Skip to main content

Advertisement

Log in

The world’s economically most important chelonians represent a diverse species complex (Testudines: Trionychidae: Pelodiscus)

  • Original Article
  • Published:
Organisms Diversity & Evolution Aims and scope Submit manuscript

Abstract

Pelodiscus is one of the most widely distributed genera of softshell turtles, ranging from south-eastern Siberia and Korea over central and southern China to Vietnam. Economically, Pelodiscus are the most important chelonians of the world and have been bred and traded in high numbers for centuries, resulting in many populations established outside their native range. Currently, more than 300 million turtles per year are sold in China alone, and the bulk of this figure comprises farmed Pelodiscus. Due to easy availability, Pelodiscus also constitutes a model organism for physiological and embryological investigations. Yet, diversity and taxonomy of Pelodiscus are poorly understood and a comprehensive investigation using molecular tools has never been published. Traditionally, all populations were assigned to the species P. sinensis (Wiegmann, 1834); in recent years up to three additional species have been recognized by a few authors, while others have continued to accept only P. sinensis. In the present study, we use trade specimens and known-locality samples from Siberia, China, and Vietnam, analyze 2,419 bp of mtDNA and a 565-bp-long fragment of the nuclear C-mos gene to elucidate genetic diversity, and compare our data with sequences available from GenBank. Our findings provide evidence for the existence of at least seven distinct genetic lineages and suggest interbreeding in commercial turtle farms. GenBank sequences assigned to P. axenaria (Zhou, Zhang & Fang, 1991) are highly distinct. The validity of P. maackii (Brandt, 1857) from the northernmost part of the genus’ range is confirmed, whereas it is unclear which names should be applied to several taxa occurring in the central and southern parts of the range. The diversity of Pelodiscus calls for caution when such turtles are used as model organisms, because the respective involvement of more than a single taxon could lead to irreproducible and contradictory results. Moreover, our findings reveal the need for a new assessment of the conservation status of Pelodiscus. While currently all taxa are subsumed under ‘P. sinensis’ and listed as ‘vulnerable’ by the IUCN Red List of Threatened Species, some could actually be endangered or even critically endangered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Castelloe, J., & Templeton, A. R. (1994). Root probabilities for intraspecific gene trees under neutral coalescent theory. Molecular Phylogenetics and Evolution, 3, 102–113.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H.-G., Liu, W.-B., & Zhang, X.-J. (2005). Comparative analysis of mitochondrial DNA 12S rRNA region between Pelodiscus sinensis and Pelodiscus axenaria and their molecular marker for identification. Journal of Fisheries of China, 29, 318–322 [in Chinese, with English abstract].

    CAS  Google Scholar 

  • Chen, H.-G., Liu, W.-B., Li, J.-Z., & Zhang, X.-J. (2006). Comparative analysis of mitochondrial DNA cytb gene and their molecular identification markers in three species of soft-turtles. Acta Hydrobiologica Sinica, 30, 380–385 [in Chinese, with English abstract].

    CAS  Google Scholar 

  • Chkhikvadze, V. M. (1987). O sistematicheskom polozhenii dal’nevostochnogo trioniksa. Bulletin of the Academy of Sciences of the Georgian SSR, 128, 609–611.

    Google Scholar 

  • Choo, B. L., & Chou, L. M. (1992). Does incubation temperature influence the sex of embryos in Trionyx sinensis? Journal of Herpetology, 26, 341–342.

    Article  Google Scholar 

  • Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1660.

    Article  CAS  PubMed  Google Scholar 

  • Diesmos, A. C., Brown, R. M., Alcala, A. C., & Sison, R. V. (2008). Status and distribution of nonmarine turtles of the Philippines. Chelonian Conservation and Biology, 7, 157–177.

    Article  Google Scholar 

  • Donnelly, P., & Tavaré, S. (1986). The ages of alleles and a coalescent. Advances in Applied Probability, 18, 1–19.

    Article  Google Scholar 

  • Engstrom, T. N., Shaffer, H. B., & McCord, W. P. (2002). Phylogenetic diversity of endangered and critically endangered Asian softshell turtles (Trionychidae: Chitra). Biological Conservation, 104, 173–179.

    Article  Google Scholar 

  • Engstrom, T. N., Shaffer, H. B., & McCord, W. P. (2004). Multiple data sets, high homoplasy, and phylogeny of softshell turtles (Testudines: Trionychidae). Systematic Biology, 53, 693–710.

    Article  PubMed  Google Scholar 

  • Ernst, C. H., & Barbour, R. W. (1989). Turtles of the world. Washington: Smithsonian Institution.

    Google Scholar 

  • Ernst, C. H., Altenburg, R. G. M., & Barbour, R. W. (2000). Turtles of the world, ver. 1.2. CD-ROM. Amsterdam: ETI BioInformatics.

    Google Scholar 

  • Fritz, U., & Bininda-Emonds, O. R. P. (2007). When genes meet nomenclature: tortoise phylogeny and the shifting generic concepts of Testudo and Geochelone. Zoology, 110, 298–307.

    Article  CAS  PubMed  Google Scholar 

  • Fritz, U., & Havaš, P. (2007). Checklist of chelonians of the world. Vertebrate Zoology, 57, 149–368.

    Google Scholar 

  • Fritz, U., & Obst, F. J. (1999). Neue Schildkröten aus Südostasien. Teil II. Bataguridae (Cyclemys, Heosemys, Mauremys, Ocadia, Pyxidea, Sacalia) und Trionychidae. Sauria, 21, 11–26.

    Google Scholar 

  • Fritz, U., Auer, M., Bertolero, A., Cheylan, M., Fattizzo, T., Hundsdörfer, A. K., et al. (2006). A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zoologica Scripta, 35, 531–543.

    Article  Google Scholar 

  • Fritz, U., Ayaz, D., Buschbom, J., Kami, H. G., Mazanaeva, L. F., Aloufi, A. A., et al. (2008a). Go east: phylogeographies of Mauremys caspica and M. rivulata—discordance of morphology, mitochondrial and nuclear genomic markers and rare hybridization. Journal of Evolutionary Biology, 21, 527–540.

    Article  CAS  Google Scholar 

  • Fritz, U., Guicking, D., Auer, M., Sommer, R. S., Wink, M., & Hundsdörfer, A. K. (2008b). Diversity of the Southeast Asian leaf turtle genus Cyclemys: how many leaves on its tree of life? Zoologica Scripta, 37, 367–390.

    Article  Google Scholar 

  • Gustincich, S., Manfioletti, G., del Sal, G., Schneider, C., & Carninci, C. (1991). A fast method for high-quality genomic DNA extraction from whole human blood. BioTechniques, 11, 298–302.

    CAS  PubMed  Google Scholar 

  • Hall, T. A. (1999). BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Huelsenbeck, J. P., & Ronquist, F. (2001). MrBAYES. Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.

    Article  CAS  PubMed  Google Scholar 

  • IUCN = International Union for the Conservation of Nature and Natural Resources. (2009). IUCN red list of threatened species. Version 2009.1. http://www.iucnredlist.org. Accessed 23 May 2009.

  • Iverson, J. B. (1992). A revised checklist with distribution maps of the turtles of the world. Richmond: Privately printed.

    Google Scholar 

  • Jensen, K. A., & Das, I. (2008). Cultural exploitation of freshwater turtles in Sarawak, Malaysian Borneo. Chelonian Conservation and Biology, 7, 281–285.

    Article  Google Scholar 

  • Ji, X., Chen, F., Du, W.-G., & Chen, H.-L. (2003). Incubation temperature affects hatchling growth but not sexual phenotype in the Chinese soft-shelled turtle, Pelodiscus sinensis (Trionychidae). Journal of Zoology, 261, 409–416.

    Article  Google Scholar 

  • Jung, S.-O., Lee, Y.-M., Kartavtsev, Y., Park, I.-S., Kim, D. S., & Lee, J.-S. (2006). The complete mitochondrial genome of the Korean soft-shelled turtle Pelodiscus sinensis. DNA Sequence, 17, 471–483.

    CAS  Google Scholar 

  • Kawai, A., Nishida-Umehara, C., Ishijima, J., Tsuda, Y., Ota, H., & Matsuda, Y. (2007). Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenetic and Genome Research, 117, 92–102.

    Article  CAS  PubMed  Google Scholar 

  • Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., et al. (1989). Dynamics of mitochondrial DNA evolution in mammals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America, 86, 6196–6200.

    Article  CAS  PubMed  Google Scholar 

  • Le, M., Raxworthy, C. J., McCord, W. P., & Mertz, L. (2006). A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 40, 517–531.

    Article  CAS  PubMed  Google Scholar 

  • Maran, J. (2003). Visite d’une ferme à tortues au Vietnam. Manouria, 6, 8–12.

    Google Scholar 

  • McGaugh, S. E., Eckerman, C. M., & Janzen, F. J. (2008). Molecular phylogeography of Apalone spinifera. Zoologica Scripta, 37, 289–304.

    Article  Google Scholar 

  • Mertens, R., & Wermuth, H. (1955). Die rezenten Schildkröten, Krokodile und Brückenechsen. Zoologische Jahrbücher / Abteilung für Systematik, Ökologie und Geographie der Tiere, 83, 323–440.

    Google Scholar 

  • Meylan, P. A. (1987). The phylogenetic relationships of soft-shelled turtles (family Trionychidae). Bulletin of the American Museum of Natural History, 186, 1–101.

    Google Scholar 

  • Meylan, P. A., & Gaffney, E. S. (1992). Sinaspideretes is not the oldest trionychid turtle. Journal of Vertebrate Paleontology, 12, 257–259.

    Google Scholar 

  • Naro-Maciel, E., Le, M., FitzSimmons, N. N., & Amato, G. (2008). Evolutionary relationships of marine turtles: a molecular phylogeny based on nuclear and mitochondrial genes. Molecular Phylogenetics and Evolution, 49, 659–662.

    Article  CAS  PubMed  Google Scholar 

  • Nessov, L. A. (1995). On some Mesozoic turtles of the Fergana Depression (Kyrgyzstan) and Dzhungar Alatau Ridge (Kazakhstan). Russian Journal of Herpetology, 2, 134–141.

    Google Scholar 

  • Nie, L.-W., Guo, C.-W., & Wang, Q. (2001). Sex determination mechanism of Trionyx sinensis. Chinese Journal of Applied and Environmental Biology, 7, 258–261.

    Google Scholar 

  • Nurizan, A., & Ong, B. L. (1997). Some problems of cultured soft-shell turtle (Pelodiscus sinensis) in Peninsular Malaysia. Jurnal Veterinar Malaysia, 9, 27–28.

    Google Scholar 

  • Posada, D., & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817–818.

    Article  CAS  PubMed  Google Scholar 

  • Posada, D., & Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. TREE, 16, 37–45.

    PubMed  Google Scholar 

  • Praschag, P., Hundsdörfer, A. K., Reza, A. H. M. A., & Fritz, U. (2007). Genetic evidence for wild-living Aspideretes nigricans and a molecular phylogeny of South Asian softshell turtles (Reptilia: Trionychidae: Aspideretes, Nilssonia). Zoologica Scripta, 36, 301–310.

    Article  Google Scholar 

  • Ran, C.-X., & Yuan, C.-G. (2004). The incubation temperature and the sex determination of Trionyx sinensis. Journal of Fujian Fisheries, 25, 51–53.

    Google Scholar 

  • Ronquist, F., & Huelsenbeck, J. P. (2003). MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.

    Article  CAS  PubMed  Google Scholar 

  • Sato, H., & Ota, H. (1999). False biogeographical pattern derived from artificial animal transportations: a case of the soft-shelled turtle, Pelodiscus sinensis, from the Ryukyu Archipelago, Japan. Developments in Animal and Veterinary Sciences, 29, 317–334.

    Google Scholar 

  • Shi, H. T., Parham, J. F., Fan, Z. Y., Hong, M. L., & Yin, F. (2008). Evidence for the massive scale of turtle farming in China. Oryx, 42, 147–150.

    Google Scholar 

  • Spinks, P. Q., & Shaffer, H. B. (2005). Range-wide molecular analysis of the western pond turtle (Emys marmorata): cryptic variation, isolation by distance, and their conservation implications. Molecular Ecology, 14, 2047–2064.

    Article  CAS  PubMed  Google Scholar 

  • Spinks, P. Q., Shaffer, H. B., Iverson, J. B., & McCord, W. P. (2004). Phylogenetic hypotheses for the turtle family Geoemydidae. Molecular Phylogenetics and Evolution, 32, 164–182.

    Article  CAS  PubMed  Google Scholar 

  • Stephens, M., & Donnelly, P. (2003). A comparison of Bayesian methods for haplotype reconstruction. American Journal of Human Genetics, 73, 1162–1169.

    Article  CAS  PubMed  Google Scholar 

  • Stephens, M., Smith, N. J., & Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics, 68, 978–989.

    Article  CAS  PubMed  Google Scholar 

  • Stuart, B. L., & Parham, J. F. (2004). Molecular phylogeny of the critically endangered Indochinese box turtle (Cuora galbinifrons). Molecular Phylogenetics and Evolution, 31, 164–177.

    Article  CAS  PubMed  Google Scholar 

  • Swofford, D. L. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods), ver. 4.0b10. Sunderland: Sinauer.

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Tang, Y. (1997). Research on a new species of Pelodiscus, Trionychidae in China. Zoological Research / Kunming Institute of Zoology, 18, 13–17 [in Chinese, with English abstract].

    CAS  Google Scholar 

  • van Dijk, P. P., Stuart, B. L., & Rhodin, A. G. J. (Eds.) (2000). Asian turtle trade. Proceedings of a workshop on conservation and trade of freshwater turtles and tortoises in Asia. Phnom Penh, Cambodia, 1–4 December 1999. Chelonian Research Monographs, 2, 1–164.

  • Vargas-Ramírez, M., Castaño-Mora, O. V., & Fritz, U. (2008). Molecular phylogeny and divergence times of ancient South American and Malagasy river turtles (Testudines: Pleurodira: Podocnemididae). Organisms Diversity and Evolution, 8, 388–398.

    Article  Google Scholar 

  • Weisrock, D. W., & Janzen, F. J. (2000). Comparative molecular phylogeography of North American softshell turtles (Apalone): implications for regional and wide-scale historical evolutionary forces. Molecular Phylogenetics and Evolution, 14, 152–164.

    Article  CAS  PubMed  Google Scholar 

  • Wermuth, H., & Mertens, R. (1961). Schildkröten, Krokodile, Brückenechsen. Jena: Fischer.

    Google Scholar 

  • Wermuth, H., & Mertens, R. (1977). Testudines, Crocodylia, Rhynchocephalia. Das Tierreich, 100, i–xxvii + 1–174.

  • Zhang, L., Hua, N., & Sun, S. (2008). Wildlife trade, consumption and conservation awareness in southwest China. Biodiversity and Conservation, 17, 1493–1516.

    Article  Google Scholar 

  • Zhao, E.-M., & Adler, K. (1993). Herpetology of China. Oxford: Society for the Study of Amphibians and Reptiles.

    Google Scholar 

  • Zhou, G., Zhang, X., & Fang, Z. (1991). Bulletin of a new species Trionyx. Acta Scientiarum Naturalium Universitatis Normalis Hunanensis, 14, 379–382 [in Chinese, with English abstract].

    Google Scholar 

  • Zhu, D.-Y., & Sun, X.-Z. (2000). Sex determination in Trionyx sinensis. Chinese Journal of Zoology, 35, 37–38.

    Google Scholar 

Download references

Acknowledgements

Lab work was done by Anke Müller. Markus Auer’s work in China benefited from a grant of the EAZA Shellshock Campaign. Bing He, Zunliang Li, Guofang Zhong, and Jianping Zou helped to collect samples in Guangdong. Christian Schmidt (Dresden) translated Chinese papers for us. Thomas Ziegler (Köln) provided photos of Vietnamese Pelodiscus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Fritz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritz, U., Gong, S., Auer, M. et al. The world’s economically most important chelonians represent a diverse species complex (Testudines: Trionychidae: Pelodiscus). Org Divers Evol 10, 227–242 (2010). https://doi.org/10.1007/s13127-010-0007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13127-010-0007-1

Keywords

Navigation