Skip to main content
Log in

A Global Prospective of the Indian Optical and Near-Infrared Observational Facilities in the Field of Astronomy and Astrophysics: A Review

  • Research Article
  • Published:
Proceedings of the National Academy of Sciences, India Section A: Physical Sciences Aims and scope Submit manuscript

Abstract

A review of modernization and growth of ground based optical and near-infrared astrophysical observational facilities in the globe attributed to the recent technological developments in opto-mechanical, electronics and computer science areas is presented. Hubble Space Telescope and speckle and adaptive ground based imaging have obtained images better than 0.1 arc sec angular resolution bringing the celestial objects closer to us at least by a factor of 10 during the last two decades. From the light gathering point of view, building of large size (>5 m aperture) ground based optical and near-infrared telescopes based on latest technology have become economical in recent years. Consequently, in the world, a few 8–10 m size ground-based optical and near-infrared telescopes are being used for observations of the celestial objects, three 25–40 m size are under design stage and making of a ~100 m size telescope is under planning stage. In India, the largest sized optical and near-infrared telescope is the modern 3.6-m located at Devasthal, Nainital. However, the existing Indian moderate size telescopes equipped with modern backend instruments have global importance due to their geographical location. Recently, the Government of India approved India’s participation in the thirty meter telescope project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

(reproduced from www.prl.res.in)

Fig. 6

(reproduced from igo.iucaa.in)

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

(reproduced from www.tmt.org)

Similar content being viewed by others

References

  1. Swarup G, Anathakrishnan S, Kapahi VK, Rao AP, Subrahmanya CR, Kulkarni VK (1991) The giant metre-wave radio telescope. Curr Sci 60:95–105

    Google Scholar 

  2. Swarup G (2015) Major advances in radio astronomy: some key questions today. Proc Natl Acad Sci India Sec A Phys Sci 85(4):465–481

    Article  Google Scholar 

  3. Singh KP, Tandon SN, Agrawal PC, Antia HM, Manchanda RK, Yadav JS, Seetha S, Ramadevi MC, Rao AR, Bhattacharya D, Paul B, Sreekumar P, Bhattacharyya S, Stewart GC, Hutchings J, Annapurni S, Ghosh SK, Murthy J, Pati A, Rao NK, Stalin CS, Girish V, Sankarasubramanian K, Vadawale S, Bhalerao VB, Dewangan GC, Dedhia DK, Hingar MK, Katoch TB, Kothare AT, Mirza I, Mukerjee K, Shah H, Shah P, Mohan R, Sangal AK, Nagabhusana S, Sriram S, Malkar JP, Sreekumar S, Abbey AF, Hansford GM, Beardmore AP, Sharma MR, Murthy S, Kulkarni R, Meena G, Babu VC, Postma J (2014) ASTROSAT mission. Proc SPIE 9144:15 article id. 91441S, doi:10.1117/12.2062667

  4. Reddy BE (2013) India’s participation in the thirty-meter telescope project. J Astrophys Astron 34:87–95

    Article  ADS  Google Scholar 

  5. Simard L (2013) The thirty meter telescope: science and instrumentation for a next generation observatory. J Astrophys Astron 34:97–120

    Article  ADS  Google Scholar 

  6. Sanders GH (2013) The thirty meter telescope (TMT): an international observatory. J Astrophys Astron 34:81–86

    Article  ADS  Google Scholar 

  7. Sagar R (2000) Importance of small and moderate size optical telescopes. Curr Sci 78:1076–1081

    Google Scholar 

  8. Misra K, Sagar R (2009) An insight into the progenitors of gamma ray bursts from the optical afterglow observations. Curr Sci 96:347–356

    Google Scholar 

  9. Sagar R, Pandey S B (2012) GRB afterglow observations from ARIES, Nainital and their importance. In: Gamma-ray bursts, evolution of massive stars and starformation at high redshifts, ASI Conference Series 5:1–13

  10. Bhattacharyya JC, Bappu MKV (1977) Saturn-like ring system around Uranus. Nature 270:503–506

    Article  ADS  Google Scholar 

  11. Bhattacharyya JC, Bappu MKV, Mohin S, Mahra HS, Gupta SK (1979) Extended ring system of Uranus. Moon Planets 21:393–404

    Article  ADS  Google Scholar 

  12. Sagar R, Mohan V, Pandey SB, Pandey AK, Stalin CS, Castro-Tirado AJ (2000) GRB 000301C with peculiar afterglow emission. Bull Astron Soc India (Rapid Commun) 28:499–513

    ADS  Google Scholar 

  13. Resmi L, Ishwara-Chandra CH, Castro-Tirado AJ, Bhattacharya D, Rao AP, Bremer M, Pandey SB, Sahu DK, Bhatt BC, Sagar R, Anupama GC, Subramaniam A, Lundgren A, Gorosabel J, Guziy S, de UgartePostigo A, Castro Cerón JM, Wiklind T (2005) Radio, millimeter and optical monitoring of GRB 030329 afterglow: constraining the double jet model. Astron Astrophys 440:477–485

    Article  ADS  Google Scholar 

  14. Mallik DCV (1998) Twenty five years of observational astronomy at the Indian Institute of Astrophysics. Curr Sci 74:735–745

    ADS  Google Scholar 

  15. Bhattacharyya JC, Rajan KT (1992) Vainu Bappu Telescope. Bull Astron Soc India 20:319–343

    ADS  Google Scholar 

  16. Prabhu TP (2014) Indian Astronomical Observatory, Leh-Hanle. Proc Indian Natl Sci Acad 80:887–912

    Article  Google Scholar 

  17. Anandarao BG, Chakraborty A (2010) PRL Mt. Abu Observatory: new initiatives. ASI Conf Ser 1:211–216

    Google Scholar 

  18. Gupta R, Burse M, Das HK, Kohok A, Ramaprakash AN, Engineer S, Tandon SN (2002) IUCAA 2 meter telescope and its first light instrument IFOSC. Bull Astron Soc India 30:785–790

    ADS  Google Scholar 

  19. Sagar R, Naja M, Maheswar G, Srivastava AK (2014) Science at high-altitude sites of ARIES – astrophysics and atmospheric sciences. Proc Indian Nat Sci Acad 80:759–790

    Article  Google Scholar 

  20. Sagar R, Stalin CS, Pandey AK, Uddin W, Mohan V, Sanwal BB, Gupta SK, Yadav RKS, Durgapal AK, Joshi S, Kumar B, Gupta AC, Joshi YC, Srivastava JB, Chaubey US, Singh M, Pant P, Gupta KG (2000) Evaluation of Devasthal site for optical astronomical observations. Astron Astrophys Suppl 144:349–362

    Article  ADS  Google Scholar 

  21. Sagar R, Omar A, Kumar B, Maheswar G, Pandey SB, Bangia T, Pant J, Shukla V, Yadava S (2011) The new 130-cm optical telescope at Devasthal, Nainital. Curr Sci 101:1020–1023

    ADS  Google Scholar 

  22. Sagar R, Kumar B, Omar A, Pandey AK (2012) New optical telescope projects at Devasthal observatory in ground-based and airborne telescopes IV. Proc SPIE 8444T1–12/doi:10.1117/12.925634

  23. Sagar R, Kumar B, Omar A, Joshi YC (2011) New optical telescope projects at Devasthal observatory: 1.3-m installed and 3.6-m upcoming. In recent advances in observational and theoretical studies of star formation. ASI Conf Ser 4:173–180

    Google Scholar 

  24. Sagar R (2007) A modern 3.6 meter new technology optical telescope as a major national initiative in astrophysics. Natl Acad Sci Lett 30:209–212

    Google Scholar 

  25. Poels J, Borra E, Hickson P, Sagar R, Bartczak P, Delchambre L, Finet F, Habraken S, Swings JP, Surdej J (2012) The international liquid mirror telescope (ILMT) as a variability time Machine, New Horizons in time-domain astronomy, proceedings IAU symposium No. 285: 394–396

  26. Ellerbroek BL (2013) A status report on the thirty meter telescope adaptive optics program. J Astrophys Astron 34:121–139

    Article  ADS  Google Scholar 

  27. Sagar R, Richtler T (1991) Mass functions of five young large magellanic cloud star clusters. Astron Astrophys 250:324–339

    ADS  Google Scholar 

  28. Tarenghi M, Wilson RN (1989) The ESO NTT (New Technology Telescope): The First Active Optics Telescope. Proc SPIE 1114, Active Telescope Systems, 302–313 doi:10.1117/12.960835

  29. Wilson RN (1989) First Light NTT Messenger 56:1–5

    ADS  Google Scholar 

  30. Flebus C, Gabriel E, Lambotte S, Ninane N, Pi’erard M, Rausin F, Schumacher JM (2008) Opto-mechanical design of the 3.6 m optical telescope for ARIES in ground-based and airborne telescopes II, Proc SPIE, vol 7012, article id. 70120A, doi:10.1117/12.787888

  31. Ninane N, Flebus C, and Kumar B (2012) The 3.6 m Indo-Belgian Devasthal Optical Telescope: general description in Ground-based and Airborne Telescopes IV, Proc SPIE, vol 8444, article id. 84441 V. doi:10.1117/12.925921

  32. Pierard M, Flebus C, Ninane N (2012) The 3.6 m Indo-Belgian Devasthal Optical Telescope: the active M1 mirror support in Ground-based and Airborne Telescopes IV, Proc SPIE, vol 8444, article id. 84444 V. doi:10.1117/12.925946

  33. de Ville J, Bastin C, Pierard M (2012) The 3.6 m Indo-Belgian Devasthal Optical Telescope: the hydrostatic azimuth bearing in Ground-based and Airborne Telescopes IV, Proc SPIE, vol 8444, article id. 84443Z, doi:10.1117/12.925943

  34. Gabriel E, Bastin C, Pierard M (2012) The 3.6 m Indo-Belgian Devasthal Optical Telescope: the control system in Software and Cyber infrastructure for Astronomy II, Proc SPIE, vol 8451 article id. 845128. doi:10.1117/12.925960

  35. Ninane N, Bastin C, de Ville J, Michel F J, Pierard M, Gabriel G, Flebus C, Omar A (2012) The 3.6 m Indo-Belgian Devasthal Optical Telescope: assembly, integration and tests at AMOS in Ground-based and Airborne Telescopes IV, Proc SPIE, vol 8444, article id. 84442U, doi:10.1117/12.925927

  36. Semenov A (2012) Accomplished the task of production of primary and secondary mirrorsof DOT telescopeunder the project ARIES (India, Belgium, Russia): Fabrication features in Modern Technologies in Space and Ground-based Telescopes and Instrumentation II, Proc SPIE, vol 8450, article id. 84504R, doi:10.1117/12.924645

  37. Spyromilio J, Cameron F, D’OdoricoS Kissler-Patig M, Gilmozzi R (2008) Progress on the European Extremely Large Telescope. Messenger 133:2–8

    ADS  Google Scholar 

  38. McPherson A, Gilmozzi R, Spyromilio J, Kissler-Patig M, Ramsay S (2012) Recent progress towards the European Extremely Large Telescope (E-ELT). Messenger 148:2–8

    ADS  Google Scholar 

Download references

Acknowledgments

Author thanks the National Academy of Sciences, India (NASI) for an award of NASI-Senior Scientist Platinum Jubilee Fellowship and the Directors of both Indian Institute of Astrophysics, Bengaluru and ARIES, Nainital for providing the necessary support. This article is mainly based on the invited talk delivered by the author during the 83rd Annual session and Symposium on Space for human welfare meeting of NASI held at Goa University, Goa in 2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram Sagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sagar, R. A Global Prospective of the Indian Optical and Near-Infrared Observational Facilities in the Field of Astronomy and Astrophysics: A Review. Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci. 87, 1–10 (2017). https://doi.org/10.1007/s40010-016-0287-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40010-016-0287-8

Keywords

Navigation