomics and genetic diversity of mired bugs (Hemiptera: Miridae). Master degree. LanZhou University, Lanzhou

    Google Scholar 

  14. Cameron SL (2014) Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol 59:95–117

    Article  CAS  PubMed  Google Scholar 

  15. Krzywinski J, Grushko OG, Besansky NJ (2006) Analysis of the complete mitochondrial DNA from Anopheles Funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. Mol Phylogenet Evol 39(2):417–423

    Article  CAS  PubMed  Google Scholar 

  16. Friedrich M, Muqim N (2003) Sequence and phylogenetic analysis of the complete mitochondrial genome of the flour beetle Tribolium Castanaeum. Mol Phylogenet Evol 26(3):502–512

    Article  CAS  PubMed  Google Scholar 

  17. Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-bychowski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26(4):375–400

    Article  Google Scholar 

  18. Yang D, Mi F, Dong JY, Zhang YR, Wu JY (2016) Changes of genome size of Fungal Mitochondria[J]. J Anhui Agri Sci 44(1):36–39

    Google Scholar 

  19. Burger G, Gray MW, Lang BF (2003) Mitochondrial genomes: anything goes[J]. Trends Genet 19(12):709–716

    Article  CAS  PubMed  Google Scholar 

  20. Li ZP (2022) Comparative population genomic analysis of apple organelle. Master degree. Hua Zhong Agricultural University, Wuhan

    Google Scholar 

  21. Salle V, Lecuyer E, Chouaki T, Lescure FX, Smail A, Vaidie A, Dayen C, Schmit JL, Ducroix JP, Douadi Y (2005) Paecilomyces Variotii fungemia in a patient with multiple myeloma: case report and literature review. J Infect 51(3):e93–e95

    Article  PubMed  Google Scholar 

  22. Mioso R, Toledo Marante FJ, Herrera Bravo de Laguna I (2015) The chemical diversity of the ascomycete fungus Paecilomyces Variotii. Appl Biochem Biotech 177:781–791

    Article  CAS  Google Scholar 

  23. Moreno-Gavíra A, Diánez F, Sánchez-Montesinos B, Santos M (2020) Paecilomyces Variotii as a plant-growth promoter in horticulture. Agronomy 10(4):597

    Article  Google Scholar 

  24. Nicolas D, Patrick M, Guillaume S (2016) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45(4):e18

    Google Scholar 

  25. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319

    Article  PubMed  Google Scholar 

  26. Laslett D, Canbäck B (2008) ARWEN: a program to detect tRNA genes in metazoan mitochondrial nucleotide sequences. Bioinformatics 24(2):172–175

    Article  CAS  PubMed  Google Scholar 

  27. Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44(W1):54–57

    Article  Google Scholar 

  28. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41(3):353–358

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Vaidya G, Lohman DJ, Meier R (2011) SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27(2):171–180

    Article  PubMed  Google Scholar 

  31. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542

    Article  PubMed  PubMed Central  Google Scholar 

  32. Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32(1):268–274

    Article  CAS  PubMed  Google Scholar 

  33. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS (2017) ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods 14(6):587–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Z, Li J, Zhao XQ, Wang J, Wong GK, Yu J (2006) KaKs_Calculator: calculating Ka and Ks through model selection and model averaging. Genom Proteom Bioinf 4(4):259–263

    Article  CAS  Google Scholar 

  36. Duò A, Bruggmann R, Zoller S, Bernt M, Grünig CR (2012) Mitochondrial genome evolution in species belonging to the Phialocephala fortiniis.l. - Acephala applanata species complex. BMC Genomics 13:166

    Article  PubMed  PubMed Central  Google Scholar 

  37. Trautwein MD, Wiegmann BM, Beutel R, Kjer KM, Yeates DK (2012) Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol 57(1):449–468

    Article  CAS  PubMed  Google Scholar 

  38. Hillis DM (1997) Phylogenetic analysis: current Biology. Magazine 7:R129–R131

    CAS  Google Scholar 

  39. Miao HE, Gao L, Ling KE (2011) Phylogenetic study of human parvovirus B19 distributed in China based on bayesian inference and maximum likelihood analysis. Chin J Blood Transfus 24(5):399–401

    Google Scholar 

  40. Kumar V, Kumar H, Vishal V, Lal S (2023) Studies on the morphology, phylogeny, and bioremediation potential of Penicillium Citrinum and Paecilomyces Variotii (Eurotiales) from oil-contaminated areas. Arch Microbiol 205(1):50

    Article  CAS  PubMed  Google Scholar 

  41. Xia X (1996) Maximizing transcription efficiency causes codon usage bias. Genetics 144(3):1309–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kang D, Hamasaki N (2002) Maintenance of mitochondrial DNA integrity: repair and degradation. Curr Genet 41(5):311–322

    Article  CAS  PubMed  Google Scholar 

  43. Foster PG, Jermiin LS, Hickey DA (1997) Nucleotide composition bias affects amino acid content in proteins coded by animal mitochondria. J Mol Evol 44(3):282–288

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Song N, Geng Y, Li X (2020) The mitochondrial genome of the phytopathogenic fungus Bipolaris sorokiniana and the utility of mitochondrial genome to infer phylogeny of Dothideomycetes. Front Microbiol 11:863

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sun X, Li H, Yu D (2011) Complete mitochondrial genome sequence of the phytopathogenic fungus Penicillium Digitatum and comparative analysis of closely related species. FEMS Microbiol Lett 323(1):29–34

    Article  CAS  PubMed  Google Scholar 

  46. Wang D, Zhang Y, Zhang Z, Zhu J, Yu J (2010) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinf 8(1):77–80

    Article  CAS  Google Scholar 

  47. Tian M, Shen X, Meng XP, Cheng HL (2011) Analysis of the characteristics of whales mitochondrial genomes and exploration of molecular markers. Acta Oceanol Sin 33(5):104–114

    CAS  Google Scholar 

  48. Eldarov MA, Mardanov AV, Beletsky AV, Dzhavakhiya VV, Ravin NN, Skryabin KG (2012) Complete mitochondrial genome of compactin-producing fungus Penicillium Solitum and comparative analysis of Trichocomaceae mitochondrial genomes. FEMS Microbiol Lett 329(1):9–17

    Article  CAS  PubMed  Google Scholar 

  49. Deng Y, He J (2022) Characterization of the complete mitochondrial genome of aspergillus terricola (Aspergillaceae, Eurotiales), isolated from soy sauce fermentation system. Mitochondrial DNA B 7(1):76–78

    Article  Google Scholar 

  50. Wang L, Xu J, Li H, Song L, Yu Y, Zhang W, Liu G (2016) The complete mitochondrial genome of Paecilomyces Hepiali (Ascomycota, Eurotiomycetes). Mitochondrial DNA A 27(2):916–917

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the projects as follows: Special Funds for the Construction of Innovative Province in Hunan [grant number: 2020NK4244], Excellent Youth Project of Hunan Education Department [grant number: 21B0782], Scientific Research Initializing Fund of Hunan University of Humanities, Science and Technology [grant number: 82500282], The Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province [grant number: 201937924].

Author information

Authors and Affiliations

Authors

Contributions

Writing - original draft, Deng Yijia; Writing - review & editing, Zhang Yujie; Formal analysis, L Zhengyi, Huang Minyi; Investigation, Liu Bin; Funding acquisition, Chen Zhiyin. All authors agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Zhiyin Chen.

Ethics declarations

Ethical approval

This article does not contain any studies involving human participants performed/animals performed by any of the authors.

Competing interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Z., Deng, Y. et al. Characterization of the complete mitochondrial genome of Paecilomyces variotii and comparative evolutionary mitochondriomics of 36 fungi. Mol Biol Rep 51, 390 (2024). https://doi.org/10.1007/s11033-024-09330-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11033-024-09330-x

Keywords

Navigation