Skip to main content
Log in

Flexible Frameworks and Physical Properties of Compounds with Transition Metals, Derived from Ellenbergerite and β-Tridymite

  • REVIEWS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The specific features of crystal chemistry and physical properties of phosphates (arsenates, vanadates) of alkali and transition metals, crystallized as derivatives of minerals ellenbergerite (Mg,Ti,Zr,\(\square \))2Mg6(A1,Mg)6(Si,P)2Si6O28(OH)10 and β-tridymite SiO2, have been analyzed in the aspect of flexibility of their radically different frameworks. The crystal chemical function of cations of transition metals in the structures of ellenbergerite- and tridymite-like analogs has been discussed. The data on their formation methods and thermodynamic and electrical properties are given. The reasons for the structural differences of tridymite-like phases and the relationship between the polymorphism and variations in the coordination polyhedra of transition metals, tending to the most stable configuration, have been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

Similar content being viewed by others

REFERENCES

  1. D. G. Fisher, Environmental Phosphorus Handbook, Ed. by E. Griffith (Wiley, New York, 1973).

    Google Scholar 

  2. P. B. Moore, Phosphate Minerals, Ed. by J. O. Nriagu and P. B. Moore (Springer, Berlin, 1984), p. 155.

    Google Scholar 

  3. C. Chopin, R. Klaska, O. Medenbach, and D. Dron, Contrib. Mineral. Petrol. 92, 316 (1986).

    ADS  Google Scholar 

  4. P. Comodi and P. F. Zanazzi, Eur. J. Mineral. 5, 819 (1993).

    ADS  Google Scholar 

  5. N. V. Zubkova, D. Yu. Pushcharovsky, M. Pasero, et al., Crystallogr. Rep. 52, 199 (2007).

    ADS  Google Scholar 

  6. G. Raade, C. Rømming, and O. Medenbach, Mineral. Petrol. 62, 89 (1998).

    ADS  Google Scholar 

  7. P. Keller, Eur. J. Mineral. 13, 769 (2001).

    ADS  Google Scholar 

  8. R. J. Evans and L. A. Groat, Can. Mineral. 50, 1197 (2012).

    Google Scholar 

  9. G. Ferraris, G. Ivaldi, and C. Chopin, Eur. J. Mineral. 7, 167 (1995).

    ADS  Google Scholar 

  10. A. Pieczka, R. J. Evans, E. S. Grew, et al., Mineral. Mag. 77 (6), 2825 (2013).

    Google Scholar 

  11. F. C. Hawthorne, Acta Mineral. Petrogr. Abstr. Ser. 6, 734 (2010).

    Google Scholar 

  12. O. V. Yakubovich, G. V. Kiriukhina, O. V. Dimitrova, et al., Dalton Trans. 44 (26), 11827 (2015).

    Google Scholar 

  13. J. L. Pizarro, M. I. Arriortua, L. Lezama, and T. Rojo, Solid State Ionics 63–65, 71 (1993).

    Google Scholar 

  14. M. D. Marcos, P. Amorós, A. Beltrán, and D. Beltrán, Solid State Ionics 63–65, 87 (1993).

    Google Scholar 

  15. J. M. Rojo, J. L. Mesa, J. L. Pizarro, et al., High Press. Res. 22, 569 (2002).

    ADS  Google Scholar 

  16. M. D. Marcos, P. Amorós, D. Beltrán, et al., J. Mater. Chem. 5, 917 (1995).

    Google Scholar 

  17. R. W. Hughes, L. A. Gerrard, D. J. Price, and M. T. Weller, Inorg. Chem. 42, 4160 (2003).

    Google Scholar 

  18. F. Zhang, P. Y. Zavalij, and M. S. Whittingham, J. Mater. Chem. 9, 3137 (1999).

    Google Scholar 

  19. V. K. Pecharsky and P. Y. Zavalij, Fundamentals of Powder Diffraction and Structural Characterization of Materials, 2nd ed. (Springer, Berlin, 2009), Ch. 23. https://doi.org/10.1007/978-0-387-09579-0

    Book  Google Scholar 

  20. T. Hu, J.-B. Lin, F. Kong, and J.-G. Mao, Inorg. Chem. Commun. 11, 1012 (2008).

    Google Scholar 

  21. M. P. Aitfield, R. E. Morris, and A. K. Cheetham, Acta Crystallogr. C 50, 981 (1994).

    Google Scholar 

  22. M. D. Marcos, P. Amorós, A. Beltrán-Porter, et al., Chem. Mater. 5, 121 (1993).

    Google Scholar 

  23. M. Poienar, A. Maignan, P. Sfirloaga, et al., Solid State Sci. 39, 92 (2015).

    ADS  Google Scholar 

  24. M. Poupon, N. Barrier, A. Pautrat, et al., J. Solid State Chem. 270, 147 (2019).

    ADS  Google Scholar 

  25. S.-Y. Zhang, W.-B. Guo, M. Yang, et al., J. Solid State Chem. 225, 78 (2015).

    ADS  Google Scholar 

  26. Đorđević T, Lj. Karanović, and E. Tillmanns, Cryst. Res. Technol. 43, 1202 (2008).

    Google Scholar 

  27. Z. Gu, T. Zhai, B. Gao, et al., Cryst. Growth Des. 7 (4), 825 (2007).

    Google Scholar 

  28. L. Jin, J. B. Hong, and Y. Ni, Mater. Chem. Phys. 123, 337 (2010).

    Google Scholar 

  29. Y. Ni, K. Liao, J. Hong, and X. Wei, CrystEngComm 11, 570 (2009).

    Google Scholar 

  30. M. Cui, N. Wang, S. Chen, et al., J. Alloys Compd. 785, 1009 (2019).

    Google Scholar 

  31. B. Grünbaum and G. C. Shephard, Tilings and Patterns (W. H. Freeman and Co., New York, 1987).

    MATH  Google Scholar 

  32. G. Wallez, F. Luca, J.-P. Souron, and M. Quarton, Mater. Res. Bull. 34, 1251 (1999).

    Google Scholar 

  33. M. J. Buerger, J. Chem. Phys. 15, 1 (1947).

    ADS  Google Scholar 

  34. I. S. Kerr, Z. Krist. 139, 186 (1974).

  35. E. K. Anderson and G. Z. Ploug-Sorensen, Z. Krist. 176, 67 (1986).

  36. Ch. Baerlocker, L. B. McCusker, and D. H. Olson, Atlas of Zeolite Framework Types (Elsevier, Amsterdam, 2007).

    Google Scholar 

  37. V. Kahlenberg, R. X. Fisher, and W. H. Baur, Z. Krist. 216, 489 (2001).

  38. P. A. Sandomirskii and N. V. Belov, Crystal Chemistry of Mixed Anion Radicals (Nauka, Moscow, 1984).

    Google Scholar 

  39. P. Feng, X. Bu, S. H. Tolbert, and G. D. Stucky, J. Am. Chem. Soc. 119, 2497 (1997).

    Google Scholar 

  40. D. Cellai, P. Bonazzi, and M. A. Carpenter, Am. Mineral. 82, 276 (1997).

    ADS  Google Scholar 

  41. C. Ferraris, G. C. Parodi, S. Pont, et al., Eur. J. Mineral. 26, 257 (2014).

    ADS  Google Scholar 

  42. V. Kahlenberg and H. Böhm, Am. Mineral. 83, 631 (1998).

    ADS  Google Scholar 

  43. H. Kawaji, Y. Ishihara, A. Nidaira, et al., J. Therm. Anal. Calorim. 92, 451 (2008).

    Google Scholar 

  44. P. F. Henry, E. M. Hughes, and M. T. Weller, Dalton Trans. 4, 555 (2000).

    Google Scholar 

  45. D. Blum, J. C. Peuzin, and J. Y. Henry, Ferroelectrics 61, 265 (1984).

    Google Scholar 

  46. R. Hammond and J. Barbier, Acta Crystallogr. B 52, 440 (1966).

    Google Scholar 

  47. N. P. Raju and J. E. Greedan, Can. J. Phys. 73, 658 (1995).

    ADS  Google Scholar 

  48. K. Kimura and Ts. Kimura, J. Phys. Soc. Jpn. 84, 003705 (2015).

    Google Scholar 

  49. A. M. Chippindale, A. R. Cowley, J. Chen, et al., Acta Crystallogr. C 55, 845 (1999).

    Google Scholar 

  50. O. V. Yakubovich, N. N. Simonov, and N. V. Belov, Sov. Phys. Crystallogr. 35, 22 (1990).

    Google Scholar 

  51. N. Bolotina, O. Yakubovich, L. Shvanskaya, et al., Acta Crystallogr. B 75, 822 (2019).

    Google Scholar 

  52. W. T. A. Harrison, Th. E. Gier, J. M. Nicol, and G. D. Stucky, J. Solis State Chem. 114, 249 (1995).

    ADS  Google Scholar 

  53. T. R. Jansen, Dalton Trans. 13, 2261 (1998).

    Google Scholar 

  54. I. V. Korchemkin, V. I. Pet’kov, A. V. Markin, et al., J. Chem. Thermodyn. 96, 34 (2016).

    Google Scholar 

  55. A. P. Khomyakov, G. N. Nechelyustov, E. Sokolova, et al., Can. Mineral. 40, 961 (2002).

    Google Scholar 

  56. P. A. Sandomirskii, S. S. Meshalkin, I. V. Rozhdestvenskaya, et al., Sov. Phys. Crystallogr. 31, 522 (1986).

    Google Scholar 

  57. G. Lampert and R. Boehme, Z. Krist. 176, 29 (1986).

  58. M. Andratschke, K.-J. Range, H. Haase, and U. Klement, Z. Naturforsch. B 47, 1249 (1992).

    Google Scholar 

  59. O. V. Yakubovich and O. K. Mel’nikov, Sov. Phys. Crystallogr. 34, 34 (1989).

    Google Scholar 

  60. H. Y. Ng and W. T. A. Harrison, Micropor. Mesopor. Mater. 23, 197 (1998).

    Google Scholar 

  61. W. H. Taylor, Z. Krist. 85, 425 (1933).

  62. E. Yu. Borovikova, V. Kurazhkovskaya, D. Ksenofontov, et al., Eur. J. Mineral. 24, 777 (2012).

    ADS  Google Scholar 

  63. I. V. Korchemkin, V. I. Pet’kov, A. V. Markin, et al., J. Chem. Thermodyn. 78, 114 (2014).

    Google Scholar 

  64. M. Luján, J.-P. Rivera, S. Kizhaev, et al., Ferroelectrics 161, 77 (1994).

    Google Scholar 

  65. G. Nénert, J. Jr. Bettis, R. Kremer, et al., Inorg. Chem. 52, 9627 (2013).

    Google Scholar 

  66. H. B. Yahia, E. Gaudin, and J. Darriet, J. Alloys Compd. 442, 74 (2007).

    Google Scholar 

  67. M. F. Luján and F. Kubel, Z. Naturforsch. 50, 1210 (1995).

  68. H. B. Yahia, E. Gaudin, and J. Darriet, Z. Naturforsch. 64, 875 (2009).

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-03-00908а.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Shvanskaya.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shvanskaya, L.V., Yakubovich, O.V. Flexible Frameworks and Physical Properties of Compounds with Transition Metals, Derived from Ellenbergerite and β-Tridymite. Crystallogr. Rep. 66, 10–28 (2021). https://doi.org/10.1134/S106377452101017X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377452101017X

Navigation