Skip to main content
Log in

Recent progress on the control and mitigation of runaway electrons and disruption prediction in the HL-2A and J-TEXT tokamaks

  • Special Topics
  • Published:
Reviews of Modern Plasma Physics Aims and scope Submit manuscript

Abstract

The runaway electrons (REs) during disruptions are a crucial problem, especially for the future large-scale tokamaks, which is due to the local impact of RE beams and the large thermal load on the components of the first wall. Therefore, the control and the mitigation of runaway electrons during disruption are now of special attention. In this paper, the recent studies on controlling and mitigating REs during disruptions are reviewed. The results are mainly from the HL-2A and J-TEXT tokamaks. We mainly focus on the prevailing experimental results and progress in the last 10 years: avoidance of REs during disruptions, dissipation and soft landing of RE current, and RE detection and disruption prediction. The review also discusses the direction of further developments in RE mitigation techniques for ITER and the possible pathways indicated by theoretical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  • W. Bai et al., Elevation of runaway electron current by electron cyclotron resonance heating during disruptions on J-TEXT. Plasma Phys. Controlled Fusion 63(11), 115014 (2021)

    ADS  Google Scholar 

  • B.N. Breizman et al., Physics of runaway electrons in tokamaks. Nucl. Fusion 59(8), 083001 (2019)

    ADS  Google Scholar 

  • N. Cai et al., Suppression of runaway current by magnetic energy transfer in J-TEXT. Fusion Eng. Des. 169, 112488 (2021)

    Google Scholar 

  • F. Causa et al., Cherenkov emission provides detailed picture of non-thermal electron dynamics in the presence of magnetic islands. Nucl. Fusion 55(12), 123021 (2015)

    ADS  Google Scholar 

  • Z.Y. Chen et al., Enhancement of runaway production by resonant magnetic perturbation on J-TEXT. Nucl. Fusion 56(7), 074001 (2016a)

    ADS  Google Scholar 

  • Z.Y. Chen et al., The behavior of runaway current in massive gas injection fast shutdown plasmas in J-TEXT. Nucl. Fusion 56(11), 112013 (2016b)

    ADS  Google Scholar 

  • Z.Y. Chen et al., Suppression of runaway electrons by mode locking during disruptions on J-TEXT. Nucl. Fusion 58(8), 082002 (2018)

    ADS  Google Scholar 

  • Z.Y. Chen et al., Design of X-shape armature for electromagnetic projectile injection system on J-TEXT tokamak. J. Electrotechn. Soc. 37(19), 5056–5066 (2022)

    Google Scholar 

  • Chen;, F.X.W.Z.C.S.X.A.Z., DISRUPTION PREDICTION WITH DEEP HYBRID NEURAL NETWORK FEATURE EXTRACTOR DESIGNED SPECIFIC FOR TOKAMAK ON J-TEXT, in 4th IAEA Technical Meetion on Fusion Data Processing, Validation and Analysis. 2021: Virtual event.

  • Chen;, R.G.B.X.B.S.C.R.D., Machine learning for disruption warning on Alcator C-Mod, DIII-D, and EAST Tokamaks, in 27th IAEA Fusion Energy Conference. 2018: Mahatma Mandir Conference Centre.

  • M. Cheon, J. Kim, Cherenkov neutron detector for fusion reaction and runaway electron diagnostics. Rev. Sci. Instrum. 86(8), 083509 (2015)

    ADS  Google Scholar 

  • N. Commaux et al., Demonstration of rapid shutdown using large shattered deuterium pellet injection in DIII-D. Nucl. Fusion 50(11), 112001 (2010)

    ADS  Google Scholar 

  • N. Commaux et al., Novel rapid shutdown strategies for runaway electron suppression in DIII-D. Nucl. Fusion 51(10), 103001 (2011)

    ADS  Google Scholar 

  • N. Commaux et al., First demonstration of rapid shutdown using neon shattered pellet injection for thermal quench mitigation on DIII-D. Nucl. Fusion 56(4), 046007 (2016)

    ADS  Google Scholar 

  • Z.Y. Cui et al., Enhancement of edge impurity transport with ECRH in the HL-2A tokamak. Nucl. Fusion 53(9), 093001 (2013)

    ADS  Google Scholar 

  • A. Dai et al., Conversion of magnetic energy to runaway kinetic energy during the termination of runaway current on the J-TEXT tokamak. Plasma Phys. Controlled Fusion 60(5), 055003 (2018)

    ADS  Google Scholar 

  • J. Decker et al., Full conversion from Ohmic to runaway electron driven current via massive gas injection in the TCV tokamak. Nucl. Fusion (2022). https://doi.org/10.1088/1741-4326/ac5369

    Article  Google Scholar 

  • S. Dormido-Canto et al., Development of an efficient real-time disruption predictor from scratch on JET and implications for ITER. Nucl. Fusion 53(11), 113001 (2013)

    ADS  Google Scholar 

  • H. Dreicer, Electron and ion runaway in a fully ionized gas. I. Phys. Rev. 115(2), 238 (1959)

    MathSciNet  MATH  ADS  Google Scholar 

  • N. Eidietis et al., Control of post-disruption runaway electron beams in DIII-D. Phys. Plasmas 19(5), 056109 (2012)

    ADS  Google Scholar 

  • Feibush, W.T.J.K.-H.A.S.E., Implementation of Artificial Intelligence (AI)/Deep Learning Disruption Predictor into a Plasma Control System, in 28th IAEA Fusion Energy Conference. 2021.

  • M. Gobbin et al., Runaway electron mitigation by applied magnetic perturbations in RFX-mod tokamak plasmas. Nucl. Fusion 57(1), 016014 (2016)

    ADS  Google Scholar 

  • M. Gobbin et al., Runaway electron mitigation by 3D fields in the ASDEX-Upgrade experiment. Plasma Phys. Controlled Fusion 60(1), 014036 (2017)

    ADS  Google Scholar 

  • M. Gobbin et al., The role of 3D fields on runaway electron mitigation in ASDEX Upgrade: a numerical test particle approach. Nucl. Fusion (2021). https://doi.org/10.1088/1741-4326/abfb14

    Article  Google Scholar 

  • Z.Y. Yang et al., REAL-TIME DISRUPTION PREDICTION IN THE PLASMA CONTROL SYSTEM OF HL-2A BASED ON DEEP LEARNING, in 4th IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis. 2021: Chengdu, China.

  • Z. Guo, C.J. McDevitt, X.-Z. Tang, Control of runaway electron energy using externally injected whistler waves. Phys. Plasmas 25(3), 032504 (2018)

    ADS  Google Scholar 

  • B. Guo et al., Disruption prediction on EAST tokamak using a deep learning algorithm. Plasma Phys. Controlled Fusion 63(11), 115007 (2021)

    ADS  Google Scholar 

  • T. Hender et al., MHD stability, operational limits and disruptions. Nucl. Fusion 47(6), S128 (2007)

    Google Scholar 

  • L. Hesslow et al., Influence of massive material injection on avalanche runaway generation during tokamak disruptions. Nucl. Fusion 59(8), 084004 (2019)

    ADS  Google Scholar 

  • L. Hesslow et al., Evaluation of the Dreicer runaway generation rate in the presence of high- Z impurities using a neural network. J. Plasma Phys. (2019). https://doi.org/10.1017/S0022377819000874

    Article  Google Scholar 

  • E.M. Hollmann et al., Experiments in DIII-D toward achieving rapid shutdown with runaway electron suppression. Phys. Plasmas 17(5), 056117 (2010)

    ADS  Google Scholar 

  • E.M. Hollmann et al., Characterization of heat loads from mitigated and unmitigated vertical displacement events in DIII-D. Phys. Plasmas 20(6), 062501 (2013)

    ADS  Google Scholar 

  • E. Hollmann et al., Status of research toward the ITER disruption mitigation system. Phys. Plasmas 22(2), 021802 (2015a)

    ADS  Google Scholar 

  • E.M. Hollmann et al., Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D. Phys. Plasmas 22(10), 102506 (2015b)

    ADS  Google Scholar 

  • E.M. Hollmann et al., Study of Z scaling of runaway electron plateau final loss energy deposition into wall of DIII-D. Phys. Plasmas 24(6), 062505 (2017)

    ADS  Google Scholar 

  • E.M. Hollmann et al., Demonstration of Tokamak discharge shutdown with shell pellet payload impurity dispersal. Phys. Rev. Lett. 122(6), 065001 (2019)

    ADS  Google Scholar 

  • M. Hoppe et al., SOFT: a synthetic synchrotron diagnostic for runaway electrons. Nucl. Fusion 58(2), 026032 (2018a)

    ADS  Google Scholar 

  • M. Hoppe et al., Interpretation of runaway electron synchrotron and bremsstrahlung images. Nucl. Fusion 58(8), 082001 (2018b)

    ADS  Google Scholar 

  • M. Hoppe, O. Embreus, T. Fülp, DREAM: a fluid-kinetic framework for tokamak disruption runaway electron simulations. Comput. Phys. Commun. 268, 108098 (2021)

    MathSciNet  MATH  Google Scholar 

  • W. Hu et al., Real-time prediction of high-density EAST disruptions using random forest. Nucl. Fusion 61(6), 066034 (2021)

    ADS  Google Scholar 

  • D.W. Huang et al., Suppression of runaway current generation by supersonic molecular beam injection during disruptions on J-TEXT. Plasma Phys. Controlled Fusion 59(8), 085002 (2017)

    ADS  Google Scholar 

  • S. Jachmich et al., Shattered Pellet Injection experiments at JET in support of the ITER Disruption mitigation system design. Nucl. Fusion (2021). https://doi.org/10.1088/1741-4326/ac3c86

    Article  Google Scholar 

  • R. Jaspers et al., Islands of runaway electrons in the TEXTOR Tokamak and relation to transport in a stochastic field. Phys. Rev. Lett. 72(26), 4093–4096 (1994)

    ADS  Google Scholar 

  • Z.H. Jiang et al., Simulations of the effects of pre-seeded magnetic islands on the generation of runaway current during disruption on J-TEXT. Phys. Plasmas 26(6), 062508 (2019)

    ADS  Google Scholar 

  • H. Jie et al., Soft landing of runaway currents by ohmic field in J-TEXT tokamak. Plasma Sci. Technol 22(11), 115102 (2020)

    MathSciNet  ADS  Google Scholar 

  • J. Kates-Harbeck, A. Svyatkovskiy, W. Tang, Predicting disruptive instabilities in controlled fusion plasmas through deep learning. Nature 568(7753), 526–531 (2019)

    ADS  Google Scholar 

  • B. Kuteev, V.Y. Sergeev, S. Sudo, Emergency discharge quench or rampdown by a noble gas pellet. Nucl. Fusion 35(10), 1167 (1995)

    ADS  Google Scholar 

  • R. Kwiatkowski et al., Cherenkov probes and runaway electrons diagnostics. Europ Phys J plus 136(10), 1070 (2021)

    ADS  Google Scholar 

  • J.D. Lawson, Some criteria for a power producing thermonuclear reactor. Proceed. Phys. Soc (1957). https://doi.org/10.1088/0370-1301/70/1/303

    Article  Google Scholar 

  • M. Lehnen et al., Suppression of runaway electrons by resonant magnetic perturbations in TEXTOR disruptions. Phys. Rev. Lett. 100(25), 255003 (2008)

    ADS  Google Scholar 

  • M. Lehnen et al., Disruptions in ITER and strategies for their control and mitigation. J. Nucl. Mater. 463, 39–48 (2015)

    ADS  Google Scholar 

  • S. Li et al., A study on combined effects of stochastic magnetic fluctuations and synchrotron radiation on the production of runaway electrons. Plasma Phys. Controlled Fusion 59(5), 055003 (2017)

    ADS  Google Scholar 

  • Y. Li et al., Design of a shattered pellet injection system on J-TEXT tokamak. Rev. Sci. Instrum. 89(10), 10K116 (2018)

    Google Scholar 

  • W. Li et al., Measurements of impurity mixing efficiency during massive gas injection in J-TEXT. Plasma Phys. Controlled Fusion 62(4), 045003 (2020a)

    ADS  Google Scholar 

  • C.H. Li et al., The effect of 2/1 pre-existing magnetic islands width on the suppression of runaway electrons in disruption simulations of J-TEXT. Plasma Phys. Controlled Fusion 62(9), 095010 (2020b)

    ADS  Google Scholar 

  • Y. Li et al., Comparison of disruption mitigation from shattered pellet injection with massive gas injection on J-TEXT. Nucl. Fusion 61(12), 126025 (2021)

    ADS  Google Scholar 

  • Z. Lin et al., The effect of resonant magnetic perturbation on the electron density threshold of runaway electron generation during disruptions on J-TEXT. Plasma Phys. Controlled Fusion 62(2), 025025 (2019a)

    ADS  Google Scholar 

  • Z.F. Lin et al., Full suppression of runaway electron generation by the mode penetration of resonant magnetic perturbations during disruptions on J-TEXT. Plasma Phys. Controlled Fusion 61(2), 024005 (2019b)

    ADS  Google Scholar 

  • O. Linder et al., Electron runaway in ASDEX Upgrade experiments of varying core temperature. J. Plasma Phys. (2021). https://doi.org/10.1017/S0022377821000416

    Article  Google Scholar 

  • Y. Liu et al., Interaction between runaway electrons and internal kink in a post-disruption plasma. Nucl. Fusion 61(11), 116021 (2021)

    ADS  Google Scholar 

  • Y. Liu et al., Mitigation of runaway current with supersonic molecular beam injection on HL-2A tokamak. in 26th IAEA Fusion Energy Conference, Kyoto, Japan, EX/9–3 (2016)

  • J.M. López, J. Vega, D. Alves, S. Dormiado-Canto, Implementation of the Disruption Predictor APODIS in JET’s Real-Time Network Using the MARTe Framework. IEEE Transactions Nuclear Sci. 61(2), 741–744 (2014)

    ADS  Google Scholar 

  • Lukash, V., et al., Modeling of Major Disruption Mitigation by Fast Injection of Massive Li Pellets in ITER Like Tokamak-reactor. 2010, IAEA.

  • M. Lungaroni et al., On the potential of ruled-based machine learning for disruption prediction on JET. Fusion Eng. Des. 130, 62–68 (2018)

    Google Scholar 

  • Y.H. Luo et al., Designing of the massive gas injection valve for the joint Texas experimental tokamak. Rev. Sci. Instrum. 85(8), 083504 (2014)

    ADS  Google Scholar 

  • A. Lvovskiy et al., Suppression of runaway electron generation by massive helium injection after induced disruptions on TEXTOR. J. Plasma Phys (2015). https://doi.org/10.1017/S0022377815001051

    Article  Google Scholar 

  • A. Lvovskiy et al., The role of kinetic instabilities in formation of the runaway electron current after argon injection in DIII-D. Plasma Phys. Controlled Fusion 60(12), 124003 (2018)

    ADS  Google Scholar 

  • T.K. Ma et al., Development of hard X-ray spectrometer with high time resolution on the J-TEXT tokamak. Nucl. Instrum. Methods Phys. Res. Sect. A 856, 81–85 (2017)

    ADS  Google Scholar 

  • J.R. Martín-Solís, A. Loarte, M. Lehnen, Formation and termination of runaway beams in ITER disruptions. Nucl. Fusion 57(6), 066025 (2017)

    ADS  Google Scholar 

  • K.J. Montes et al., Machine learning for disruption warnings on Alcator C-Mod, DIII-D, and EAST. Nucl. Fusion 59(9), 096015 (2019)

    ADS  Google Scholar 

  • E. Nardon et al., On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection. Nucl. Fusion 57(1), 016027 (2017)

    ADS  Google Scholar 

  • G. Pautasso et al., Generation and dissipation of runaway electrons in ASDEX Upgrade experiments. Nucl. Fusion 60(8), 086011 (2020)

    ADS  Google Scholar 

  • C. Paz-Soldan et al., Spatiotemporal evolution of runaway electron momentum distributions in Tokamaks. Phys. Rev. Lett. 118(25), 255002 (2017)

    ADS  Google Scholar 

  • C. Paz-Soldan et al., Resolving runaway electron distributions in space, time, and energy. Phys. Plasmas 25(5), 056105 (2018)

    ADS  Google Scholar 

  • C. Paz-Soldan et al., Recent DIII-D advances in runaway electron measurement and model validation. Nucl. Fusion 59(6), 066025 (2019a)

    ADS  Google Scholar 

  • C. Paz-Soldan et al., Kink instabilities of the post-disruption runaway electron beam at low safety factor. Plasma Phys. Controlled Fusion 61(5), 054001 (2019b)

    ADS  Google Scholar 

  • C. Paz-Soldan et al., Runaway electron seed formation at reactor-relevant temperature. Nucl. Fusion 60(5), 056020 (2020)

    ADS  Google Scholar 

  • V.V. Plyusnin et al., Development of a diagnostic technique based on Cherenkov effect for measurements of fast electrons in fusion devices. Rev. Sci. Instrum. 83(8), 083505 (2012)

    ADS  Google Scholar 

  • S. Putvinski et al., Halo current, runaway electrons and disruption mitigation in ITER. Plasma Phys. Controlled Fusion 39(12B), B157 (1997)

    Google Scholar 

  • R. Raman et al., Fast time response electromagnetic disruption mitigation concept. Fusion Sci. Technol. 68(4), 797–805 (2015)

    ADS  Google Scholar 

  • R. Raman et al., Electromagnetic particle injector for fast time response disruption mitigation in tokamaks. Nucl. Fusion 59(1), 016021 (2018)

    ADS  Google Scholar 

  • R. Raman et al., Prototype tests of the electromagnetic particle injector-2 for fast time response disruption mitigation in tokamaks. Nucl. Fusion 61(12), 126034 (2021)

    ADS  Google Scholar 

  • G. Rattá et al., An advanced disruption predictor for JET tested in a simulated real-time environment. Nucl. Fusion 50(2), 025005 (2010)

    ADS  Google Scholar 

  • G. Rattá et al., Simulation and real-time replacement of missing plasma signals for disruption prediction: an implementation with APODIS. Plasma Phys. Controlled Fusion 56(11), 114004 (2014)

    ADS  Google Scholar 

  • C. Rea et al., A real-time machine learning-based disruption predictor in DIII-D. Nucl. Fusion 59(9), 096016 (2019)

    ADS  Google Scholar 

  • C. Reux et al., Runaway electron beam generation and mitigation during disruptions at JET-ILW. Nucl. Fusion 55(9), 093013 (2015)

    ADS  Google Scholar 

  • C. Reux et al., Demonstration of Safe Termination of Megaampere Relativistic Electron Beams in Tokamaks. Phys. Rev. Lett. 126(17), 175001 (2021)

    ADS  Google Scholar 

  • C. Reux et al., Physics of runaway electrons with shattered pellet injection at JET. Plasma Phys. Controlled Fusion 64(3), 034002 (2022)

    ADS  Google Scholar 

  • M. Rosenbluth, S. Putvinski, Theory for avalanche of runaway electrons in tokamaks. Nucl. Fusion 37(10), 1355 (1997)

    ADS  Google Scholar 

  • Sabbagh, S., et al. Tokamak disruption event characterization and forecasting research and expansion to real-time application. in Proc. 28th Int. Conf. on Fusion Energy. 2021a.

  • Sabbagh, S., et al. Tokamak Disruption Event Characterization and Forecasting Research and Expansion to Real-Time Application in KSTAR. in APS Division of Plasma Physics Meeting Abstracts. 2021b.

  • F. Saint-Laurent et al., Overview of runaway electron control and mitigation experiments on tore supra and lessons learned in view of ITER. Fusion Sci. Technol. 64(4), 711–718 (2013)

    ADS  Google Scholar 

  • Shen, C., et al., IDP-PGFE: An Interpretable Disruption Predictor based on Physics-Guided Feature Extraction. arXiv preprint arXiv:.13197, 2022.

  • D. Shiraki et al., Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D. Nucl. Fusion 58(5), 056006 (2018)

    ADS  Google Scholar 

  • V. Sizyuk, A. Hassanein, Self-consistent analysis of the effect of runaway electrons on plasma facing components in ITER. Nucl. Fusion 49(9), 095003 (2009)

    ADS  Google Scholar 

  • H.M. Smith, E. Verwichte, Hot tail runaway electron generation in tokamak disruptions. Phys. Plasmas 15(7), 072502 (2008)

    ADS  Google Scholar 

  • Sobolev, Y.M. 2013 Polarization of synchrotron radiation from relativistic electrons moving within toroidal magnetic fields..

  • R.A. Tinguely et al., Spatiotemporal evolution of runaway electrons from synchrotron images in Alcator C-Mod. Plasma Phys. Controlled Fusion 60(12), 124001 (2018a)

    ADS  Google Scholar 

  • R.A. Tinguely et al., Measurements of runaway electron synchrotron spectra at high magnetic fields in Alcator C-Mod. Nucl. Fusion 58(7), 076019 (2018b)

    Google Scholar 

  • R.A. Tinguely et al., Experimental and synthetic measurements of polarized synchrotron emission from runaway electrons in Alcator C-Mod. Nucl. Fusion (2019). https://doi.org/10.1088/1741-4326/ab2d1d

    Article  Google Scholar 

  • R.A. Tinguely et al., Modeling the complete prevention of disruption-generated runaway electron beam formation with a passive 3D coil in SPARC. Nucl. Fusion 61(12), 124003 (2021)

    ADS  Google Scholar 

  • R.H. Tong et al., Observation of runaway electrons by infrared camera in J-TEXT. Rev. Sci. Instrum. 87(11), 11E113 (2016)

    Google Scholar 

  • R.H. Tong et al., The impact of an m/n=2/1 locked mode on the disruption process during a massive gas injection shutdown on J-TEXT. Nucl. Fusion 59(10), 106027 (2019)

    ADS  Google Scholar 

  • J. Vega et al., Results of the JET real-time disruption predictor in the ITER-like wall campaigns. Fusion Eng. Des. 88(6–8), 1228–1231 (2013)

    Google Scholar 

  • S.E.J. Vega, A. Murari, M. Ruiz, Real-Time Implementation in JET of the SPAD Disruption Predictor Using MARTe. IEEE Transact Nuclear Sci. 65(2), 836–842 (2018)

    ADS  Google Scholar 

  • Y.N. Wei et al., Runaway current suppression by secondary massive gas injection during the disruption mitigation phase on J-TEXT. Plasma Phys. Controlled Fusion 61(8), 084003 (2019a)

    ADS  Google Scholar 

  • Y. Wei et al., Dissipation of runaway current by massive gas injection on J-TEXT. Plasma Phys. Controlled Fusion 62(2), 025002 (2019b)

    ADS  Google Scholar 

  • H.B. Xu et al., Preliminary experimental results of pellet injection on the HL-2A Tokamak. Plasma Phys. Rep. 44(12), 1094–1103 (2018)

    ADS  Google Scholar 

  • H.B. Xu et al., The development of shattered pellet injector on HL-2A. Fusion Sci. Technol. 75(2), 98–103 (2019)

    ADS  Google Scholar 

  • H.B. Xu et al., Preliminary experimental results of encapsuled pellet injection on the HL-2A tokamak. Nuclear Fusion Plasma Phys. 40(2), 104 (2020)

    Google Scholar 

  • Z.Y. Yang et al., A disruption predictor based on a 1.5-dimensional convolutional neural network in HL-2A. Nucl. Fusion 60(1), 016017 (2019)

    ADS  Google Scholar 

  • Z.Y. Yang et al., In-depth research on the interpretable disruption predictor in HL-2A. Nucl. Fusion 61(12), 126042 (2021)

    ADS  Google Scholar 

  • Z.Y. Yang et al., Real-time disruption prediction in the plasma control system of HL-2A based on deep learning. Fusion Eng. Des. 182, 113223 (2022)

    Google Scholar 

  • L.H. Yao et al., Plasma behaviour with hydrogen supersonic molecular beam and cluster jet injection in the HL-2A tokamak. Nucl. Fusion 47(11), 1399 (2007)

    ADS  Google Scholar 

  • R. Yoshino, S. Tokuda, Runaway electrons in magnetic turbulence and runaway current termination in tokamak discharges. Nucl. Fusion 40(7), 1293 (2000)

    ADS  Google Scholar 

  • Yunbo, D., et al. Design and preliminary experimental results of disruption mitigation systems on HL-2A tokamak. in 33rd Meeting of the ITPA MHD Disruptions and Control Topical Group, Daejeon, Republic of Korea, 1 - 3 April 2019.

  • Y.P. Zhang et al., Hard X-Ray camera system planned for HL-2A tokamak fast electron Bremsstrahlung tomography. Fusion Sci. Technol. 65(3), 366–371 (2014)

    ADS  Google Scholar 

  • Y.P. Zhang et al., Measurements of the fast electron bremsstrahlung during lower hybrid current drive in the HL-2A tokamak. AIP Adv. 9(8), 085019 (2019)

    ADS  Google Scholar 

  • J. Zhang et al., Application of the Abel-inversion method for the hard X-ray camera on the HL-2A tokamak. J. Instrum. 16(03), P03034 (2021)

    Google Scholar 

  • Y.P. Zhang, et al., Effects of LHCD and LBO on runaway electron dynamics during disruptions in the HL-2A Tokamak. in 28th IAEA Fusion Energy Conference. (Nice, France, 10–15 May 2021).

  • Y.P. Zhang et al., A hard X-ray pinhole camera system for fast electron bremsstrahlung measurements in the HL-2A Tokamak. Fusion Sci. Technol. 77(1), 1–8 (2021)

  • W. Zheng et al., Hybrid neural network for density limit disruption prediction and avoidance on J-TEXT tokamak. Nucl. Fusion 58(5), 056016 (2018)

    ADS  Google Scholar 

  • W. Zheng et al., Disruption predictor based on neural network and anomaly detection on J-TEXT. Plasma Phys. Controlled Fusion 62(4), 045012 (2020)

    ADS  Google Scholar 

  • Y. Zhong et al., Disruption prediction and model analysis using LightGBM on J-TEXT and HL-2A. Plasma Phys. Controlled Fusion 63(7), 075008 (2021)

    ADS  Google Scholar 

  • R.J. Zhou et al., Investigation of ring-like runaway electron beams in the EAST tokamak. Plasma Phys. Controlled Fusion 55(5), 055006 (2013)

    ADS  Google Scholar 

  • J. Zhu et al., Hybrid deep-learning architecture for general disruption prediction across multiple tokamaks. Nucl. Fusion 61(2), 026007 (2020)

    MathSciNet  ADS  Google Scholar 

  • J. Zhu et al., Scenario adaptive disruption prediction study for next generation burning-plasma tokamaks. Nucl. Fusion 61(11), 114005 (2021)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the teams of CNNC/SWIP and HUST for the support of the experiments and simulations. This work was supported by National Key R&D Program of China (No.2019YFE03010001), National Natural Science Foundation of China (No.11775068) and Sichuan Tianfu Science and Technology Elite Project (20SCWR-01). It was also supported by the Innovation Program of SWIP (Nos. 201901XWCXRC004, 202001XWCXRZ003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y. P. Zhang or R. H. Tong.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y.P., Tong, R.H., Yang, Z.Y. et al. Recent progress on the control and mitigation of runaway electrons and disruption prediction in the HL-2A and J-TEXT tokamaks. Rev. Mod. Plasma Phys. 7, 12 (2023). https://doi.org/10.1007/s41614-022-00110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41614-022-00110-3

Keywords

Navigation