Skip to main content
Log in

Triple fusion of d-amino acid oxidase from Trigonopsis variabilis with polyhistidine and Vitreoscilla hemoglobin

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Fusion proteins of d-amino acid oxidase from Trigonopsis variabilis (TvDAAO) with Vitreoscilla Hemoglobin (VHb) and (His)6-tag were constructed and expressed in recombinant Escherichia coli. A fusing-position effect was revealed that (His)6-tag’s N-terminal fusion with TvDAAO (HDAAO) reduced the specific activity by ~29%, while the C-terminal fusion (DAAOH) remained unreduced. The N-terminal fusion of VHb with TvDAAO and DAAOH significantly improved their activity. As in a 5 l fermentor, the activity of the triple fusion VHb-TvDAAO-(His)6 (VDAAOH) reached 2.53 U/mg dry cell at 9 h, ~58% increase than that of DAAOH together with ~40% biomass increase, confirming the positive effect of VHb expression on cell level. After purification, the UV–visible and fluorescence spectrum of DAAOH and VDAAOH were characterized. Enzyme kinetics studies further indicated that VDAAOH behaved a higher K cat, but a weaker substrate affinity of K m relative to DAAOH, revealing two distinct impacts of VHb-coupling with TvDAAO on protein level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alonso J, Barredo JL, Diez B et al (1998) d-Amino acid oxidase gene from Rhodotorula gracilis (Rhodosporidium toruloides) ATCC 26217. Microbiol 144:1095–1101

    Article  CAS  Google Scholar 

  • Alonso J, Barredo JL, Armise’n P et al (1999) Engineering the d-amino acid oxidase from Trigonopsis variabilis to facilitate its overproduction in Escherichia coli and its downstream processing by tailor-made metal chelate supports. Enzyme Microb Tech 25:88–95. doi:10.1016/S0141-0229(99)00019-8

    Article  CAS  Google Scholar 

  • Arnold FH (1991) Metal-affinity separations: a new dimension in protein processing. Biotechnology 4:151–156. doi:10.1038/nbt0291-151

    Google Scholar 

  • Caligiuri A, D’Arrigo P, Rosini E et al (2006) Enzymatic conversion of unnatural amino acids by yeast d-amino acid oxidase. Adv Synth Catal 348:2183–2190. doi:10.1002/adsc.200606188

    Article  CAS  Google Scholar 

  • Chien LJ, Wu JM, Kuan IC et al (2004) Coexpression of Vitreoscilla hemoglobin reduces the toxic effect of expression of d-Amino acid oxidase in E. coli. Biotechnol Prog 20:1359–1365. doi:10.1021/bp0498589

    Article  CAS  Google Scholar 

  • Ciccarelli E, Massaer M, Guillaume JP et al (1989) Porcine d-amino acid oxidase: production of the biologically active enzyme in Escherichia coli. Biochem Biophys Res Commun 161(2):865–872. doi:10.1016/0006-291X(89)92680-6

    Article  CAS  Google Scholar 

  • Deshpande BS, Ambedkar SS, Sudhakaran VK et al (1994) Molecular biology of β-lactam acylases. World J Microb Biot 10:129–138. doi:10.1007/BF00360873

    Article  CAS  Google Scholar 

  • Dikshit KL, Webster DA (1988) Cloning, characterization and expression of bacterial globin gene from Vitreoscilla in Escherichia coli. Gene 70:377–386. doi:10.1016/0378-1119(88)90209-0

    Article  CAS  Google Scholar 

  • Gonzalez FJ, Montes J, Martin F et al (1997) Molecular cloning of TvDAO, a gene encoding a d-amino acid oxidase from Trigonopsis variabilis and its expression in Saccharomyces cerevisiae and Kluyveromyces lactis. Yeast 13:1399–1408. doi:10.1002/(SICI)1097-0061(199712)13:15<1399::AID-YEA187>3.0.CO;2-7

    Article  CAS  Google Scholar 

  • Hwang TS, Fu HM, Lin LL et al (2000) High-level expression of Trigonopsis variabilis d-amino acid oxidase in Escherichia coli using lactose as inducer. Biotechnol Lett 22:655–658. doi:10.1023/A:1005647800700

    Article  CAS  Google Scholar 

  • Isarankura-Na-Ayudhya C, Panpumthong P, Tangkosakul T et al (2008) Shedding light on the role of Vitreoscilla hemoglobin on cellular catabolic regulation by proteomic analysis. Int J Biol Sci 4:71–80

    Google Scholar 

  • Kallio PT, Kim DJ, Tsai PS, Bailey JE (1994) Intracellular expression of Vitreoscilla haemoglobin acivates E. coli energy metabolism under oxygen-limited conditions. Eur J Biochem 219:201–208. doi:10.1111/j.1432-1033.1994.tb19931.x

    Article  CAS  Google Scholar 

  • Khang YH, Kim IW, Hah YR et al (2003) Fusion protein of Vitreoscilla hemoglobin with d-amino acid oxidase enhances activity and stability of biocatalyst in the bioconversion process of cephalosporin C. Biotechnol Bioeng 82:480–488. doi:10.1002/bit.10592

    Article  CAS  Google Scholar 

  • Khosla C, Curtis JE, DeModena J, Rinas U, Bailey JE (1990) Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Biotechnology 8:849–853. doi:10.1038/nbt0990-849

    Article  CAS  Google Scholar 

  • Khosravi M, Webster DA, Stark BC (1990) Presence of the bacterial hemoglobin gene improves α-amylase production of a recombinant Escherichia coli strain. Plasmid 24:190–194. doi:10.1016/0147-619X(90)90002-T

    Article  CAS  Google Scholar 

  • Kirkpatrick ND, Zou C, Brewer MA, Brands WR, Drezek RA, Utzinger U (2005) Endogenous fluorescence spectroscopy of cell suspensions for chemopreventive drug monitoringy. Photochem Photobiol 81:125–134

    Article  CAS  Google Scholar 

  • Lin LL, Chien HR, Wang WC et al (2000) Expression of Trigonopsis variabilis d-amino acid oxidase gene in Escherichia coli and characterization of its inactive mutants. Enzyme Microb Technol 27:482–491. doi:10.1016/S0141-0229(00)00247-7

    Article  CAS  Google Scholar 

  • López-Gallego F, Betancor L, Hidalgo A et al (2005) Preparation of a robust biocatalyst of d-amino acid oxidase on sepabeads supports using the glutaraldehyde crosslinking method. Enzyme Microb Tech 37:750–756. doi:10.1016/j.enzmictec.2005.04.016

    Article  CAS  Google Scholar 

  • Mohanty AK, Wiener MC (2004) Membrane protein expression and production: effects of polyhistidine tag length and position. Protein Expr Purif 33:311–325. doi:10.1016/j.pep.2003.10.010

    Article  CAS  Google Scholar 

  • Pilone MS (2000) d-Amino acid oxidase: new findings. Cell Mol Life Sci 57:1732–1747. doi:10.1007/PL00000655

    Article  CAS  Google Scholar 

  • Pollegioni L, Caldinelli L, Molla G et al (2004) Catalytic properties of d-amino acid oxidase in cephalosporin C bioconversion: a comparison between proteins from different sources. Biotechnol Prog 20:467–473. doi:10.1021/bp034206q

    Article  CAS  Google Scholar 

  • Pollegioni L, Piubelli L, Sacchi S et al (2007) Physiological functions of d-amino acid oxidases: from yeast to humans. Cell Mol Life Sci 64:1373–1394. doi:10.1007/s00018-007-6558-4

    Article  CAS  Google Scholar 

  • Pollegioni L, Molla G, Sacchi S et al (2008) Properties and applications of microbial d-amino acid oxidases: current state and perspectives. Appl Microbiol Biotechnol 78:1–16. doi:10.1007/s00253-007-1282-4

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, Cold Spring Harbor. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Tischer W, Wedekind F (1999) Immobilized enzymes: methods and applications. Top Curr Chem 200:95–126. doi:10.1007/3-540-68116-7_4

    Article  CAS  Google Scholar 

  • Tishkov VI, Khoronenkova SV (2005) d-Amino acid oxidase: structure, catalytic mechanism, and practical application. Biochem Mosc 70:40–54

    CAS  Google Scholar 

  • Tsai PS, Nageli M, Bailey JE (2002) Intracellular expression of Vitreoscilla hemoglobin modifies microaerobic Escherichia coli metabolism through elevated concentration and specific activity of cytochrome o. Biotechnol Bioeng 79(5):558–567. doi:10.1002/bit.10440

    Article  CAS  Google Scholar 

  • Yu HM, Yin J, Li HQ et al (2000) Cloning and expression of Vitreoscilla hemoglobin gene in recombinant Escherichia coli to produce poly-β-hydroxybutyrate (PHB). J Tsinghua Univ (Sci & Tech) 40(2):32–35

    CAS  Google Scholar 

  • Yu HM, Shi Y, Zhang YP et al (2002) Effect of Vitreoscilla hemoglobin biosynthesis in Escherichia coli on production of poly (β-hydroxybutyrate) and fermentative parameters. FEMS Microbiol Lett 214:223–227

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation for the Author of National Excellent Doctoral Dissertation of P. R. China (No.200345), the National Key Basic Research Project 973 (2007CB714304) and High-tech Project 863 (2008AA02Z207). Many thanks for the kind gift of pBR322-vgb from Prof. Shengli Yang of Shanghai Research Center of Biotechnology, Academic Sinica, Shanghai, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Min Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, XF., Yu, HM., Wen, C. et al. Triple fusion of d-amino acid oxidase from Trigonopsis variabilis with polyhistidine and Vitreoscilla hemoglobin. World J Microbiol Biotechnol 25, 1353–1361 (2009). https://doi.org/10.1007/s11274-009-0022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-009-0022-6

Keywords

Navigation