Skip to main content
Log in

Magnetic field–dependent microstructure evolution and magnetic property of Fe–6.5 Si–0.05 B alloy during solidification

  • Novel Synthesis and Processing of Metals
  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fe–6.5 Si–0.05 B alloy was used in the study to investigate the texture evolution and magnetic property of the ferromagnetic crystal under an axial high magnetic field during bulk solidification. Optical microscopy (OM) and X-ray diffraction (XRD) were applied to analyze the microstructures and texture evolution of the alloy solidified under different magnetic field intensities. The result shows that with an increase in the magnetic field intensity from 0 to 2 T, the texture gradually changes from random orientation to {100} 〈120〉, eventually becoming a mixture of cube and Goss texture. The alloys treated at 1 and 2 T showed magnetic anisotropic behavior, while the alloy treated at 0 T showed magnetic isotropic behavior. The change in magnetic property comes from the evolution of α-Fe crystal orientation. Furthermore, a method for controlling the crystallization process and crystallographic orientation by adjusting the magnetic field intensity was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. H. Honma, Y. Ushigami, and Y. Suga: Magnetic properties of (110)[001] grain oriented 6.5% silicon steel. J. Appl. Phys. 70, 6259 (1991).

    Article  CAS  Google Scholar 

  2. Y. Takada, M. Abe, S. Masuda, and J. Inagaki: Commercial scale production of Fe–6.5 wt% Si sheet and its magnetic properties. J. Appl. Phys. 64, 5367 (1988).

    Article  CAS  Google Scholar 

  3. G.Y. Ouyang, X. Chen, Y.F. Liang, C. Macziewski, and J. Cui: Review of Fe–6.5 wt% Si high silicon steel-A promising soft magnetic material for sub-kHz application. J. Magn. Magn. Mater. 481, 234 (2019).

    Article  CAS  Google Scholar 

  4. H. Haiji, K. Okada, T. Hiratani, M. Abe, and M. Ninomiya: Magnetic properties and workability of 6.5% Si steel sheet. J. Magn. Magn. Mater. 160, 109 (1996).

    Article  CAS  Google Scholar 

  5. Z.W. Zhang, G. Chen, H. Bei, F. Ye, G.L. Chen, and C.T. Liu: Improvement of magnetic properties of an Fe–6.5 wt% Si alloy by directional recrystallization. Appl. Phys. Lett. 93, 1908 (2008).

    Google Scholar 

  6. H.D. Fu, Z.H. Zhang, Y.B. Jiang, and J.X. Xie: Improvement of magnetic properties of an Fe–6.5 wt% Si alloy by directional solidification. Mater. Lett. 65, 1416 (2011).

    Article  CAS  Google Scholar 

  7. Z.W. Zhang, G. Chen, H. Bei, F. Li, F. Ye, and G.L. Chen: Directional recrystallization and microstructures of an Fe–6.5 wt% Si alloy. J. Mater. Res. 24, 2654 (2009).

    Article  CAS  Google Scholar 

  8. S.L. Cui, G.Y. Ouyang, T. Ma, C. Macziewski, V.I. Levitas, L. Zhou, M.J. Kramer, and J. Cui: Thermodynamic and kinetic analysis of the melt spinning process of Fe–6.5 wt% Si alloy. J. Alloys Compd. 771, 643 (2019).

    Article  CAS  Google Scholar 

  9. T. Ros, D. Ruiz, Y. Houbaert, and R.E. Vandenberghe: Study of ordering phenomena in high silicon electrical steel (up to 12.5 at.%) by Mossbauer spectroscopy. J. Magn. Magn. Mater. 242, 208 (2002).

    Article  Google Scholar 

  10. B. Zhang, Y.F. Liang, S.B. Wen, S. Wang, X.J. Shi, F. Ye, and J.P. Lin: High-strength low-iron-loss silicon steels fabricated by cold rolling. J. Alloys Compd. 481, 234 (2019).

    Google Scholar 

  11. Y.F. Liang, J.W. Ge, X.S. Fang, F. Ye, and J.P. Lin: Hot deformation behavior and softening mechanism of Fe–6.5 wt% Si alloy. Mat. Sci. Eng., A 570, 8 (2013).

    Article  CAS  Google Scholar 

  12. T. Ros, Y. Houbaert, and M. De: Evolution of magnetic properties and microstructure of high-silicon steel during hot dipping and diffusion annealing. IEEE Trans. Magn. 38, 3201 (2002).

    Article  Google Scholar 

  13. R. Li, Q. Shen, L.M. Zhang, and T. Zhang: Magnetic properties of high silicon iron sheet fabricated by direct powder rolling. J. Magn. Magn. Mater. 281, 135 (2004).

    Article  CAS  Google Scholar 

  14. D. Bouchara, M. Fagot, J. Degauque, and J. Bras: Ordering influence on magnetic properties of rapidly quenched Fe–6.5 wt% Si. J. Magn. Magn. Mater. 83, 377 (1990).

    Article  CAS  Google Scholar 

  15. Y. Liu, Q. Wang, I. Kazuhiko, Y. Yuan, T. Liu, and J.C. He: Magnetic-field-dependent microstructure evolution and magnetic properties of Tb0.27Dy0.73Fe1.95 alloy during solidification. J. Magn. Magn. Mater. 357, 18 (2014).

    Article  CAS  Google Scholar 

  16. T.X. Zheng, B. F. Zhou, J. Wang, S.S. Shuai, Y.B. Zhong, W.L. Ren, Z.M. Ren, F. Debray, and E. Beaugnon: Compression properties enhancement of Al–Cu alloy solidified under a 29 T high static magnetic field. Mat. Sci. Eng., A 733, 170 (2018).

    Article  CAS  Google Scholar 

  17. J. Wang, Y.X. He, J.S. Li, C. Li, H.C. Kou, P.X. Zhang, and E. Beaugnon: Nucleation of supercooled Co melts under a high magnetic field. Mater. Chem. Phys. 225, 133 (2019).

    Article  CAS  Google Scholar 

  18. P.D. Rango, M. Lees, P. Lejay, A. Sulpice, R. Tournier, M. Ingold, P. Germi, and M.J.N. Pernet: Texturing of magnetic materials at high temperature by solidification in a magnetic field. Nature 349, 770 (1991).

    Article  Google Scholar 

  19. P.F. Gao, T. Liu, M. Dong, Y. Yuan, and Q. Wang: Magnetic domain structure, crystal orientation, and magnetostriction of Tb0.27Dy0.73Fe1.95 solidified in various high magnetic fields. J. Magn. Magn. Mater. 401, 755 (2016).

    Article  CAS  Google Scholar 

  20. T.X. Zheng, Y.B. Zhong, Z.S. Lei, W.L. Ren, Z.M. Ren, H. Wang, Q.L. Wang, F. Debray, E. Beaugnon, and Y. Fautrelle: Effects of high static magnetic field on crystal orientation and magnetic property of Bi–5 wt% Zn alloys. Mater. Lett. 140, 68 (2015).

    Article  CAS  Google Scholar 

  21. C.M. Liu, Y.B. Zhong, Z. Shen, L.C. Dong, T.X. Zheng, W.L. Ren, Z.S. Lei, and Z.M. Ren: Effect of a transverse weak magnetic field on the texture evolution and magnetic property of Fe–1.0 wt% Si alloy during bulk solidification. Mater. Res. Express 6, 6 (2019).

    Google Scholar 

  22. H.D. Fu, Z.H. Zhang, X.S. Wu, and J.X. Xie: Effects of boron on microstructure and mechanical properties of Fe–6.5 wt% Si alloy fabricated by directional solidification. Intermetallics 35, 67 (2013).

    Article  CAS  Google Scholar 

  23. H.D. Fu, Q. Yang, Z.H. Zhang, and J.X. Xie: Effects of precipitated phase and order degree on bending properties of an Fe–6.5 wt% Si alloy with columnar grains. J. Mater. Res. 26, 1711 (2011).

    Article  CAS  Google Scholar 

  24. H.D. Fu, Z.H. Zhang, Q. Yang, and J.X. Xie: Morphology of the boron-rich phase along columnar grain boundary and its effects on the compression crack of Fe–6.5Si–0.05B alloy. Mat. Sci. Eng., A 528, 1425 (2011).

    Article  Google Scholar 

  25. K.N. Kim, L.M. Pan, J.P. Lin, Y.L. Wang, Z. Lin, and G.L. Chen: The effect of boron content on the processing for Fe–6.5 wt% Si electrical steel sheets. J. Magn. Magn. Mater. 277, 331 (2004).

    Article  CAS  Google Scholar 

  26. H.P. Utech and M.C. Flemings: Elimination of solute banding in indium antimonide crystals by growth in a magnetic field. J. Appl. Phys. 37, 2021 (1966).

    Article  CAS  Google Scholar 

  27. S. Asai, K.S. Sassa, and M. Tahashi: Crystal orientation of non-magnetic materials by imposition of a high magnetic field. Sci. Technol. Adv. Mater. 4, 455 (2003).

    Article  CAS  Google Scholar 

  28. C.J. Wang, Q. Wang, Z.Y. Wang, H.T. Li, K.J. Nakajima, and J.C. He: Phase alignment and crystal orientation of Al3Ni in Al–Ni alloy by imposition of a uniform high magnetic field. J. Cryst. Growth 310, 1256 (2008).

    Article  CAS  Google Scholar 

  29. G. Mathiak and G. Frohberg: Interdiffusion and convection in high magnetic fields. Cryst. Res. Technol. 34, 181 (1999).

    Article  CAS  Google Scholar 

  30. X. Li, Z.M. Ren, Y. Fautrelle, Y.D. Zhang, and C. Esling: Morphological instabilities and alignment of lamellar eutectics during directional solidification under a strong magnetic field. Acta Mater. 58, 1403 (2010).

    Article  CAS  Google Scholar 

  31. J.A. Sandoval Robles, A. Salas Zamarripa, M.P. Guerrero Mata, and J. Cabrera: Texture evolution of experimental silicon steel grades. Part I: Hot rolling. J. Magn. Magn. Mater. 429, 367 (2017).

    Article  CAS  Google Scholar 

  32. Z.H.I. Sun, M. Guo, J. Vleugels, O. Van, and B. Blanpain: Strong static magnetic field processing of metallic materials: A review. Curr. Opin. Solid State Mater. Sci. 16, 254 (2012).

    Article  CAS  Google Scholar 

  33. A.E. Mikelson and Y.K. Karklin: Control of crystallization processes by means of magnetic fields. J. Cryst. Growth 52, 524 (1981).

    Article  Google Scholar 

  34. D. Stojakovic, R.D. Doherty, S.R. Kalidindi, and F.J.G. Landgraf: Thermomechanical processing for recovery of desired 〈001〉 fiber texture in electric motor steels. Metall. Mater. Trans. A 39, 1738 (2008).

    Article  Google Scholar 

  35. Y. Umakoshi and H. Kronmuller: On magnetic domain patterns and dislocation structures in iron crystals deformed at 196 and 77 K. Phys. Status Solidi 68, 159 (1981).

    Article  CAS  Google Scholar 

  36. S. Hayashi and J. Echigoya: Microscopic behaviors of magnetic domain walls in Co–Fe alloy and Co–Gd eutectic. Phys. Status Solidi 184, 211 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the National Key Research and Development Program of China (2016YFB0300401, 2016YFB0301401, and 2018YFF0109404), the National Natural Science Foundation of China (U1860202, U1732276, 50134010, and 51704193), and the Science and Technology Commission of Shanghai Municipality (13JC14025000 and 15520711000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yunbo Zhong or Tianxiang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhong, Y., Shen, Z. et al. Magnetic field–dependent microstructure evolution and magnetic property of Fe–6.5 Si–0.05 B alloy during solidification. Journal of Materials Research 34, 4076–4084 (2019). https://doi.org/10.1557/jmr.2019.364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.364

Navigation