Skip to main content

Advertisement

Log in

Amazon vegetation: how much don’t we know and how much does it matter?

  • Published:
Kew Bulletin Aims and scope Submit manuscript

Summary

In spite of the existence of a vast body of information on the plant diversity of the Amazon, there remain significant obstacles to informed decision-making and management for conservation. Species distributions are poorly understood and the relationships between diversity and composition of vegetation, ecosystem services and resilience to climatic fluctuations are insufficiently clear. The geographic distribution of phylogenetic diversity in relation to current protected areas is unexplored and very little is known about intraspecific genetic variability and its practical significance. Interpretation of vegetation differentiation and distribution remains relatively simplistic; there are still large parts of the basin for which few or no botanical data exist, and many rare and sparsely distributed species remain undiscovered. Improved understanding of the ecological roles, dynamics and associations of the species of greatest importance for the maintenance of sustainable livelihoods and ecosystem services, habitat restoration and adaptation to climate change is a high priority. In many cases these are common and widespread species. Some of these issues are explored by looking at the Cristalino region in northern Mato Grosso as a case-study. Effective integration, quality assessment, synthesis and application of existing data on the plant diversity of the Amazon will help to address these issues. However, more targeted information is needed from the ground. Future prioritisation of research effort will require a careful and pragmatic balance between the ‘traditional’ focus on rare and endemic species and species-rich communities, and the growing need to understand the key ‘framework’ elements that will determine the future of the Amazon environment. Similar situations are faced elsewhere in the tropics: for botanical research institutes in the 21st century this demands an urgent re-evaluation of core activities and concerted engagement with the issues and challenges facing conservation in a context of rampant population growth, climate change and environmental destruction.

Resumo

Apesar da existência de um grande volume de informação a respeito da diversidade vegetal da Amazônia, uma série de obstáculos ainda dificulta a tomada de decisões devidamente informadas sobre conservação e manejo sustentável da região. Falta conhecimento com relação à distribuição das espécies, e às interações entre diversidade e composição da vegetação, aos serviços do ecossistema e sua adaptabilidade e resistência às flutuações climáticas. A distribuição da diversidade filogenética das espécies em relação às áreas atualmente protegidas ainda é desconhecida, e muito pouco é sabido sobre o significado prático da variabilidade intraespecífica. A interpretação dos diferentes tipos de vegetação permanece extremamente simplificada, com grandes áreas da bacia para as quais não há dados botânicos disponíveis ou os mesmos são insuficientes, e muitas espécies raras ou esparsamente distribuídas ainda aguardam descobrimento. Uma melhor compreensão dos papéis ecológicos, da dinâmica e das associações das espécies mais importantes para a manutenção de estilos de vida sustentáveis e dos serviços do ecossistema, recuperação de áreas degradadas e adaptabilidade às mudanças climáticas, são as grandes prioridades. Em muitos casos essas espécies são comuns e amplamente distribuídas. Alguns desses temas são explorados utilizando a região do Cristalino, no norte do Mato Grosso, como um estudo de caso. A integração efetiva, o controle da qualidade, a síntese e a aplicação dos dados existentes da diversidade vegetal da Amazônia serão fundamentais para a solução dessas questões. No entanto, ainda é necessário gerar a informação relevante a partir do estudo da área. A priorização das pesquisas futuras requer um equilíbrio cuidadoso e prático entre o foco ‘tradicional’, interessado em espécies raras e endêmicas e nas comunidades ricas em termos de espécies e a necessidade crescente de compreender os elementos da ‘estrutura’ que irá determinar o futuro do bioma amazônico. Situações semelhantes estão sendo enfrentadas nos trópicos como um todo: os institutos botânicos do século 21 precisam reavaliar urgentemente as suas principais atividades e engajar-se de modo coordenado para incluir os tópicos e desafios causados pelo crescimento populacional desordenado, mudanças climáticas e destruição ambiental.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Map 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In the first quarter of 2009 Mato Grosso was listed as the state with the highest deforestation rate in the Brazilian Amazon (INPE-DETER — http://www.amazonia.org.br/noticias/print.cfm?id=296443; Imazon — http://www.imazon.org.br/novo2008/publicacoes_ler.php?idpub=672).

  2. RAINFOR is an international project bringing together a network of researchers and permanent forest plots in Amazonia to improve understanding of ecosystem dynamics and relationships with climate.

  3. Malvaceae and Apocynaceae are here used in their broad sense following Souza & Lorenzi (2005).

  4. Analysing the range of 131 species found in this vegetation type, 23% (31% of the trees) were linked to campinarana vegetation, 23% (25% of the trees) to cerrado and 12% (8% of the trees) were widely distributed Amazonian species. The remaining species were classified as widely distributed and, although many of these do occur in campo/cerrado, they are not exclusive to these habitats, occurring scattered throughout Brazil and other countries e.g. Bolivia, Guiana, Venezuela and Colombia.

References

  • Balée, W. & Campbell D. G. (1990). Evidence for the successional status of liana forest (Xingu River Basin, Amazonian Brazil). Biotropica 22: 36 – 47.

    Article  Google Scholar 

  • Betts, R. A., Malhi, Y. & Roberts, J. T. (2008). The future of the Amazon: new perspectives from climate, ecosystem and social sciences. Philos. Trans., Ser. B 363: 1729 – 1735.

    Article  Google Scholar 

  • Biggs, N. & Hind, D. J. N. (2011). A new species of Sciadocephala (Composiate) from Mato Grosso. Kew Bull.

  • Brasil, A. E. & Alvarenga, S. M. (1989). Relevo. In: A. C. Duarte (ed.), Geografia do Brasil. Vol. 1. Região Centro-Oeste, pp. 53 – 72. IBGE, Rio d e Janeiro.

    Google Scholar 

  • Cayuela, L., Golicher, D. J., Newton, A. C., Kolb, M., de Albuquerque, F. S., Arets, E. J. M. M., Alkemade, J. R. M. & Pérez, A. M. (2009). Species distribution modelling in the tropics: problems, potentialities, and the role of biological data for effective species conservation. Trop. Conserv. Sci. 2: 319 – 352.

    Google Scholar 

  • Clarke, H. D., Funk, V. A. & Hollowell, T. (2001). Plant Diversity of the Iwokrama Forest, Guyana. Sida, Bot. Misc. 21.

  • Daly, D. C. & Mitchell, J. D. (2000). Lowland vegetation of Tropical South America — an overview. In: D. Lentz (ed.), Imperfect balance: landscape transformations in the pre-Columbian Americas, pp. 391 – 454. Columbia University Press, New York.

    Google Scholar 

  • Dubs, B. (1998). Prodromus Florae Matogrossensis, Part 1. Betrona-Verlag, Switzerland.

    Google Scholar 

  • Ennos, R., Worrell, R., Arkle, P. & Malcom, D. (2000). Genetic variation and conservation of British native trees and shrubs. Forestry Commission Technical Paper 31. Forestry Commission, Edinburgh.

  • Erkens, R. H. J., Chatrou, L. W., Maas, J. W., van der Niet, T. & Savolainen, V. (2007). A rapid diversification of rainforest trees (Guatteria; Annonaceae) following dispersal from Central into South America. Molec. Phylogenet. Evol. 44: 399 – 411.

    Article  PubMed  CAS  Google Scholar 

  • Eva, H. D., Belward, A. S., De Miranda, E. E., Di Bella, C. M., Gond, V., Huber, O., Jones, S., Sgrenzaroli, M. & Fritz, S. (2004). A land cover map of South America. Global Change Biol. 10: 731 – 744.

    Article  Google Scholar 

  • Faith, D. P. (1992). Conservation evaluation and phylogenetic diversity. Biol. Conserv. 61: 1 – 10.

    Article  Google Scholar 

  • Feeley, K. J. & Silman, M. R. (2008). Unrealistic assumptions invalidate extinction estimates. Proc. Natl. Acad. Sci. U.S.A. 105: E121.

    Article  PubMed  CAS  Google Scholar 

  • Fiaschi, P. & Pirani, J. R. (2009). Review of plant biogeographic studies in Brazil. J. Syst. Evol. 47: 477 – 496.

    Article  Google Scholar 

  • Fisher, R. A., Corbert, A. S. & Williams, C. B. (1943). The relationship between the number of individuals in a random sample and an animal population. J. Animal Ecol. 12: 42 – 58.

    Article  Google Scholar 

  • Forest, F., Grenyer, R., Rouget, M. T., Davies, J., Cowling, R. M., Faith, D. P., Balmford, A. Manning, J. C., Proches, S., van der Bank, M., Reeves, G., Hedderson, T. A. J. & Savolainen, V. (2007). Preserving the evolutionary potential of floras in biodiversity hotspots. Nature 445: 757 – 760.

    Article  PubMed  CAS  Google Scholar 

  • Forzza, R. C., Baumgratz, J. F. A., Bicudo, C. E. M., Carvalho Jr., A. A., Costa, A., Costa, D. P., Hopkins, M., Leitman, P. M., Lohmann, L. G., Costa Maia, L. Martinelli, G., Menezes, M., Morim, M. P., Nadruz Coelho, M. A., Peixoto, A. L., Pirani, J. R., Prado, J., Queiroz, L. P., Souza, V. C., Stehmann, J. R., Sylvestre, L. S., Walter, B. M. T. & Zappi, D. (2010). Lista de Espécies da Flora do Brasil, 2 vols. Jardim Botânico do Rio de Janeiro.

  • Frisby, S. & Hind, D. J. N. (2011). A new species of Ichthyothere (Compositae) from Mato Grosso. Kew Bull.

  • GBIF (2010). Global Biodiversity Information Forum (http://www.gbif.org).

  • Giulietti, A. M. & Pirani, J. R. (1988). Patterns of geographic distribution of some plant species from the Espinhaço range, Minas Gerais and Bahia. In: W. R. Heyer & P. E. Vanzolini (eds), Proceedings of a Workshop on Neotropical Distribution Patterns, pp. 39 – 69. Academia Brasileira de Ciências, Rio de Janeiro.

    Google Scholar 

  • ____, Harley, R. M., Queiroz, L. P. de, Wanderley, M. das G. L. & Van den Berg, C. (2005). Biodiversity and conservation of plants in Brazil. Conserv. Biol. 19: 632 – 639.

    Article  Google Scholar 

  • Hopkins, M. J. G. (2007). Modelling the known and unknown plant biodiversity of the Amazon Basin. J. Biogeogr. 34: 1400 – 1411.

    Article  Google Scholar 

  • Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • ____, Fangliang, H., Condit, R., Borda-de-Água, L., Kellner, J. & ter Steege, H. (2008). How many tree species are there in the Amazon and how many of them will go extinct? Proc. Natl. Acad. Sci. U.S.A. 105: 11498 – 11504.

    Article  PubMed  CAS  Google Scholar 

  • IBGE (Instituto Brasileiro de Geografia e Estatística) (2004). Mapa da vegetação brasileira. 3a edição. Ministério do Planejamento, Orçamento e Gestão.

  • Killeen, T. J. & Solórzano, L. A. (2008). Conservation strategies to mitigate impacts from climate change in Amazonia. Philos. Trans., Ser. B. 363: 1881 – 1888.

    Article  Google Scholar 

  • Köppen, W. P. (1948). Climatologia. Fondo de Cultura Economica, México.

    Google Scholar 

  • Kress, W. J., Heyer, W. R., Acevedo, P., Coddington, J., Cole, D., Erwin, T., Meggers, B. J., Pogue, M., Thorington, R. W., Vari, R. P., Weitzman, M. J. & Weitzman, S. H. (1998). Amazonian biodiversity: assessing conservation priorities with taxonomic data. Biodivers. & Conserv. 7: 1577 – 87.

    Article  Google Scholar 

  • Kursar, T. A., Dexter, K. G., Lokvam, J., Pennington R. T., Richardson, J. E., Weber, M. G., Murakami, E., Drake, C., McGregor, R. & Coley, P. D. (2009). The importance of plant-herbivore interactions for diversification and coexistence in the tropical tree genus Inga. Proc. Natl. Acad. Sci. U.S.A. 106: 18073 – 18078.

    Article  PubMed  CAS  Google Scholar 

  • Laurance, W. F., Cochrane, M. A., Bergen, S., Fearnside, P. M., Delamônica, P., Barber, C., D’Angelo, S. & Fernandes, T. (2001). The future of the Brazilian Amazon. Science 291: 438 – 439.

    Article  PubMed  CAS  Google Scholar 

  • Malhi, Y., Roberts, J. T., Betts, R. A., Killeen, T. J., Li, W. & Nobre, C. A. (2008). Climate change, deforestation, and the fate of the Amazon. Science 319: 169 – 172.

    Article  PubMed  CAS  Google Scholar 

  • ____, Aragão, L. E. O. C., Galbraith, D., Huntingford, C., Fisher, R., Zelazowski, P., Sitche, S., McSweeney, C. & Meir, P. (2009). Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. Proc. Natl. Acad. Sci. U.S.A. 106: 20610 – 20615.

    Article  PubMed  CAS  Google Scholar 

  • Marimon, B. S., de S. Lima, E., Duarte, T. G., Chieregatto, L. C. & Ratter, J. A. (2006). Observations on the vegetation of northern Mato Grosso, Brazil. IC. An analysis of the cerrado-amazonian forest ecotone. Edinburgh J. Bot. 63: 323 – 341.

    Article  Google Scholar 

  • Martins-da-Silva, R. C. V., Degen, B., & Amaral, W. (2001). Improving conservation values of managed forests: The Dendrogene Project in the Brazilian Amazon. Unasylva 209: 25 – 33.

    Google Scholar 

  • Maury, C. M. (org.) (2004). Biodiversidade Brasileira: Avaliação e identificação de áreas e ações prioritárias para conservação, utilização sustentável e repartição dos benefícios da biodiversidade nos biomas brasileiros. Ministério do Meio Ambiente, Secretaria de Biodiversidade e Florestas, PROBIO. Brasília, DF.

  • Mayle, F. E., Burbridge, R. & Killeen, T. J. (2000). Millenial-Scale Dynamics of Southern Amazonian Rain Forests. Science 290: 2291 – 2294.

    Article  PubMed  CAS  Google Scholar 

  • ____ & Beerling, D. J. (2004). Late quaternary changes in Amazonian ecosystems and their implications for global carbon cycling. Palaeogeogr. Palaeoclimatol. Palaeoecol. 214: 11 – 25.

    Google Scholar 

  • ____, Langstroth, R. P., Fischer, R. A. & Meir, P. (2007). Long-term forest-savannah dynamics in the Bolivian Amazon: implications for conservation. Philos. Trans., Ser. B 362: 291 – 307.

    Article  Google Scholar 

  • Melillo, J. M., McGuire, A. D., Kicklighter, D. W., Moore, B., Vörösmarty, C. J. & Schloss, A. L. (1993). Global climate change and terrestrial net primary production. Nature 363: 234 – 240.

    Article  CAS  Google Scholar 

  • Milliken, W. et al. (2011). Cristalino: new insights into the vegetation of the Southern Amazonian fringe. Biotropica.

  • Mori, S., Cremers, G., Gracie, C., Granville, J. J., Hoff, M. & Mitchell, J. D. (1997). Guide to the vascular plants of Central French Guiana, Part 1. Pteridophytes, Gymnosperms, and Monocotyledons. Mem. New York Bot. Gard. 76: 1 – 422.

    Google Scholar 

  • Morton, D. C., Shimabukuro, Y. E., Rudorff, B. F. T., Lima, A., Freitas, R. M. & Derfries, R. S. (2007). Conservation Challenge at the Agricultural Frontier: deforestation, fire, and land use dynamics in Mato Grosso. Revista Ambiente e Água — An Interdisciplinary J. Appl. Sci. 2: 5 – 20.

    Article  Google Scholar 

  • Muller-Karger, F. E., McCain, C. R. & Richardson, P. L. (1988). The dispersal of the Amazon’s water. Nature 333: 56 – 59.

    Article  Google Scholar 

  • Murphy, P. & Lugo, A. E. (1986). Ecology of tropical dry forest. Ann. Rev. Ecol. Syst. 17: 67 – 88.

    Article  Google Scholar 

  • Nelson, B. W., Fereira, A. C., da Silva, M. F. & Kawasaki, M. L. (1990). Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature 345: 714 – 716.

    Article  Google Scholar 

  • Nepstad, D., Schwartzmann, S., Bamberger, B., Santilli, M., Ray, D., Schlesinger, P., Lefebvre, P., Alencar, A., Prinz, E., Fiske, G. & Rolla, A. (2006). Inhibition of Amazon deforestation and fire by parks and indigenous lands. Conserv. Biol. 20: 65 – 73.

    Article  PubMed  CAS  Google Scholar 

  • Nimer, E. (1989). Clima. In: A. C. Duarte (ed.), Geografia do Brasil, Vol. 1. Região Centro-Oeste, pp. 23 – 34. IBGE, Rio de Janeiro.

    Google Scholar 

  • Oliveira, A. A. & Daly, D. C. (1999). Geographic distribution of tree species occurring in the region of Manaus, Brazil: implications for regional diversity and conservation. Biodivers. & Conserv. 8: 1245 – 1259.

    Article  Google Scholar 

  • Pennington, R. T. & Dick, C. W. (2010). Diversification of the Amazonian flora and its relation to key geological and environmental events: a molecular perspective. In: C. Hoorn, H. Vonhof & F. Wesselingh (eds), Amazonia, Landscape and Species Evolution: a Look into the Past, pp. 373 – 385. Blackwell, Oxford.

    Google Scholar 

  • ____, Prado, D. E. & Pendry, C. A. (2000). Neotropical Seasonally Dry Forest and Quaternary Vegetation Changes. J. Biogeogr. 27: 261 – 273.

    Article  Google Scholar 

  • ____, Ratter, J. A. & Lewis, G. P. (2006). An overview of the plant diversity, biogeography and conservation of neotropical savannas and seasonally dry forests. In: R. T. Pennington, G. P. Lewis & J. A. Ratter (eds), Neotropical savannas and seasonally dry forests: plant biodiversity, biogeography and conservation, pp. 1 – 29. CRC Press, Boca Raton, Florida.

    Chapter  Google Scholar 

  • Pennington, T. D. & Styles, B. T. (1981). Meliaceae. Flora Neotrop. Monogr. 28.

    Google Scholar 

  • Peres, C. A. (1994). Indigenous reserves and nature conservation in Amazonian Forests. Conserv. Biol. 8: 586 – 588.

    Article  Google Scholar 

  • Pires, J. M. & Prance, G. T. (1985). The Vegetation types of the Brazilian Amazon. In: G. T. Prance & T. E. Lovejoy (eds), Amazonia, pp. 109 – 145. Pergamon Press, Oxford.

    Google Scholar 

  • Pires-O’Brien, M. J. (1992). Report on a remote swampy rock savanna at the mid-Kari river basin, Lower Amazon. Bot. J. Linn. Soc. 108: 21 – 33.

    Article  Google Scholar 

  • Pitman, N. C. A., Terborgh, J., Silman, M. R. & Nuñez, P. (1999). Tree species distributions in an upper Amazonian forest. Ecology 80: 2651 – 2661.

    Article  Google Scholar 

  • ____, ____, ____, ____, Neill, D. A., Cerón, C. E., Palacios, W. A. & Aulestia, M. (2001). Dominance and distribution of tree species in upper Amazonian terra firme forests. Ecology 82: 2101 – 2117.

    Article  Google Scholar 

  • ____, ____, ____, ____, ____, ____, ____ & ____ (2002). A comparison of tree species diversity in two upper Amazonian forests. Ecology 83: 3210 – 3224.

    Article  Google Scholar 

  • Prado, D. E. (1993a). What is the Gran Chaco vegetation in South America? I. A review. Contribution to the study of flora and vegetation of the Chaco. V. Candollea 48: 145 – 172.

    Google Scholar 

  • ____ (1993b). What is the Gran Chaco vegetation in South America? II. A redefinition. Contribution to the study of flora and vegetation of the Chaco. VII. Candollea 48: 615 – 629.

    Google Scholar 

  • Prance, G. T. (1990). The floristic composition of Central Amazonian Brazil. In: A. H. Gentry (ed.), Four Neotropical Forests, pp. 112 – 140. Yale University Press.

  • Ratter, J. A. (1992). Transitions between cerrado and forest vegetation in Brazil. In: P. A. Furley, J. Proctor & J. A. Ratter (eds), Nature and dynamics of forest–savannah boundaries, pp. 417 – 429. Chapman & Hall, London.

    Google Scholar 

  • ____, Bridgewater, S. & Ribeiro, J. F. (2003). Analysis of the floristic composition of the Brazilian cerrado vegetation III: comparison of the woody vegetation of 376 areas. Edinburgh J. Bot. 60: 57 – 109.

    Article  Google Scholar 

  • Ribeiro, J. E. L. S., Hopkins, M. J. G., Vicentini, A., Sothers, C. A., Costa, M. A. S., Brito, J. M., Souza, M. A. D., Martins, L. H. P., Lohmann, L. G., Assunção, P. A. C. L., Pereira, E. C., Silva, C. F., Mesquita, M. R. & Procópio, L. C. (1999). Flora da Reserva Ducke, Guia de Identificação. DfID & INPA, Manaus.

    Google Scholar 

  • Ross, J. L. S. (2003). Os fundamentos da geografia da natureza. In: J. L. S. Ross (ed.), Geografia do Brasil, pp. 13 – 65. Edusp, São Paulo.

    Google Scholar 

  • Salati, E. & Santos, A. A. (1998). The Amazon and Global Issues. In: M. L. D. Freitas (ed.), Amazonia, Heaven of a New World, pp. 7 – 22. Editora Campus, Rio de Janeiro.

    Google Scholar 

  • Sarthou, C., Villiers, J. F. & Ponge, J. F. (2003). Shrub Vegetation on Tropical Granitic Inselbergs in French Guiana. J. Vegetation Sci. 14: 645 – 652.

    Article  Google Scholar 

  • Schulmann, L., Toivonen, T. & Ruokolainen, K. (2007). Analysing botanical collecting effort in Amazonia and correcting for it in species range estimation. J. Biogeogr. 34: 1388 – 1399.

    Article  Google Scholar 

  • SEPLAN/MT (1997). Geomorfologia (texto). Zoneamento Sócio-econômico Ecológico. PRODEAGRO. Ministério de Integração Nacional.

  • ____ (2001a). Distribuição da Pluviosidade Média Anual (1983 – 1994). Zoneamento Sócio-econômico Ecológico. PRODEAGRO. Ministério de Integração Nacional. http://www.seplan.mt.gov.br/.

  • ____ (2001b). Mapa de solos. Zoneamento Sócio-econômico Ecológico. PRODEAGRO. Ministério de Integração Nacional. http://www.seplan.mt.gov.br/.

  • Silman, M. R. (2007). Plant species diversity in Amazonian forests. In: M. B. Bush & J. R. Flenley (eds), Tropical Rainforest Responses to Climatic Change, pp. 269 – 294. Springer, Berlin.

    Chapter  Google Scholar 

  • Silva, J. M. da, Rylands, A. B. & Fonseca, G. A. B. da (2005). O destino das áreas de endemismo da Amazônia. Megadiversidade 1: 124 – 131.

    Google Scholar 

  • Sitch, S., Huntingford, C., Gedney, N., Levyz, P. E., Lomas, M., Piao, S. L., Betts, R., Ciais, P., Cox, P., Friedlingstein, P., Jones, C. D., Prentice, I. C. & Woodward, F. I. (2008). Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biol. 14: 2015 – 2039.

    Article  Google Scholar 

  • Soares-Filho, B. S., Nepstad, D. C., Curran, L. M., Coutinho, G. C., Garcia, R. A., Ramos, C. A., Voll, E., McDonald, A., Lefebvre, P. & Schlesinger, P. (2006). Modelling conservation in the Amazon basin. Nature 440: 520 – 523.

    Article  PubMed  CAS  Google Scholar 

  • Sobral, M. & Stehmann, J. M. (2009). An analysis of new angiosperm species discoveries in Brazil (1990 – 2006). Taxon 58: 227 – 232.

    Google Scholar 

  • Souza, V. C. & Lorenzi, H. (2005). Botânica Sistemática. Instituto Plantarum de Estudos da Flora Ltda., Nova Odessa, SP.

    Google Scholar 

  • Stropp, J., ter Steege, H., Malhi, Y., ATDN and RAINFOR. (2009). Disentangling regional and local tree diversity in the Amazon. Ecography 32: 46 – 54.

    Article  Google Scholar 

  • ter Steege, H., Sabatier, D., Castellanos, H., van Andel, T., Duivenvoorden, J., Oliveira, A. A., Ek, R. C., Lilwah, R., Maas, P. & Mori, S. (2000). A regional perspective: analysis of Amazonian floristic composition and diversity. In: H. ter Steege (ed.), Plant Diversity in Guyana, with recommendations for a National Protected Area Strategy. Tropenbos Series 18: 19 – 34.

    Google Scholar 

  • ____, Pitman, N., Sabatier, D., Castellanos, H., Van Der Hout, P., Daly, D. C., Silveira, M., Phillips, O. L., Vasquez, R., Van Andel, T., Duivenvoorden, J., Oliveira, A. A., Ek, R., Lilwah, R., Thomas, R., Van Essen, J., Baider, C., Maas, P., Mori, S., Terborgh, J., Núñez Vargas, P., Mogollón, H. & Horchler, P. J. (2003). A spatial model of tree alpha-diversity and density for the Amazon Region. Biodivers. & Conserv. 12: 2255 – 2277.

    Article  Google Scholar 

  • ____ & RAINFOR (2010). Contribution of current and historical processes to patterns of tree diversity and composition in the Amazon. In: C. Hoorn & F. P. Wesselingh, Amazonia, landscape and species evolution: a look into the past, pp. 349 – 359. Wiley-Blackwell, Oxford.

  • Veloso, H. P., Rangel Filho, A. L. R. & Lima, J. C. A. (1991). Classificação da Vegetação Brasileira, adaptada a um sistema universal. Fundação Instituto Brasileiro de Geografia e Estatística (IBGE), Rio de Janeiro.

  • Walker, R., Moore, N. J., Arima, E., Perz, S., Simmons, C., Caldas, M., Vergara, D. & Bohrer, C. (2009). Protecting the Amazon with protected areas. Proc. Natl. Acad. Sci. U.S.A. 106: 10582 – 10586.

    Article  PubMed  CAS  Google Scholar 

  • White, A., Cannell, M. G. R. & Friend, A. D. (1999). Climate change impacts on ecosystems and the terrestrial carbon sink: a new assessment. Global Environmental Change 9: S21 – S30.

    Article  Google Scholar 

  • Wittmann, F., Schöngart, J., Montero, J. C., Motzer, T., Junk, W. J., Piedade, M. T. F., Queiroz, H. L. & Worbes, M. (2006). Tree species composition and diversity gradients in white-water forests across the Amazon basin. J. Biogeogr. 33: 1334 – 1347.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Terry Pennington for sharing his unpublished Meliaceae data, Justin Moat of Kew’s GIS Unit for help with maps, two anonymous reviewers for their valuable comments, and the organisers of the Kew 250th anniversary conference, particularly Mike Fay and Rhian Smith, for arranging a stimulating and diverse meeting.

Regarding Projeto Flora Cristalino, we would like to thank CNPq for the collecting permit (EXC 13/07), Renato de Mello-Silva and staff at Universidade de São Paulo, Renato A. de Farias, Gracieli S. Henicka, José H. Piva and all staff at Fundação Ecológica Cristalino, Cristalino Jungle Lodge and Hotel Floresta Amazônica, José F. Ramos, Carlos Franciscon and José Eduardo L. S. Ribeiro from INPA, Célia Soares, staff and students from Universidade do Estado de Mato Grosso - AF, staff from SEMA (Eliani Fachim, Eliani Pena, Elton Silveira, Martinho Philippsen, Marcos Bessa and Ênio Beltrante), Jovita Yesilyurt, Nicky Biggs, Sue Frisby and many colleagues and students who participated in the fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela Zappi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milliken, W., Zappi, D., Sasaki, D. et al. Amazon vegetation: how much don’t we know and how much does it matter?. Kew Bull 65, 691–709 (2010). https://doi.org/10.1007/s12225-010-9236-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12225-010-9236-x

Key Words

Navigation