Skip to main content
Log in

Main Trends in the Development of Microwave Dielectric Materials for Cellular Communication Devices: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The requirements for high-quality microwave (MW) dielectrics, which are used in the development of cellular communication devices (radio filters, solid-state generators, etc.) for the transition from 3G to 5G communication, are considered. The results of studies on important classes of MW dielectrics based on complex oxide systems of different crystal structures, such as potassium tungsten bronze, perovskite, pucherite, dreyerite, scheelite, as well as high-quality MW dielectrics with different permittivities, are systematized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

© 2022 American Chemical Society.

Fig. 2.

© 2002 AIP Publishing.

Fig. 3.

© 2004 American Chemical Society.

Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. C. Vedrenne and J. Arnaud, Whispering-Gallery Modes of Dielectric Resonators, IEE Proceedings H (Microwaves, Optics and Antennas), 129, 183-187 (1982).

    Article  Google Scholar 

  2. A. G. Belous, High-Quality Ultra-Frequency Dielectrics [in Russian], Naukova Dumka, Kiev (2016).

    Google Scholar 

  3. Yu. M. Poplavko, Physics of Dielectrics [in Russian], Vyshcha Shkola, Kyiv (1980).

  4. R. Ubic, I. M. Reaney, and W. E. Lee, J. Am. Ceram. Soc., 82, 1336-1338 (1999), https://doi.org/10.1111/j.1151-2916.1999.tb01918.x.

    Article  CAS  Google Scholar 

  5. V. Krayzman, A. Bosak, H. Y. Playford, et al., Chem. Mater., 34, 9989-10002 (2022), https://doi.org/10.1021/acs.chemmater.2c02367.

    Article  CAS  Google Scholar 

  6. H. Ohsato, T. Ohhashi, S. Nishigaki, et al., Jpn. J. Appl. Phys., 32, 4323 (1993), https://doi.org/10.1143/JJAP.32.4323.

    Article  CAS  Google Scholar 

  7. T. Negas and P. K. Davies, Ceram. Trans., 53, 179-196 (1995).

    CAS  Google Scholar 

  8. V. I. Butko, A. G. Belous, E. A. Nenasheva, et al., Fiz. Tverd. Tela, 26, 2951-2955 (1984).

    CAS  Google Scholar 

  9. A. Belous, O. Ovchar, M. Valant, et al., J. Appl. Phys., 92, 3917-3922 (2002), https://doi.org/10.1063/1.1503855.

    Article  CAS  Google Scholar 

  10. J. Takahashi, T. Ikegami, and K. Kageyama, J. Am. Ceram. Soc., 74, 1868-1872 (1991), https://doi.org/10.1111/j.1151-2916.1991.tb07801.x.

    Article  CAS  Google Scholar 

  11. R. Ubic, G. Subodh, and M. T. Sebastian, Microwave Materials and Applications, M. T. Sebastian, H. Jantunen, and R. Ubic (eds.), John Wiley & Sons Ltd., Chichester, 149-202 (2017), https://doi.org/10.1002/9781119208549.

  12. A. G. Belous, O. V. Ovchar, M. Valant, et al., J. Mater. https://doi.org/10.1557/JMR.2002.0096.

  13. O. V. Ovchar, Synthesis, Structure, and Properties of Barium-Lantanide Titanates [in Russian], Author’s Abstract of Dissertation in competition for the academic degree of Candidate of Chemical Sciences, Kyiv (2001).

  14. A. G. Belous, G. N. Novitskaya, and S. V. Polyanetskaya, Inorg. Mater. (USSR), 23, 1330-1332 (1987), https://doi.org/10.5281/zenodo.7311475.

    Article  CAS  Google Scholar 

  15. A. G. Belous, G. N. Novitskaya, S. V. Polyanetskaya, et al., Russ. J. Inorg. Chem., 32, 156-157 (1987), https://doi.org/10.5281/zenodo.7311396.

    Article  Google Scholar 

  16. A. Belous, O. Yanchevskiy, O. V’yunov, et al., Chem. Mater., 16, 407-417 (2004), https://doi.org/10.1021/CM034820X.

  17. A. G. Belous, J. Eur. Ceram. Soc., 21, 1797-1800 (2001), https://doi.org/10.1016/S0955-2219(01)00118-2.

    Article  CAS  Google Scholar 

  18. H. Takahashi, Y. Baba, K. Ezaki, et al., Jpn. J. Appl. Phys., 30, 2339 (1991), https://doi.org/10.1143/JJAP.30.2339.

    Article  CAS  Google Scholar 

  19. A. G. Belous and O. V. Ovchar, J. Eur. Ceram. Soc., 23, 2525-2528 (2003), https://doi.org/10.1016/S0955-2219(03)00185-7.

    Article  CAS  Google Scholar 

  20. A. G. Belous, V. I. Butko, G. N. Novitskaya, et. al., Fiz. Tverd. Tela, 27, 2013-2016 (1985).

    CAS  Google Scholar 

  21. V. I. Butko, A. G. Belous, S. V. Polyanetskaya, Ukr. Khim Zhurn., 50, 1139-1142 (1984), https://doi.org/10.5281/zenodo.7308160.

    Article  CAS  Google Scholar 

  22. J. Granzin and D. Pohl, Z. Kristallogr. – Cryst. Mater., 169, 289-294 (1984), https://doi.org/10.1524/zkri.1984.169.14.289.

    Article  CAS  Google Scholar 

  23. K. Mereiter and A. Preisinger, Oesterreische Akademie der Wissenschaften, Mathematich-Naturwissenschaftliche Klasse, Sitzungsberichte, 123, 79-81 (1986).

    Google Scholar 

  24. A. K. Bhattacharya, K. K. MaHick, and A. Hartridge, Mater. Lett., 30, 7-13 (1997), https://doi.org/10.1016/S0167-577X(96)00162-0.

    Article  CAS  Google Scholar 

  25. J. W. Anthony, R. A. Bideaux, K. W. Bladh, et al., Handbook of mineralogy, Mineralogical Society of America, Chantilly, VA, (2003).

    Google Scholar 

  26. D. Zhou, L.-X. Pang, D.-W. Wang, et al., J. Mater. Chem. C, 6, 9290-9313 (2018), https://doi.org/10.1039/c8tc02260g.

    Article  CAS  Google Scholar 

  27. X. Liu and J .K. Li, Solid State Phenom., 281, 813-818 (2018).

    Article  Google Scholar 

  28. X. Zhang, Z. Ai, F. Jia, et al., Mater. Chem. Phys., 103, 162-167 (2007), https://doi.org/10.1016/j.matchemphys.2007.02.008.

    Article  CAS  Google Scholar 

  29. L. S. Wainer, R. F. Baggio, H. L. Dussel, et al., Ferroelectrics, 31, 121-126 (1981), https://doi.org/10.1080/00150198108201983.

    Article  CAS  Google Scholar 

  30. M. Valant and D. Suvorov, J. Am. Ceram. Soc., 83, 2721-2729 (2000), https://doi.org/10.1111/j.1151-2916.2000.tb01623.x.

    Article  CAS  Google Scholar 

  31. D. Zhou, C. A. Randall, H. Wang, et al., J. Am. Ceram. Soc., 93, 2147-2150 (2010), https://doi.org/10.1111/j.1551-2916.2010.03689.x.

    Article  CAS  Google Scholar 

  32. M. Dragomir, I. Arcon, S. Gardonio, et al., Acta Mater., 61, 1126-1135 (2013), https://doi.org/10.1016/j.actamat.2012.10.020.

    Article  CAS  Google Scholar 

  33. H. Xu, C. Wu, H. Li, et al., Appl. Surf. Sci., 256, 597-602 (2009), https://doi.org/10.1016/j.apsusc.2009.05.102.

    Article  CAS  Google Scholar 

  34. O. Monfort, S. Sfaelou, L. Satrapinskyy, et al., Catal. Today, 280, 51-57 (2017), https://doi.org/10.1016/j.cattod.2016.07.006.

    Article  CAS  Google Scholar 

  35. V. Sivasubramanian and V. R. K. M. Viswanathan, Jpn. J. Appl. Phys., 36, 194 (1997), https://doi.org/10.1143/JJAP.36.194.

    Article  CAS  Google Scholar 

  36. S. H. Wee, D. W. Kim, and S. I. Yoo, J. Am. Ceram. Soc., 87, 871-874 (2004), https://doi.org/10.1111/j.1551-2916.2004.00871.x.

    Article  CAS  Google Scholar 

  37. A.-K. Axelsson, M. Sebastian, and N. McN Alford, J. Korean Ceram. Soc., 40, 340-345 (2003), https://doi.org/10.4191/ksers.2003.40.4.340.

    Article  CAS  Google Scholar 

  38. K. H. Yoon, Y. H. Chang, W. S. Kim, et al., Jpn. J. Appl. https://doi.org/10.1143/JJAP.41.3812.

  39. K. Fukuda and R. K. Awai, Jpn. J. Appl. Phys., 32, 4584 (1993), https://doi.org/10.1143/JJAP.32.4584.

    Article  CAS  Google Scholar 

  40. P. L. Wise, I. M. Reaney, W. E. Lee, et al., J. Eur. Ceram. Soc., 21, 1723-1726 (2001), https://doi.org/10.1016/S0955-2219(01)00102-9.

    Article  CAS  Google Scholar 

  41. L. Wu, Y.-C. Chen, L.-J. Chen, et al., Jpn. J. Appl. Phys., 38, 5612 (1999), https://doi.org/10.1143/JJAP.38.5612.

    Article  CAS  Google Scholar 

  42. M. Valant, A.-K. Axelsson, and N. Alford, J. Eur. Ceram. Soc., 27, 2549-2560 (2007), https://doi.org/10.1016/j.jeurceramsoc.2006.08.007.

    Article  CAS  Google Scholar 

  43. M. Touboul and C. Vachon, Thermochim. Acta., 133, 61-66 (1988), https://doi.org/10.1016/0040-6031(88)87137-5.

    Article  CAS  Google Scholar 

  44. P. Lv, M. Zheng, X. Wang, et al., J. Alloys Compd., 583, 285-290 (2014), https://doi.org/10.1016/j.jallcom.2013.07.156.

    Article  CAS  Google Scholar 

  45. D. J. Masse, R. A. Pucel, D. W. Readey, et al., Proc. IEEE., 59, 1628-1629 (1971), https://doi.org/10.1109/PROC.1971.8508.

    Article  Google Scholar 

  46. T. Fukui, C. Sakurai, and M. Okuyama, J. Mater. Res., 7, 192-196 (1992), https://doi.org/10.1017/S0884291400096862.

    Article  CAS  Google Scholar 

  47. T.-T. Fang, J.-T. Shiue, and S.-C. Liou, J. Eur. Ceram. Soc., 22, 79-85 (2002), https://doi.org/10.1016/S0955-2219(01)00244-8.

    Article  CAS  Google Scholar 

  48. A. G. Belous, O. V. Ovchar, M. Macek-Krzmanc, et al., J. Eur. Ceram. Soc., 26, 3733-3739 (2006), https://doi.org/10.1016/j.jeurceramsoc.2005.12.013.

    Article  CAS  Google Scholar 

  49. W. Rath, Keram. Radsch., 49, 137-139 (1941).

    CAS  Google Scholar 

  50. K. R. Han, J. W. Jang, S. Y. Cho, et al., J. Am. Ceram. Soc., 81, 1209-1214 (1998), https://doi.org/10.1111/j.1151-2916.1998.tb02470.x.

    Article  CAS  Google Scholar 

  51. G. Wolfram and H. E. Gobel, Mater. Res. Bull., 16, 1455-1463 (1981), https://doi.org/10.1016/0025-5408(81)90066-0.

    Article  CAS  Google Scholar 

  52. H. Ikawa, A. Iwai, K. Hiruta, et al., J. Am. Ceram. Soc., 71, 120-127 (1988), https://doi.org/10.1111/j.1151-2916.1988.tb05827.x.

    Article  CAS  Google Scholar 

  53. W. Wersing, Electronic ceramics, B. C. H. Steele (ed.), Elsevier Applied Science, London, New York 1991, 67-119 (1991).

  54. A. Ioachim, M. G. Banciu, M. I. Toacsan, et al., Mater. Sci. Eng. B., 118, 205-209 (2005), https://doi.org/10.1016/j.mseb.2004.12.071.

    Article  CAS  Google Scholar 

  55. S.-Y. Cho, K. S. Hong, and K.-H. Ko, Mater. Res. Bull., 34, 511-516 (1999), https://doi.org/10.1016/S0025-5408(99)00039-2.

    Article  CAS  Google Scholar 

  56. B. Jancar, D. Suvorov, M. Valant, et al., J. Eur. Ceram. Soc., 23, 1391-1400 (2003), https://doi.org/10.1016/S0955-2219(02)00359-X.

    Article  CAS  Google Scholar 

  57. B. K. Kim, H. Hamaguchi, I. T. Kim, et al., J. Am. Ceram. Soc., 78, 3117-3120 (1995), https://doi.org/10.1111/j.1151-2916.1995.tb09093.x.

    Article  CAS  Google Scholar 

  58. I. Qazi, I. M. Reaney, and W. E. Lee, J. Eur. Ceram. Soc., 21, 2613-2616 (2001), https://doi.org/10.1016/S0955-2219(01)00325-9.

    Article  CAS  Google Scholar 

  59. A. G. Belous, O. V. Ovchar, B. Jancar, et al., Ferroelectrics, 435, 166-175 (2012), https://doi.org/10.1080/00150193.2012.740338.

    Article  CAS  Google Scholar 

  60. W. Guo, Z. Ma, Y. Luo, et al., J. Adv. Ceram., 11, 629-640 (2022), https://doi.org/10.21203/rs.3.rs-783511/v2.

  61. Z. Xiong, B. Tang, Z. Fang, et al., Ceram. Int., 44, 7771-7779 (2018), https://doi.org/10.1016/j.ceramint.2018.01.207.

    Article  CAS  Google Scholar 

  62. D. Zhou, D. Guo, W.-B. Li, et al., J. Mater. Chem. C, 4, 5357-5362 (2016), https://doi.org/10.1039/c6tc01431c.

    Article  CAS  Google Scholar 

  63. Y. Zhang, Y. Zhang, and M. Xiang, J. Eur. Ceram. Soc., 36, 1945-1951 (2016), https://doi.org/10.1016/j.jeurceramsoc.2016.02.026.

    Article  CAS  Google Scholar 

  64. B. Liu, X. Q. Liu, and X. M. Chen, J. Mater. Chem. C, 4, 1720-1726 (2016), https://doi.org/10.1039/c5tc03653d.

    Article  CAS  Google Scholar 

  65. Q. Dai and R. Zuo, J. Eur. Ceram. Soc., 39, 1132-1136 (2019), https://doi.org/10.1016/j.jeurceramsoc.2018.12.033.

    Article  CAS  Google Scholar 

  66. B. J. Tao, C. F. Xing, W. F. Wang, et al., Ceram. Int., 45, 24675-24683 (2019), https://doi.org/10.1016/j.ceramint.2019.08.206.

    Article  CAS  Google Scholar 

  67. H. Xiang, L. Fang, X. Jiang, et al., J. Am. Ceram. Soc., 99, 399-401 (2016), https://doi.org/10.1111/jace.14034.

    Article  CAS  Google Scholar 

  68. Y. H. Zhang, J. J. Sun, N. Dai, et al., J. Eur. Ceram. Soc., 39, 1127-1131 (2019), https://doi.org/10.1016/j.jeurceramsoc.2018.12.042.

    Article  CAS  Google Scholar 

  69. G. Wang, H. Zhang, X. Huang, et al., Ceram. Int., 44, 19295-19300 (2018), https://doi.org/10.1016/j.ceramint.2018.07.156.

    Article  CAS  Google Scholar 

  70. Z. Fu, P. Liu, J. Ma, et al., Mater. Lett., 164, 436-439 (2016), https://doi.org/10.1016/j.matlet.2015.11.046.

    Article  CAS  Google Scholar 

  71. Y. Wang and R. Zuo, J. Eur. Ceram. Soc., 36, 247-251 (2016), https://doi.org/10.1016/j.jeurceramsoc.2015.09.011.

    Article  CAS  Google Scholar 

  72. H. Wu and E. S. Kim, J. Alloys Compd., 669, 134-140 (2016), https://doi.org/10.1016/j.jallcom.2016.01.243.

    Article  CAS  Google Scholar 

  73. P. Zhang, L. Liu, M. Xiao, et al., J. Mater. Sci. Mater. Electron., 28, 12220-12225 (2017), https://doi.org/10.1007/s10854-017-7037-9.

    Article  CAS  Google Scholar 

  74. G. Wang, D. Zhang, X. Huang, et al., J. Am. Ceram. Soc., 103, 214-223 (2019), https://doi.org/10.1111/jace.16692.

    Article  CAS  Google Scholar 

  75. Z. Fang, B. Tang, F. Si, et al., Ceram. Int., 43, 1682-1687 (2017), https://doi.org/10.1016/j.ceramint.2016.08.055.

    Article  CAS  Google Scholar 

  76. Z. Fu, P. Liu, J. Ma, et al., J. Eur. Ceram. Soc., 36, 625-629 (2016), https://doi.org/10.1016/j.jeurceramsoc.2015.10.040.

    Article  CAS  Google Scholar 

  77. J. Zhang, Z. Yue, Y. Luo, et al., Ceram. Int., 44, 21000-21003 (2018), https://doi.org/10.1016/j.ceramint.2018.08.135.

    Article  CAS  Google Scholar 

  78. I. J. Induja and M. T. Sebastian, Mater. Lett., 211, 55-57 (2018), https://doi.org/10.1016/j.matlet.2017.09.083.

    Article  CAS  Google Scholar 

  79. L.-X. Pang, D. Zhou, W.-B. Li, et al., J. Eur. Ceram. Soc., 37, 3073-3077 (2017), https://doi.org/10.1016/j.jeurceramsoc.2017.03.034.

    Article  CAS  Google Scholar 

  80. D. H. Jin, B. Liu, K. X. Song, et al., J. Alloys Compd., 886 (2021), https://doi.org/10.1016/j.jallcom.2021.161141.

  81. W. Bian, X. Lu, Y. Wang, et al., Ceram. Int., 46, 22024-22029 (2020), https://doi.org/10.1016/j.ceramint.2020.05.187.

    Article  CAS  Google Scholar 

  82. B. Liu, L. Li, K. X. Song, et al., J. Eur. Ceram. Soc., 41, 1726-1729 (2021), https://doi.org/10.1016/j.jeurceramsoc.2020.09.073.

    Article  CAS  Google Scholar 

  83. J. Zhang, Z. Yue, Y. Luo, et al., J. Am. Ceram. Soc., 99, 1122-1124 (2016), https://doi.org/10.1111/jace.14132.

    Article  CAS  Google Scholar 

  84. K. Du, J. Fan, Z. Y. Zou, et al., J. Am. Ceram. Soc., 103, 6369-6377 (2020), https://doi.org/10.1111/jace.17360.

    Article  CAS  Google Scholar 

  85. J. Li, Y. Tang, Z. Zhang, et al., J. Eur. Ceram. Soc., 41, 1317-1323 (2021), https://doi.org/10.1016/j.jeurceramsoc.2020.10.018.

    Article  CAS  Google Scholar 

  86. A. Yang, Y. Tang, J. Li, et al., Ceram. Int., 47. 2450-2455 (2021), https://doi.org/10.1016/j.ceramint.2020.09.087.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was performed with the support of the National Research Fund of Ukraine within the project “Microwave devices based on resonant structures with metamaterial properties for the life protection and information security of Ukraine” (ID 2021.01/0030).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. V’yunov.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 59, No. 1, pp. 3-16, January-February, 2023.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belous, A.G., V’yunov, O.I. Main Trends in the Development of Microwave Dielectric Materials for Cellular Communication Devices: A Review. Theor Exp Chem 59, 1–16 (2023). https://doi.org/10.1007/s11237-023-09759-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-023-09759-4

Keywords

Navigation