Skip to main content
Log in

A comparative study on the Cs adsorption/desorption and structural changes in different clay minerals

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We investigated the structural changes in clay minerals after Cs adsorption and understood their low desorption efficiency using an ion-exchanger. We focused on the role of interlayers in Cs adsorption and desorption in 2:1 clay minerals, namely illite, hydrobiotite, and montmorillonite, using batch experiments and XRD and EXAFS analyses. The adsorption characteristics of the clay minerals were analyzed using cation exchange capacity (CEC), maximum adsorption isotherms (Qmax), and radiocesium interception potential (RIP) experiments. Although illite showed a low CEC value, it exhibited high selectivity for Cs with a relatively high RIP/CEC ratio. The Cs desorption efficiency after treatment with a NaCl ion exchanger was the highest for illite (74.3%), followed by hydrobiotite (45.5%) and montmorillonite (30.3%); thus, Cs adsorbed onto planar sites, rather than on interlayers or frayed edge sites (FESs), is easily desorbed. After NaCl treatment, XRD analysis showed that the low desorption efficiency was due to the collapse of the interlayer-fixed Cs, which tightly narrowed the interlayers’ hydrobiotite due to the ion exchange of divalent cations (Mg2+ or Ca2+) into the monovalent cation (Na+). Moreover, EXAFS analysis showed that hydrobiotite formed inner-sphere structures after NaCl desorption, indicating that it was difficult to remove Cs from NaCl desorption due to the collapsed hydrobiotite and montmorillonite interlayers as well as the strong bonding in FESs of illite. In contrast, chelation desorption using oxalic acid effectively dissolved the narrowed interlayers of hydrobiotite (98%) and montmorillonite (85.26%), enhancing the desorption efficiency. Therefore, low desorption efficiency for Cs clays using an ion exchanger was caused by the collapsed interlayer due to the exchange between monovalent cation and divalent cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data and materials can be made available on request.

References

  • Abollino O, Giacomino A, Malandrino M, Mentasti E (2008) Interaction of metal ions with montmorillonite and vermiculite. Appl Clay Sci 38:227–236

    CAS  Google Scholar 

  • Absalom J, Young S, Crout N, Nisbet A, Woodman R, Smolders E, Gillett A (1999) Predicting soil to plant transfer of radiocesium using soil characteristics. Environ Sci Technol 33:1218–1223

    CAS  Google Scholar 

  • Akemoto Y, Sakti SCW, Kan M, Tanaka S (2021) Interpretation of the interaction between cesium ion and some clay minerals based on their structural features. Environ Sci Pollut Res 28:14121–14130

    CAS  Google Scholar 

  • Bostick BC, Vairavamurthy MA, Karthikeyan K, Chorover J (2002) Cesium adsorption on clay minerals: an EXAFS spectroscopic investigation. Environ Sci Technol 36:2670–2676

    CAS  Google Scholar 

  • Bourg IC, Sposito G, Bourg AC (2007) Modeling cation diffusion in compacted water-saturated sodium bentonite at low ionic strength. Environ Sci Technol 41:8118–8122

    CAS  Google Scholar 

  • Bradbury MH, Baeyens B (2000) A generalised sorption model for the concentration dependent upta = ke of caesium by argillaceous rocks. J Contam Hydrol 42:141–163

    CAS  Google Scholar 

  • Carroll D, Starkey HC (1971) Reactivity of clay minerals with acids and alkalies. Clays Clay Miner 19:321–333

    CAS  Google Scholar 

  • Chen L, Dong Y (2013) Sorption of 63 Ni (II) to montmorillonite as a function of pH, ionic strength, foreign ions and humic substances. J Radioanal Nucl Chem 295:2117–2123

    CAS  Google Scholar 

  • Cornell R (1993) Adsorption of cesium on minerals: a review. J Radioanal Nucl Chem 171:483–500

    CAS  Google Scholar 

  • de Koning A, Comans RN (2004) Reversibility of radiocaesium sorption on illite. Geochim Cosmochim Acta 68:2815–2823

    Google Scholar 

  • De Koning A, Konoplev A, Comans R (2007) Measuring the specific caesium sorption capacity of soils, sediments and clay minerals. Appl Geochem 22:219–229

    Google Scholar 

  • Ding D, Zhang Z, Lei Z, Yang Y, Cai T (2016) Remediation of radiocesium-contaminated liquid waste, soil, and ash: a mini review since the Fukushima Daiichi Nuclear Power Plant accident. Environ Sci Pollut Res 23:2249–2263

    CAS  Google Scholar 

  • Durrant CB, Begg JD, Kersting AB, Zavarin M (2018) Cesium sorption reversibility and kinetics on illite, montmorillonite, and kaolinite. Sci Total Environ 610:511–520

    Google Scholar 

  • Dzene L, Tertre E, Hubert F, Ferrage E (2015) Nature of the sites involved in the process of cesium desorption from vermiculite. J Colloid Interface Sci 455:254–260

    CAS  Google Scholar 

  • Fan Q, Xu J, Niu Z, Li P, Wu W (2012) Investigation of Cs (I) uptake on Beishan soil combined batch and EDS techniques. Appl Radiat Isot 70:13–19

    CAS  Google Scholar 

  • Fan Q, Tanaka M, Tanaka K, Sakaguchi A, Takahashi Y (2014a) An EXAFS study on the effects of natural organic matter and the expandability of clay minerals on cesium adsorption and mobility. Geochim Cosmochim Acta 135:49–65

    CAS  Google Scholar 

  • Fan Q, Yamaguchi N, Tanaka M, Tsukada H, Takahashi Y (2014b) Relationship between the adsorption species of cesium and radiocesium interception potential in soils and minerals: an EXAFS study. J Environ Radioact 138:92–100

    CAS  Google Scholar 

  • Fu C, Tan Z, Cheng J, Xie J, Dai X, Du Y, Zhu S, Wang S, Yan M (2023) Effective removal of cesium by ammonium molybdophosphate–polyethylene glycol magnetic nanoparticles. J Environ Chem Eng 11:110544

    CAS  Google Scholar 

  • Fukushi K, Sakai H, Itono T, Tamura A, Arai S (2014) Desorption of intrinsic cesium from smectite: inhibitive effects of clay particle organization on cesium desorption. Environ Sci Technol 48:10743–10749

    CAS  Google Scholar 

  • Fuller AJ, Shaw S, Ward MB, Haigh SJ, Mosselmans JFW, Peacock CL, Stackhouse S, Dent AJ, Trivedi D, Burke IT (2015) Caesium incorporation and retention in illite interlayers. Appl Clay Sci 108:128–134

    CAS  Google Scholar 

  • Han B, Zhang X, Liu C, Ma G, Guo D, Shao Y, Li P, Liang J, Fan Q (2023) Essential role of the interlayer of montmorillonite, vermiculite, and illite for Ni (II) sorption. J Radioanal Nucl Chem 332:1315–1323

    CAS  Google Scholar 

  • Ho Y-S (2006) Review of second-order models for adsorption systems. J Hazard Mater 136:681–689

    CAS  Google Scholar 

  • Hwang J, Han WS, Choung S, Kim J-W, Suk H, Lee J (2023) Diverse sorption capacities and contribution of multiple sorptive sites on illitic clays to assess the immobilization of dissolved cesium in subsurface environments. J Hazard Mater 441:129973

    CAS  Google Scholar 

  • Iijima K, Tomura T, Shoji Y (2010) Reversibility and modeling of adsorption behavior of cesium ions on colloidal montmorillonite particles. Appl Clay Sci 49:262–268

    CAS  Google Scholar 

  • Ikhsan J, Wells JD, Johnson BB, Angove MJ (2005) Surface complexation modeling of the sorption of Zn (II) by montmorillonite. Colloids Surf Physicochem Eng Aspects 252:33–41

    CAS  Google Scholar 

  • Kikuchi R, Kogure T (2018) Structural and compositional variances in ‘hidrobiotite’ sample from Palabora, South Africa. Clay Science 22:39–52

    CAS  Google Scholar 

  • Kim BH, Park CW, Yang H-M, Seo B-K, Lee B-S, Lee K-W, Park SJ (2017) Comparison of Cs desorption from hydrobiotite by cationic polyelectrolyte and cationic surfactant. Colloids Surf Physicochem Eng Aspects 522:382–388

    CAS  Google Scholar 

  • Kim S-M, Yoon I-H, Kim I-G, Park CW, Sihn Y, Kim J-H, Park S-J (2020a) Cs desorption behavior during hydrothermal treatment of illite with oxalic acid. Environ Sci Pollut Res 27:35580–35590

    CAS  Google Scholar 

  • Kim S-M, Yoon I-H, Kim I, Kim J-H, Park S-J (2020b) Hydrothermal desorption of Cs with oxalic acid from hydrobiotite and wastewater treatment by chemical precipitation. Energies 13:3284

    CAS  Google Scholar 

  • Kim Y, Cygan RT, Kirkpatrick RJ (1996a) 133Cs NMR and XPS investigation of cesium adsorbed on clay minerals and related phases. Geochim Cosmochim Acta 60:1041–1052

    CAS  Google Scholar 

  • Kim Y, Kirkpatrick RJ, Cygan RT (1996b) 133Cs NMR study of cesium on the surfaces of kaolinite and illite. Geochim Cosmochim Acta 60:4059–4074

    CAS  Google Scholar 

  • Kogure T, Morimoto K, Tamura K, Sato H, Yamagishi A (2012) XRD and HRTEM evidence for fixation of cesium ions in vermiculite clay. Chem Lett 41:380–382

    CAS  Google Scholar 

  • Komadel P, Madejová J, Janek M, Gates WP, Kirkpatrick R, Stucki JW (1996) Dissolution of hectorite in inorganic acids. Clays Clay Miner 44:228–236

    CAS  Google Scholar 

  • Kumar KV, Ramamurthi V, Sivanesan S (2005) Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J Colloid Interface Sci 284:14–21

    CAS  Google Scholar 

  • Kwon S, Lim J, Seoung D, Cho Y, Park B (2023) Comparative study of the cesium adsorption behavior of montmorillonite and illite based on their mineralogical properties and interlayer cations. J Hazard Mater Adv 10:100258

    CAS  Google Scholar 

  • Lalhriatpuia C, Tiwari D, Lee S-M (2014) Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs (I) from aqueous solutions. Appl Surf Sci 321:275–282

    Google Scholar 

  • Lee J, Park S-M, Jeon E-K, Baek K (2017) Selective and irreversible adsorption mechanism of cesium on illite. Appl Geochem 85:188–193

    CAS  Google Scholar 

  • Liu X, Lu X, Wang R, Zhou H (2008) Effects of layer-charge distribution on the thermodynamic and microscopic properties of Cs-smectite. Geochim Cosmochim Acta 72:1837–1847

    CAS  Google Scholar 

  • Miranda-Trevino JC, Coles CA (2003) Kaolinite properties, structure and influence of metal retention on pH. Appl Clay Sci 23:133–139

    CAS  Google Scholar 

  • Motokawa R, Endo H, Yokoyama S, Nishitsuji S, Kobayashi T, Suzuki S, Yaita T (2014) Collective structural changes in vermiculite clay suspensions induced by cesium ions. Sci Rep 4:6585

    CAS  Google Scholar 

  • Mukai H, Hatta T, Kitazawa H, Yamada H, Yaita T, Kogure T (2014) Speciation of radioactive soil particles in the Fukushima contaminated area by IP autoradiography and microanalyses. Environ Sci Technol 48:13053–13059

    CAS  Google Scholar 

  • Nagy NM, Kónya J, Wazelischen-Kun G (1999) The adsorption and desorption of carrier-free radioactive isotopes on clay minerals and Hungarian soils. Colloids Surf Physicochem Eng Aspects 152:245–250

    CAS  Google Scholar 

  • Okumura M, Nakamura H, Machida M (2013) Mechanism of strong affinity of clay minerals to radioactive cesium: first-principles calculation study for adsorption of cesium at frayed edge sites in muscovite. J Phys Soc Jpn 82:033802

    Google Scholar 

  • Okumura T, Tamura K, Fujii E, Yamada H, Kogure T (2014) Direct observation of cesium at the interlayer region in phlogopite mica. Microscopy 63:65–72

    CAS  Google Scholar 

  • Önal Y, Akmil-Başar C, Eren D, Sarıcı-Özdemir Ç, Depci T (2006) Adsorption kinetics of malachite green onto activated carbon prepared from Tunçbilek lignite. J Hazard Mater 128:150–157

    Google Scholar 

  • Palansooriya KN, Yoon I-H, Kim S-M, Wang C-H, Kwon H, Lee S-H, Igalavithana AD, Mukhopadhyay R, Sarkar B, Ok YS (2022) Designer biochar with enhanced functionality for efficient removal of radioactive cesium and strontium from water. Environ Res 214:114072

    CAS  Google Scholar 

  • Park CW, Kim I, Yoon I-H, Yang H-M, Seo B-K (2021a) Behaviors of desorption agents during removal of Cs from clay minerals and actual soil. J Nucl Fuel Cycle Waste Technol 19:39–49

    Google Scholar 

  • Park CW, Kim S-M, Kim I, Yoon I-H, Hwang J, Kim J-H, Yang H-M, Seo BK (2021b) Sorption behavior of cesium on silt and clay soil fractions. J Environ Radioact 233:106592

    CAS  Google Scholar 

  • Park S-M, Alessi DS, Baek K (2019a) Selective adsorption and irreversible fixation behavior of cesium onto 2: 1 layered clay mineral: a mini review. J Hazard Mater 369:569–576

    CAS  Google Scholar 

  • Park S-M, Lee J, Jeon E-K, Kang S, Alam MS, Tsang DC, Alessi DS, Baek K (2019b) Adsorption characteristics of cesium on the clay minerals: structural change under wetting and drying condition. Geoderma 340:49–54

    CAS  Google Scholar 

  • Poinssot C, Baeyens B, Bradbury MH (1999) Experimental and modelling studies of caesium sorption on illite. Geochim Cosmochim Acta 63:3217–3227

    CAS  Google Scholar 

  • Qin H, Yokoyama Y, Fan Q, Iwatani H, Tanaka K, Sakaguchi A, Kanai Y, Zhu J, Onda Y, Takahashi Y (2012) Investigation of cesium adsorption on soil and sediment samples from Fukushima Prefecture by sequential extraction and EXAFS technique. Geochem J 46:297–302

    CAS  Google Scholar 

  • Redlich O, Peterson DL (1959) A useful adsorption isotherm. J Phys Chem 63:1024–1024

    CAS  Google Scholar 

  • Schnurr A, Marsac R, Rabung T, Lützenkirchen J, Geckeis H (2015) Sorption of Cm (III) and Eu (III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim Cosmochim Acta 151:192–202

    CAS  Google Scholar 

  • Tamura K, Kogure T, Watanabe Y, Nagai C, Yamada H (2014) Uptake of cesium and strontium ions by artificially altered phlogopite. Environ Sci Technol 48:5808–5815

    CAS  Google Scholar 

  • Tan X, Fang M, Wang X (2010) Sorption speciation of lanthanides/actinides on minerals by TRLFS, EXAFS and DFT studies: a review. Molecules 15:8431–8468

    CAS  Google Scholar 

  • Tournassat C, Tinnacher RM, Grangeon S, Davis JA (2018) Modeling uranium (VI) adsorption onto montmorillonite under varying carbonate concentrations: a surface complexation model accounting for the spillover effect on surface potential. Geochim Cosmochim Acta 220:291–308

    CAS  Google Scholar 

  • Van Rompaey K, Van Ranst E, De Coninck F, Vindevogel N (2002) Dissolution characteristics of hectorite in inorganic acids. Appl Clay Sci 21:241–256

    Google Scholar 

  • Wang W, Shi L, Wu H, Ding Z, Liang J, Li P, Fan Q (2023) Interactions between micaceous minerals weathering and cesium adsorption. Water Res 238:119918

    CAS  Google Scholar 

  • Wu H, Qiang S, Fan Q, Zhao X, Liu P, Li P, Liang J, Wu W (2018) Exploring the relationship between Th (IV) adsorption and the structure alteration of phlogopite. Appl Clay Sci 152:295–302

    CAS  Google Scholar 

  • Wu L, Liao L, Lv G (2015) Influence of interlayer cations on organic intercalation of montmorillonite. J Colloid Interface Sci 454:1–7

    CAS  Google Scholar 

  • Yamamoto T (2012) Radioactivity of fission product and heavy nuclides deposited on soil in Fukushima Dai-Ichi Nuclear Power Plant accident: Fukushima NPP Accident Related. J Nucl Sci Technol 49:1116–1133

    CAS  Google Scholar 

  • Yu S, Wang X, Chen Z, Tan X, Wang H, Hu J, Alsaedi A, Alharbi NS, Guo W, Wang X (2016) Interaction mechanism of radionickel on Na-montmorillonite: influences of pH, electrolyte cations, humic acid and temperature. Chem Eng J 302:77–85

    CAS  Google Scholar 

  • Zachara JM, Smith SC, Liu C, McKinley JP, Serne RJ, Gassman PL (2002) Sorption of Cs+ to micaceous subsurface sediments from the Hanford site, USA. Geochim Cosmochim Acta 66:193–211

    CAS  Google Scholar 

  • Zhang C, Liu X, Lu X, He M, Meijer EJ, Wang R (2017) Surface complexation of heavy metal cations on clay edges: insights from first principles molecular dynamics simulation of Ni (II). Geochim Cosmochim Acta 203:54–68

    Google Scholar 

  • Zhang K, Li Z, Qi S, Chen W, Xie J, Wu H, Zhao H, Li D, Wang S (2022) Adsorption behavior of Cs (I) on natural soils: batch experiments and model-based quantification of different adsorption sites. Chemosphere 290:132636

    CAS  Google Scholar 

  • Zhang K, Chen W, Lu M, Li Z, Qi S, Fan Q, Zhao H, Yang J, Li D, Zhang J (2023) Adsorption forms of cesium in specific soils based on EXAFS spectroscopic investigations and sequential extraction experiments. J Radioanal Nucl Chem 332:527–538

    CAS  Google Scholar 

  • Zhang Y, Zhao H, Fan Q, Zheng X, Li P, Liu S, Wu W (2011) Sorption of U (VI) onto a decarbonated calcareous soil. J Radioanal Nucl Chem 288:395–404

    CAS  Google Scholar 

Download references

Funding

This study was supported by grants from the National Research Foundation of Korea (NRF), funded by the Korean government, Ministry of Science, ICT and Future Planning (RS-2023–00243600 and 2022M2D2A1A02063569).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. In-Ho Yoon is responsible for writing—original draft, conceptualization, methodology, software, data curation, visualization, and supervision. Sang-Ho Lee is assigned to the investigation, data curation, and writing—original draft. Ilgook Kim is responsible for the writing—review and editing, and validation. Sung Man Kim did the methodology, investigation, and data curation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to In-Ho Yoon.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Tito Roberto Cadaval Jr

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, IH., Lee, SH., Kim, I. et al. A comparative study on the Cs adsorption/desorption and structural changes in different clay minerals. Environ Sci Pollut Res 31, 25342–25355 (2024). https://doi.org/10.1007/s11356-024-32826-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-024-32826-9

Keywords

Navigation