Skip to main content
Log in

Optimizing dag scheduling and deployment for Iot data analysis services in the multi-UAV mobile edge computing system

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

As the deployment of Internet of Things (IoT) devices becomes more widespread, the demand for data analysis services is also increasing in both range and volume. Despite the increasing demand for services due to the rise of IoT devices, efficiently processing latency-sensitive data analysis tasks (DATs) remains a significant challenge, especially in areas where communication infrastructure is limited or unavailable. Unmanned aerial vehicles (UAVs) can enhance communication coverage and quality by leveraging their flexible deployment characteristics, particularly in areas where network coverage is limited for IoT devices. UAVs can provide edge computing services while simultaneously offering network coverage, making them a valuable asset for improving communication in such areas. In this paper, we propose an Mobile Edge Computing (MEC) system that utilizes multiple UAVs equipped with edge servers to offer latency-sensitive analytical services to IoT devices on the ground. However, traditional task scheduling algorithms are challenging to adapt to dynamic and complex edge network environments, particularly for scheduling tasks with dependencies. To address this challenge, we employ deep reinforcement learning (DRL) to develop Directed Acyclic Graph (DAG) task scheduling algorithms and UAV deployment optimization algorithms. Our algorithm enables us to obtain optimal scheduling and deployment adjustment strategies in dynamic and changing environments. Simulation experiments demonstrate that in a MEC system comprising of multiple UAVs, our algorithm can swiftly converge to the optimal value, resulting in a significant reduction in DAT response time and cluster energy consumption compared to baseline algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Akhter, R., & Sofi, S. A. (2022). Precision agriculture using iot data analytics and machine learning. Journal of King Saud University-Computer and Information Sciences, 34(8), 5602–5618.

    Article  Google Scholar 

  2. Jouhari, M., Amhoud, E.M., Saeed, N., & Alouini, M.-S. (2022). A survey on scalable lorawan for massive iot: recent advances, potentials, and challenges. arXiv preprint arXiv:2202.11082.

  3. Guo, F., Yu, F. R., Zhang, H., Li, X., Ji, H., & Leung, V. C. (2021). Enabling massive iot toward 6g: A comprehensive survey. IEEE Internet of Things Journal, 8(15), 11891–11915.

    Article  Google Scholar 

  4. Cai, Z., & He, Z. (2019). Trading private range counting over big iot data. In IEEE 39th international conference on distributed computing systems (ICDCS). IEEE, 2019:144–153.

  5. Valavanis, K. P., & Vachtsevanos, G. J. (2015). Handbook of unmanned aerial vehicles. Springer.

    Book  MATH  Google Scholar 

  6. Yin, L., Zhang, N., & Tang, C. (2021). On-demand UAV base station deployment for wireless service of crowded tourism areas. Personal and Ubiquitous Computing, pp. 1–13.

  7. Huang, H., & Savkin, A. V. (2022). Deployment of heterogeneous UAV base stations for optimal quality of coverage. IEEE Internet of Things Journal, 9(17), 16429–16437.

    Article  Google Scholar 

  8. Mandloi, D., Sharma, R., & Arya, R. (2022). Energy efficient deployment of multiple uav mounted base stations: a machine learning-based approach. International Journal of Ultra Wideband Communications and Systems, 5(3), 126–135.

    Article  Google Scholar 

  9. Grasso, C., Raftopoulos, R., & Schembra, G. (2022). Slicing a fanet for heterogeneous delay-constrained applications. Computer Communications, 195, 362–375.

    Article  Google Scholar 

  10. Somula, R. S., & Sasikala, R. (2018). A survey on mobile cloud computing: Mobile computing+ cloud computing (mcc= mc+ cc). Scalable Computing: Practice and Experience, 19(4), 309–337.

    Google Scholar 

  11. Abbas, N., Zhang, Y., Taherkordi, A., & Skeie, T. (2017). Mobile edge computing: A survey. IEEE Internet of Things Journal, 5(1), 450–465.

    Article  Google Scholar 

  12. Dinh, T. Q., Tang, J., La, Q. D., & Quek, T. Q. (2017). Offloading in mobile edge computing: Task allocation and computational frequency scaling. IEEE Transactions on Communications, 65(8), 3571–3584.

    Google Scholar 

  13. Othman, M., Madani, S. A., Khan, S. U., et al. (2013). A survey of mobile cloud computing application models. IEEE Communications Surveys & Tutorials, 16(1), 393–413.

    Google Scholar 

  14. Feng, C., Han, P., Zhang, X., Yang, B., Liu, Y., & Guo, L. (2022). Computation offloading in mobile edge computing networks: A survey. Journal of Network and Computer Applications, 202, 103366.

    Article  Google Scholar 

  15. Shakarami, A., Ghobaei-Arani, M., & Shahidinejad, A. (2020). A survey on the computation offloading approaches in mobile edge computing: A machine learning-based perspective. Computer Networks, 182, 107496.

    Article  Google Scholar 

  16. Lv, X., Du, H., & Ye, Q. (2022). Tbtoa: A dag-based task offloading scheme for mobile edge computing, In ICC 2022-IEEE International Conference on Communications. IEEE, pp. 4607–4612.

  17. Convolbo, M. W., & Chou, J. (2016). Cost-aware dag scheduling algorithms for minimizing execution cost on cloud resources. The Journal of Supercomputing, 72, 985–1012.

    Article  Google Scholar 

  18. Liu, Y., Wang, S., Zhao, Q., Du, S., Zhou, A., Ma, X., & Yang, F. (2020). Dependency-aware task scheduling in vehicular edge computing. IEEE Internet of Things Journal, 7(6), 4961–4971.

    Article  Google Scholar 

  19. Zhang, Z., Hua, Q.-S., Zhang, X., Jin, H., & Liao, X. (2022). Dag scheduling with communication delays based on graph convolutional neural network. Wireless Communications and Mobile Computing. https://doi.org/10.1155/2022/9013361

    Article  Google Scholar 

  20. Yuan, X., Xie, Z., & Tan, X. (2022). Computation offloading in uav-enabled edge computing: A stackelberg game approach. Sensors, 22(10), 3854.

    Article  Google Scholar 

  21. Zhang, L., Zhang, Z.-Y., Min, L., Tang, C., Zhang, H.-Y., Wang, Y.-H., & Cai, P. (2021). Task offloading and trajectory control for UAV-assisted mobile edge computing using deep reinforcement learning. IEEE Access, 9, 53708–53719.

    Article  Google Scholar 

  22. He, Y., Zhai, D., Huang, F., Wang, D., Tang, X., & Zhang, R. (2021). Joint task offloading, resource allocation, and security assurance for mobile edge computing-enabled uav-assisted vanets. Remote Sensing, 13(8), 1547.

    Article  Google Scholar 

  23. Xie, Y., Wu, F., Zhang, K., & Leng, S. (2021). A dag-based secure cooperative task offloading scheme in vehicular networks. In 2021 IEEE 21st International Conference on Communication Technology (ICCT). IEEE, pp. 870–875.

  24. Liang, J., Li, K., Liu, C., & Li, K. (2021). Joint offloading and scheduling decisions for dag applications in mobile edge computing. Neurocomputing, 424, 160–171.

    Article  Google Scholar 

  25. Fu, X., Tang, B., Guo, F., & Kang, L. (2021). Priority and dependency-based dag tasks offloading in fog/edge collaborative environment. In 2021 IEEE 24th International conference on computer supported cooperative work in design (CSCWD). IEEE, pp. 440–445.

  26. Liu, J., Wu, Z., Liu, J., & Tu, X. (2022). Distributed location-aware task offloading in multi-uavs enabled edge computing. IEEE Access, 10, 72416–72428.

    Article  Google Scholar 

  27. Hadi, M., & Ghazizadeh, R. (2022). Joint resource allocation, user clustering and 3-d location optimization in multi-uav-enabled mobile edge computing. Computer Networks, 218, 109420.

    Article  Google Scholar 

  28. Mao, S., He, S., & Wu, J. (2020). Joint uav position optimization and resource scheduling in space-air-ground integrated networks with mixed cloud-edge computing. IEEE Systems Journal, 15(3), 3992–4002.

    Article  Google Scholar 

  29. Hu, J., Jiang, M., Zhang, Q., Li, Q., & Qin, J. (2019). Joint optimization of uav position, time slot allocation, and computation task partition in multiuser aerial mobile-edge computing systems. IEEE Transactions on Vehicular Technology, 68(7), 7231–7235.

    Article  Google Scholar 

  30. Xiong, J., Guo, H., & Liu, J. (2019). Task offloading in uav-aided edge computing: Bit allocation and trajectory optimization. IEEE Communications Letters, 23(3), 538–541.

    Article  Google Scholar 

  31. Coldrey, M., Berg, J.-E., Manholm, L., Larsson, C., & Hansryd, J. (2013). Non-line-of-sight small cell backhauling using microwave technology. IEEE Communications Magazine, 51(9), 78–84.

    Article  Google Scholar 

  32. Mao, Y., You, C., Zhang, J., Huang, K., & Letaief, K. B. (2017). Mobile edge computing: Survey and research outlook. arXiv preprint arXiv:1701.01090.

  33. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

  34. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.

    Article  Google Scholar 

  35. Hu, Q., Cai, Y., Yu, G., Qin, Z., Zhao, M., & Li, G. Y. (2018). Joint offloading and trajectory design for uav-enabled mobile edge computing systems. IEEE Internet of Things Journal, 6(2), 1879–1892.

    Article  Google Scholar 

  36. Liu, Z., Tan, X., Wen, M., Wang, S., & Liang, C. (2021). An energy-efficient selection mechanism of relay and edge computing in uav-assisted cellular networks. IEEE Transactions on Green Communications and Networking, 5(3), 1306–1318.

    Article  Google Scholar 

  37. Yuan, L., He, Q., Tan, S., Li, B., Yu, J., Chen, F., Jin, H., & Yang, Y. (2021). Coopedge: A decentralized blockchain-based platform for cooperative edge computing. Proceedings of the Web Conference, 2021, 2245–2257.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Projects(2022YFB4500800); Applied Basic Research Program Project of Liaoning Province(2023JH2/101300192); The Fundamental Research Funds for the Central Universities(N2116014); The National Natural Science Foundation of China (2032013, 62072094); New Generation Information Technology Innovation Project of Ministry of Education(2021ITA10011)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 655 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Pan, Y., Xia, Y. et al. Optimizing dag scheduling and deployment for Iot data analysis services in the multi-UAV mobile edge computing system. Wireless Netw (2023). https://doi.org/10.1007/s11276-023-03451-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-023-03451-0

Keywords

Navigation