Skip to main content
Log in

Reassessing the Use of Undecanoic Acid as a Therapeutic Strategy for Treating Fungal Infections

  • Review
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Treating fungal infections is challenging and frequently requires long-term courses of antifungal drugs. Considering the limited number of existing antifungal drugs, it is crucial to evaluate the possibility of repositioning drugs with antifungal properties and to revisit older antifungals for applications in combined therapy, which could widen the range of therapeutic possibilities. Undecanoic acid is a saturated medium-chain fatty acid with known antifungal effects; however, its antifungal properties have not been extensively explored. Recent advances indicate that the toxic effect of undecanoic acid involves modulation of fungal metabolism through its effects on the expression of fungal genes that are critical for virulence. Additionally, undecanoic acid is suitable for chemical modification and might be useful in synergic therapies. This review highlights the use of undecanoic acid in antifungal treatments, reinforcing its known activity against dermatophytes. Specifically, in Trichophyton rubrum, against which the activity of undecanoic acid has been most widely studied, undecanoic acid elicits profound effects on pivotal processes in the cell wall, membrane assembly, lipid metabolism, pathogenesis, and even mRNA processing. Considering the known antifungal activities and associated mechanisms of undecanoic acid, its potential use in combination therapy, and the ability to modify the parent compound structure, undecanoic acid shows promise as a novel therapeutic against fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Martinez-Rossi NM, Bitencourt TA, Peres NTA, Lang EAS, Gomes EV, Quaresemin NR, et al. Dermatophyte resistance to antifungal drugs: mechanisms and prospectus. Front Microbiol. 2018;9:1108.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cordoba S, Vivot W, Szusz W, Albo G. Antifungal activity of essential oils against Candida species isolated from clinical samples. Mycopathologia. 2019;184(5):615–23.

    Article  CAS  PubMed  Google Scholar 

  3. Lopes AI, Tavaria FK, Pintado ME. Conventional and natural compounds for the treatment of dermatophytosis. Med Mycol. 2020;58(6):707–20.

    Article  CAS  PubMed  Google Scholar 

  4. Souza ACO, Amaral AC. Antifungal therapy for systemic mycosis and the nanobiotechnology era: improving efficacy, biodistribution and toxicity. Front Microbiol. 2017;8:336.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Drake DR, Brogden KA, Dawson DV, Wertz PW. Thematic review series: skin lipids—antimicrobial lipids at the skin surface. J Lipid Res. 2008;49(1):4–11.

    Article  CAS  PubMed  Google Scholar 

  6. Feingold KR. The outer frontier: the importance of lipid metabolism in the skin. J Lipid Res. 2009;50:S417–22.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Clark JF. On the toxic effect of deleterious agents on the germination and development of certain filamentous fungi. Bot Gaz. 1899;28(5):289–327.

    Article  Google Scholar 

  8. Keeney EL, Ajello L, Broyles EN, Lankford E. Propionate and undecylenate ointments in the treatment of tinea pedis and an in vitro comparison of their fungistatic and antibacterial effects with other ointments. Bull Johns Hopkins Hosp. 1944;74:417–39.

    Google Scholar 

  9. Shapiro AL, Rothman S. Undecylenic acid in the treatment of dermatomycosis. Arch Dermatol. 1945;119(4):345–50.

    Article  Google Scholar 

  10. Peck SM, Russ WR. Propionate-caprylate mixtures in the treatment of dermatomycoses, with a review of fatty acid therapy in general. Arch Derm Syphilol. 1947;56(5):601–13.

    Article  CAS  PubMed  Google Scholar 

  11. Kiesel A. Recherches sur L’action de divers acides et sels acides sur le développement de L`Aspergillus niger. Ann Inst Pasteur. 1913;27:391–420.

    CAS  Google Scholar 

  12. Hoffman C, Schweitzer TR, Dalby G. Fungistatic properties of the fatty acids and possible biochemical significance. J Food Sci. 1939;4(6):539–45.

    Article  CAS  Google Scholar 

  13. Peck SM, Rosenfeld H. The effects of hydrogen ion concentration, fatty acids and vitamin C on the growth of fungi. J Invest Dermatol. 1938;1(4):237–65.

    Article  CAS  Google Scholar 

  14. Garg AP, Muller J. Fungitoxicity of fatty acids against dermatophytes. Mycoses. 1993;36(1–2):51–63.

    CAS  PubMed  Google Scholar 

  15. Vicher EE, Lyon I, White EL. Studies on the respiration of Trichophyton rubrum. Mycopathol Mycol Appl. 1959;11:185–95.

    Article  CAS  PubMed  Google Scholar 

  16. Vicher EE, Kostiw LL, Lyon I, Bolewicz BM. The effect of sodium propionate and sodium caprylate on the fatty acid content of Trichophyton rubrum. Mycopathol Mycol Appl. 1968;35(3):208–14.

    Article  CAS  PubMed  Google Scholar 

  17. Samson FE, Katz AM, Harris DL. Effects of acetate and other short-chain fatty acids on yeast metabolism. Arch Biochem Biophys. 1955;54(2):406–23.

    Article  CAS  PubMed  Google Scholar 

  18. Das SK, Adhya S, Banerjee AB. Effect of undecanoic acid on germination of microconidia of wild and undecanoic acid resistant mutant of Trichophyton rubrum. Mycopathologia. 1977;61(2):121–3.

    Article  CAS  PubMed  Google Scholar 

  19. Das SK, Banerjee AB. Effect of undecanoic acid on phospholipid-metabolism in Trichophyton rubrum. Sabouraudia-J Med Vet Mycol. 1982;20(4):267–72.

    Article  CAS  Google Scholar 

  20. Das SK, Banerjee AB. Effect of undecanoic acid on the production of exocellular lipolytic and keratinolytic enzymes by undecanoic acid-sensitive and -resistant strains of Trichophyton rubrum. Sabouraudia. 1982;20(3):179–84.

    Article  CAS  PubMed  Google Scholar 

  21. Das SK, Banerjee AB. Effect of undecanoic acid on lipid composition of Trichophyton rubrum. Mycopathologia. 1983;83(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  22. Peres NTA, Cursino-Santos JR, Rossi A, Martinez-Rossi NM. In vitro susceptibility to antimycotic drug undecanoic acid, a medium-chain fatty acid, is nutrient-dependent in the dermatophyte Trichophyton rubrum. World J Microbiol Biotechnol. 2011;27(7):1719–23.

    Article  CAS  Google Scholar 

  23. Martins MP, Silva LG, Rossi A, Sanches PR, Souza LDR. Martinez-Rossi NM. Global analysis of cell wall genes revealed putative virulence factors in the dermatophyte Trichophyton rubrum. Front Microbiol. 2019;10:2168.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mendes NS, Bitencourt TA, Sanches PR, Silva-Rocha R, Martinez-Rossi NM, Rossi A. Transcriptome-wide survey of gene expression changes and alternative splicing in Trichophyton rubrum in response to undecanoic acid. Sci Rep. 2018;8(1):2520.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gomes EV, Bortolossi JC, Sanches PR, Mendes NS, Martinez-Rossi NM, Rossi A. STE20/PAKA protein kinase gene releases an autoinhibitory domain through pre-mRNA alternative splicing in the dermatophyte Trichophyton rubrum. Int J Mol Sci. 2018;19(11):3654.

    Article  PubMed Central  Google Scholar 

  26. Neves-da-Rocha J, Bitencourt TA, de Oliveira VM, Sanches PR, Rossi A, Martinez-Rossi NM. Alternative splicing in heat shock protein transcripts as a mechanism of cell adaptation in Trichophyton rubrum. Cells. 2019;8(10):1206.

    Article  CAS  PubMed Central  Google Scholar 

  27. Avrahami D, Shai Y. Bestowing antifungal and antibacterial activities by lipophilic acid conjugation to D, L-amino acid-containing antimicrobial peptides: a plausible mode of action. Biochemistry. 2003;42(50):14946–56.

    Article  CAS  PubMed  Google Scholar 

  28. Muthamil S, Balasubramaniam B, Balamurugan K, Pandian SK. Synergistic effect of quinic acid derived from Syzygium cumini and undecanoic acid against Candida spp. biofilm and virulence. Front Microbiol. 2018;9:2835.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee JH, Kim YG, Khadke SK, Lee J. Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol. Microb Biotechnol. 2020.

  30. Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, et al. ChEBI in 2016: improved services and an expanding collection of metabolites. Nucleic Acids Res. 2016;44(D1):D1214–9.

    Article  CAS  PubMed  Google Scholar 

  31. Ammendola S, Lembo A, Battistoni A, Tagliatesta P, Ghisalberti C, Desideri A. 10-undecanhydroxamic acid, a hydroxamate derivative of the undecanoic acid, has strong antimicrobial activity through a mechanism that limits iron availability. FEMS Microbiol Lett. 2009;294(1):61–7.

    Article  CAS  PubMed  Google Scholar 

  32. Kabara JJ, Vrable R. Antimicrobial lipids: natural and synthetic fatty acids and monoglycerides. Lipids. 1977;12(9):753–9.

    Article  CAS  PubMed  Google Scholar 

  33. Avrahami D, Shai Y. Conjugation of a magainin analogue with lipophilic acids controls hydrophobicity, solution assembly, and cell selectivity. Biochemistry. 2002;41(7):2254–63.

    Article  CAS  PubMed  Google Scholar 

  34. Jones AM, Klun JA, Cantrell CL, Ragone D, Chauhan KR, Brown PN, et al. Isolation and identification of mosquito (Aedes aegypti ) biting deterrent fatty acids from male inflorescences of breadfruit (Artocarpus altilis (Parkinson) Fosberg). J Agric Food Chem. 2012;60(15):3867–73.

    Article  CAS  PubMed  Google Scholar 

  35. Ali A, Cantrell CL, Bernier UR, Duke SO, Schneider JC, Agramonte NM, et al. Aedes aegypti (Diptera: Culicidae) biting deterrence: structure–activity relationship of saturated and unsaturated fatty acids. J Med Entomol. 2012;49(6):1370–8.

    Article  CAS  PubMed  Google Scholar 

  36. Cruz-Estrada A, Ruiz-Sanchez E, Cristobal-Alejo J, Gonzalez-Coloma A, Andres MF, Gamboa-Angulo M. Medium-chain fatty acids from Eugenia winzerlingii leaves causing insect settling deterrent, nematicidal, and phytotoxic effects. Molecules. 2019;24(9):1724.

    Article  CAS  PubMed Central  Google Scholar 

  37. Brito-Madurro AG, Cuadros-Orellana S, Madurro JM, Martinez-Rossi N, Rossi A. Effect of undecanoic acid on the production of esterases and lipases by Aspergillus nidulans. Ann Microbiol. 2005;55(4):291–4.

    CAS  Google Scholar 

  38. Brito-Madurro AG, Prade RA, Madurro JM, Santos MA, Peres NT, Cursino-Santos JR, et al. A single amino acid substitution in one of the lipases of Aspergillus nidulans confers resistance to the antimycotic drug undecanoic acid. Biochem Genet. 2008;46(9–10):557–65.

    Article  CAS  PubMed  Google Scholar 

  39. Gershon H, Shanks L. Antifungal activity of fatty acids and derivatives: structure–activity relationships. In: Kabarra JJ, editor. The pharmacological effect of lipids. American Oil Chemists Society; 1978.

    Google Scholar 

  40. McDonough V, Stukey J, Cavanagh T. Mutations in erg4 affect the sensitivity of Saccharomyces cerevisiae to medium-chain fatty acids. Biochim Biophys Acta Mol Cell Biol Lipids. 2002;1581(3):109–18.

    Article  CAS  Google Scholar 

  41. Shi D, Zhao Y, Yan H, Fu H, Shen Y, Lu G, et al. Antifungal effects of undecylenic acid on the biofilm formation of Candida albicans. Int J Clin Pharmacol Ther. 2016;54(5):343–53.

    Article  CAS  PubMed  Google Scholar 

  42. Mionic Ebersold M, Petrovic M, Fong WK, Bonvin D, Hofmann H, Milosevic I. Hexosomes with undecylenic acid efficient against Candida albicans. Nanomaterials (Basel). 2018;8(2):91.

    Article  Google Scholar 

  43. Salini R, Sindhulakshmi M, Poongothai T, Pandian SK. Inhibition of quorum sensing mediated biofilm development and virulence in uropathogens by Hyptis suaveolens. Antonie Van Leeuwenhoek. 2015;107(4):1095–106.

    Article  CAS  PubMed  Google Scholar 

  44. Hortmann L, Rehm HJ. Inhibitory effect of undecanoic acid on the biosynthesis of long-chain fatty acids in Mortierella isabellina. Appl Microbiol Biotechnol. 1984;20(2):139–45.

    Article  CAS  Google Scholar 

  45. Reverberi M, Punelli M, Smith CA, Zjalic S, Scarpari M, Scala V, et al. How peroxisomes affect aflatoxin biosynthesis in Aspergillus flavus. PLoS ONE. 2012;7(10):e48097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brito-Madurro AG, Cuadros-Orellana S, Martinez-Rossi NM, Rossi A. Undecanoic acid resistance in filamentous fungi: Identification and linkage mapping of the Aspergillus nidulans udaA gene. J Gen Appl Microbiol. 2005;51(1):47–9.

    Article  CAS  PubMed  Google Scholar 

  47. Persinoti GF, Martinez DA, Li W, Dogen A, Billmyre RB, Averette A, et al. Whole-genome analysis illustrates global clonal population structure of the ubiquitous dermatophyte pathogen Trichophyton rubrum. Genetics. 2018;208(4):1657–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chaturvedi V, de Hoog GS. Onygenalean fungi as major human and animal pathogens. Mycopathologia. 2020;185(1):1–8.

    Article  PubMed  Google Scholar 

  49. Paião FG, Segato F, Cursino-Santos JR, Peres NT, Martinez-Rossi NM. Analysis of Trichophyton rubrum gene expression in response to cytotoxic drugs. FEMS Microbiol Lett. 2007;271(2):180–6.

    Article  PubMed  Google Scholar 

  50. Das SK, Banerjee AB. Effect of undecanoic acid on cell-permeability and respiration of Trichophyton rubrum. Acta Microbiol Pol. 1981;30(3):295–8.

    CAS  PubMed  Google Scholar 

  51. Hiltunen JK, Mursula AM, Rottensteiner H, Wierenga RK, Kastaniotis AJ, Gurvitz A. The biochemistry of peroxisomal beta-oxidation in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2003;27(1):35–64.

    Article  CAS  PubMed  Google Scholar 

  52. Shelest E. Transcription factors in fungi. FEMS Microbiol Lett. 2008;286(2):145–51.

    Article  CAS  PubMed  Google Scholar 

  53. Bahn YS. Exploiting fungal virulence-regulating transcription factors as novel antifungal drug targets. PLoS Pathog. 2015;11(7):e1004936.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Li XC, Jacob MR, Khan SI, Ashfaq MK, Babu KS, Agarwal AK, et al. Potent in vitro antifungal activities of naturally occurring acetylenic acids. Antimicrob Agents Chemother. 2008;52(7):2442–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Persinoti GF, Peres NTA, Jacob TR, Rossi A, Vencio RZ, Martinez-Rossi NM. RNA-sequencing analysis of Trichophyton rubrum transcriptome in response to sublethal doses of acriflavine. BMC Genomics. 2014;15(Suppl 7):S1.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Prasad R, Rawal MK. Efflux pump proteins in antifungal resistance. Front Pharmacol. 2014;5:202.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Aneke CI, Rhimi W, Otranto D, Cafarchia C. Synergistic effects of efflux pump modulators on the azole antifungal susceptibility of Microsporum canis. Mycopathologia. 2020;185(2):279–88.

    CAS  PubMed  Google Scholar 

  58. Martins MP, Rossi A, Sanches PR, Martinez-Rossi NM. Differential expression of multidrug-resistance genes in Trichophyton rubrum. J Integr OMICS. 2019;9(2):1–81.

    Google Scholar 

  59. Fachin AL, Ferreira-Nozawa MS, Maccheroni W Jr, Martinez-Rossi NM. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol. 2006;55(Pt 8):1093–9.

    Article  CAS  PubMed  Google Scholar 

  60. Martins MP, Franceschini AC, Jacob TR, Rossi A, Martinez-Rossi NM. Compensatory expression of multidrug-resistance genes encoding ABC transporters in dermatophytes. J Med Microbiol. 2016;65(7):605–10.

    Article  CAS  PubMed  Google Scholar 

  61. Chandra J, Mukherjee PK, Ghannoum MA. Candida biofilms associated with CVC and medical devices. Mycoses. 2012;55:46–57.

    Article  CAS  Google Scholar 

  62. Nett JE, Zarnowski R, Cabezas-Olcoz J, Brooks EG, Bernhardt J, Marchillo K, et al. Host contributions to construction of three device-associated Candida albicans biofilms. Infect Immun. 2015;83(12):4630–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4(2):119–28.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ma QX, Ola M, Iracane E, Butler G. Susceptibility to medium-chain fatty acids is associated with trisomy of chromosome 7 in Candida albicans. mSphere. 2019;4(3):e00402–19.

  65. Selmecki A, Forche A, Berman J. Aneuploidy and isochromosome formation in drug-resistant Candida albicans. Science. 2006;313(5785):367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Pavelka N, Rancati G, Zhu J, Bradford WD, Saraf A, Florens L, et al. Aneuploidy confers quantitative proteome changes and phenotypic variation in budding yeast. Nature. 2010;468(7321):321–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cowen LE, Carpenter AE, Matangkasombut O, Fink GR, Lindquist S. Genetic architecture of Hsp90-dependent drug resistance. Eukaryot Cell. 2006;5(12):2184–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cowen LE, Lindquist S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science. 2005;309(5744):2185–9.

    Article  CAS  PubMed  Google Scholar 

  69. Decaestecker E, Gaba S, Raeymaekers JAM, Stoks R, Van Kerckhoven L, Ebert D, et al. Host-parasite “Red Queen” dynamics archived in pond sediment. Nature. 2007;450(7171):870-U16.

    Article  CAS  PubMed  Google Scholar 

  70. Martinez-Rossi NM, Peres NT, Rossi A. Antifungal resistance mechanisms in dermatophytes. Mycopathologia. 2008;166(5–6):369–83.

    Article  PubMed  Google Scholar 

  71. Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, et al. Function of alternative splicing. Gene. 2013;514(1):1–30.

    Article  CAS  PubMed  Google Scholar 

  72. Kempken F. Alternative splicing in ascomycetes. Appl Microbiol Biotechnol. 2013;97(10):4235–41.

    Article  CAS  PubMed  Google Scholar 

  73. Mendes NS, Silva PM, Silva-Rocha R, Martinez-Rossi NM, Rossi A. Pre-mRNA splicing is modulated by antifungal drugs in the filamentous fungus Neurospora crassa. FEBS Open Bio. 2016;6(4):358–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Laloum T, Martin G, Duque P. Alternative splicing control of abiotic stress responses. Trends Plant Sci. 2018;23(2):140–50.

    Article  CAS  PubMed  Google Scholar 

  75. Chen W, Moore MJ. Spliceosomes. Curr Biol. 2015;25(5):R181-3.

    Article  CAS  PubMed  Google Scholar 

  76. Koncz C, Dejong F, Villacorta N, Szakonyi D, Koncz Z. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. Front Plant Sci. 2012;3:9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bitencourt TA, Oliveira FB, Sanches PR, Rossi A, Martinez-Rossi NM. The prp4 kinase gene and related spliceosome factor genes in Trichophyton rubrum respond to nutrients and antifungals. J Med Microbiol. 2019;68(4):591–9.

    Article  CAS  PubMed  Google Scholar 

  78. Black DL. Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem. 2003;72:291–336.

    Article  CAS  PubMed  Google Scholar 

  79. Grutzmann K, Szafranski K, Pohl M, Voigt K, Petzold A, Schuster S. Fungal alternative splicing is associated with multicellular complexity and virulence: a genome-wide multi-species study. DNA Res. 2014;21(1):27–39.

    Article  PubMed  Google Scholar 

  80. Leal J, Squina FM, Freitas JS, Silva EM, Ono CJ, Martinez-Rossi NM, et al. A splice variant of the Neurospora crassa hex-1 transcript, which encodes the major protein of the Woronin body, is modulated by extracellular phosphate and pH changes. FEBS Lett. 2009;583(1):180–4.

    Article  CAS  PubMed  Google Scholar 

  81. Sieber P, Voigt K, Kammer P, Brunke S, Schuster S, Linde J. Comparative study on alternative splicing in human fungal pathogens suggests its involvement during host invasion. Front Microbiol. 2018;9:2313.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Roberts A, Pimentel H, Trapnell C, Pachter L. Identification of novel transcripts in annotated genomes using RNA-Seq. Bioinformatics. 2011;27(17):2325–9.

    Article  CAS  PubMed  Google Scholar 

  83. Goldstein LD, Cao Y, Pau G, Lawrence M, Wu TD, Seshagiri S, et al. prediction and quantification of splice events from RNA-Seq data. PLoS ONE. 2016;11(5):e0156132.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Hug N, Longman D, Caceres JF. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 2016;44(4):1483–95.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Yu CH, Dang Y, Zhou Z, Wu C, Zhao F, Sachs MS, et al. Codon usage influences the local rate of translation elongation to regulate co-translational protein folding. Mol Cell. 2016;59(5):744–54.

    Article  Google Scholar 

  86. Zhou Z, Dang Y, Zhou M, Yuan H, Liu Y. Codon usage biases co-evolve with transcription termination machinery to suppress premature cleavage and polyadenylation. Elife. 2018;7:29.

    Article  Google Scholar 

Download references

Funding

We thank the Brazilian funding agencies for the continuous support to our projects: São Paulo Research Foundation - FAPESP (proc. Nos. 2019/22596-9, 2018/11319-1, 2018/15458-6, 2015/23435-8, 2009/08411-4); National Council for Scientific and Technological Development -CNPq (proc. Nos. 305797/2017-4, and 304989/2017-7); Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (Finance Code 001), and Fundação de Apoio ao Ensino, Pesquisa e Assistência - FAEPA.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote sections of the manuscript. NM-R, MM, and AR edited the manuscript. All authors read and approved the submitted version.

Corresponding author

Correspondence to Nilce M. Martinez-Rossi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Handling Editor: Vishnu Chaturvedi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, A., Martins, M.P., Bitencourt, T.A. et al. Reassessing the Use of Undecanoic Acid as a Therapeutic Strategy for Treating Fungal Infections. Mycopathologia 186, 327–340 (2021). https://doi.org/10.1007/s11046-021-00550-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-021-00550-4

Keywords

Navigation