Skip to main content

Developmental Disorders of the Knee

  • Chapter
  • First Online:
Pediatric Orthopedic Deformities, Volume 2
  • 1485 Accesses

Abstract

The knee region comprises the distal femur, proximal tibia, proximal fibula, and patella; the knee joint is continuous with two major articulations, the femorotibial and patellofemoral. The distal femur and proximal tibia develop from the epiphyseal cartilage at the end of each bone that includes the joint surface articular cartilage, the physes (epiphyseal growth plates), and the intervening epiphyseal cartilage where the secondary ossification centers develop beginning in the late fetal period. Other structures include anterior and posterior cruciate ligaments, medial and lateral menisci, meniscofemoral ligaments of Wrisberg and Humphrey (posterior and anterior, respectively, to the posterior cruciate ligament), meniscotibial attachments/ligaments (coronary ligaments), synovial lining and joint capsule, medial and lateral collateral ligaments, surrounding muscles, and adjacent nerves and blood vessels. Each of these structures can be the site of primary developmental deformity or be involved with secondary deformity where adjacent primary deformity persists as growth continues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McDermott L. Development of the human knee joint. Arch Surg. 1943;46:705–19.

    Google Scholar 

  2. Gardner E, O’Rahilly R. The early development of the knee joint in staged human embryos. J Anat. 1968;102(Pt 2):289–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Haines R. The development of joints. J Anat. 1947;81:33–55.

    PubMed  PubMed Central  Google Scholar 

  4. Rivas R, Shapiro F. Structural stages in the development of the long bones and epiphyses: a study in the New Zealand white rabbit. J Bone Joint Surg Am. 2002;84-A(1):85–100.

    PubMed  Google Scholar 

  5. Walmsley R. The development of the patella. J Anat. 1940;74:360–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kaplan EB. Discoid lateral meniscus of the knee joint; nature, mechanism, and operative treatment. J Bone Joint Surg Am. 1957;39-A(1):77–87.

    CAS  PubMed  Google Scholar 

  7. Clark CR, Ogden JA. Development of the menisci of the human knee joint. Morphological changes and their potential role in childhood meniscal injury. J Bone Joint Surg Am. 1983;65(4):538–47.

    CAS  PubMed  Google Scholar 

  8. Scapinelli R. Studies on the vasculature of the human knee joint. Acta Anat (Basel). 1968;70(3):305–31.

    CAS  Google Scholar 

  9. Arnoczky SP, Warren RF. Microvasculature of the human meniscus. Am J Sports Med. 1982;10(2):90–5.

    CAS  PubMed  Google Scholar 

  10. Danzig L, Resnick D, Gonsalves M. Blood supply to the normal and abnormal menisci of the human knee. Clin Orthop Relat Res. 1983;172:271–6.

    Google Scholar 

  11. Arnoczky SP. Anatomy of the anterior cruciate ligament. Clin Orthop Relat Res. 1983;172:19–25.

    Google Scholar 

  12. Ogden JA, Tross RB, Murphy MJ. Fractures of the tibial tuberosity in adolescents. J Bone Joint Surg Am. 1980;62(2):205–15.

    CAS  PubMed  Google Scholar 

  13. Pyle SI, Hoerr NL. A radiographic standard of reference for the growing knee: Springfield, Charles C Thomas; 1969.

    Google Scholar 

  14. Ogden JA, Hempton RJ, Southwick WO. Development of the tibial tuberosity. Anat Rec. 1975;182(4):431–45.

    CAS  PubMed  Google Scholar 

  15. Ehrenborg G, Engfeldt B. The insertion of the ligamentum patellae on the tibial tuberosity. Some views in connection with the Osgood-Schlatter lesion. Acta Chir Scand. 1961;121:491–9.

    CAS  PubMed  Google Scholar 

  16. Edwards PH Jr, Grana WA. Physeal fractures about the knee. J Am Acad Orthop Surg. 1995;3(2):63–9.

    PubMed  Google Scholar 

  17. Anderson M, Green WT, Messner MB. Growth and predictions of growth in the lower extremities. J Bone Joint Surg Am. 1963;45-A:1–14.

    CAS  PubMed  Google Scholar 

  18. Anderson M, Messner MB, Green WT. Distribution of lengths of the Normal femur and tibia in children from one to eighteen years of age. J Bone Joint Surg Am. 1964;46:1197–202.

    CAS  PubMed  Google Scholar 

  19. Pritchett JW. Longitudinal growth and growth-plate activity in the lower extremity. Clin Orthop Relat Res. 1992;275:274–9.

    Google Scholar 

  20. Salenius P, Vankka E. The development of the tibiofemoral angle in children. J Bone Joint Surg Am. 1975;57A:259–61.

    Google Scholar 

  21. Heath CH, Staheli LT. Normal limits of knee angle in white children--genu varum and genu valgum. J Pediatr Orthop. 1993;13(2):259–62.

    CAS  PubMed  Google Scholar 

  22. Lin CJ, Lin SC, Huang W, Ho CS, Chou YL. Physiological knock-knee in preschool children: prevalence, correlating factors, gait analysis, and clinical significance. J Pediatr Orthop. 1999;19(5):650–4.

    CAS  PubMed  Google Scholar 

  23. Sabharwal S, Zhao C. The hip-knee-ankle angle in children: reference values based on a full-length standing radiograph. J Bone Joint Surg Am. 2009;91A:2461–8.

    Google Scholar 

  24. Caffey J, Madell SH, Royer C, Morales P. Ossification of the distal femoral epiphysis. J Bone Joint Surg Am. 1958;40-A(3):647–54. passim.

    CAS  PubMed  Google Scholar 

  25. Christ N. Uber die enchondrale ossificationszone der distalen femurepiphyse. Arch Orthop Unfallchir. 1929;27:610–30.

    Google Scholar 

  26. Ludloff K. Uber wachstum und architektur der unteren femurepiphyse und oberen tibiaepiphyse. Beitr Klin Chir. 1903;38:64–75.

    Google Scholar 

  27. Scheller S. Roentgenographic studies on epiphysial growth and ossification in the knee. Acta Radiol Suppl. 1960;195:1–303.

    CAS  PubMed  Google Scholar 

  28. Sontag L, Pyle S. Variations in the calcification pattern in epiphyses: their nature and significance. Am J Roentgenol. 1941;45:50–4.

    Google Scholar 

  29. Weiss JM, Nikizad H, Shea KG, Gyurdzhyan S, Jacobs JC, Cannamela PC, Kessler JI. The incidence of surgery in osteochondritis dissecans in children and adolescents. Orthop J Sports Med. 2016;4(3):2325967116635515.

    PubMed  PubMed Central  Google Scholar 

  30. Kessler JI, Nikizad H, Shea KG, Jacobs JCJR, Bebchuk JD, Weiss JM. The demographics and epidemiology of osteochondritis dissecans of the knee in children and adolescents. Am J Sports Med. 2014;42:320–6.

    PubMed  Google Scholar 

  31. Lefort G, Moyen B, Beaufils P, et al. Osteochondritis dissecans of the femoral condyles: report of 892 cases.[In French]. Rev Chir Orthop Reparatrice Appar Mot. 2006;92(5 suppl):2S97–2S141.

    CAS  PubMed  Google Scholar 

  32. Fisher A. A study of loose bodies composed of cartilage or of cartilage and bone occurring in joints. With special reference to their pathology and etiology. Br J Surg. 1921;8:493–523.

    Google Scholar 

  33. Phemister D. The causes of and changes in loose bodies arising from the articular surface of the joint. J Bone Joint Surg. 1924;6:278–315.

    Google Scholar 

  34. Paget J. Article I: on the production of some of the loose bodies in joints. St Batholomew’s Hosptial Reports. 1856;6:1–4.

    Google Scholar 

  35. Koenig F. Ueber freie korper in den gelenken. Deutsche Zeitschr fur Chir. 1887;27:90–109.

    Google Scholar 

  36. Barth A. Die entstehung und das wachstum der freien gelenkkorper. Arch Klin Chir. 1898;56:507–73.

    Google Scholar 

  37. Wolbach S, Allison N. Osteochondritis dissecans. Arch Surg. 1928;16:1176–86.

    Google Scholar 

  38. Wagoner G, Cohn B. Osteochondritis dissecans: a resume of the theories of etiology and the consideration of heredity as an etiologic factor. Arch Surg. 1931;23:1–25.

    Google Scholar 

  39. Teale T. Case of detached piece of articular cartilage: existing as loose substance in the knee-joint. Med Chir Trans. 1856;39:31–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Conway F. Osteochondritis dissecans: description of the stages of the condition and its’ probably traumatic etiology. Am J Surg. 1937;38:691–9.

    Google Scholar 

  41. Aichroth P. Osteochondritis dissecans of the knee. A clinical survey. J Bone Joint Surg Br. 1971;53(3):440–7.

    CAS  PubMed  Google Scholar 

  42. Mubarak SJ, Carroll NC. Juvenile osteochondritis dissecans of the knee: etiology. Clin Orthop Relat Res. 1981;157:200–11.

    Google Scholar 

  43. Linden B. Osteochondritis dissecans of the femoral condyles: a long-term follow-up study. J Bone Joint Surg Am. 1977;59(6):769–76.

    CAS  PubMed  Google Scholar 

  44. Fairbank H. Osteo-chondritis dissecans. Br J Surg. 1933;21:67–82.

    Google Scholar 

  45. Smillie IS. Treatment of osteochondritis dissecans. J Bone Joint Surg Br. 1957;39-B(2):248–60.

    CAS  PubMed  Google Scholar 

  46. Aichroth P. Osteochondral fractures and their relationship to osteochondritis dissecans of the knee. An experimental study in animals. J Bone Joint Surg Br. 1971;53(3):448–54.

    CAS  PubMed  Google Scholar 

  47. Codman E. The formation of loose cartilages at the knee joint. Boston Med Surg J. 1903;149:427–8.

    Google Scholar 

  48. Ribbing S. Studien uber hereditare, multiple Epiphysenstorungen. Acta Radiol. 1937;Suppl 34:1–107.

    Google Scholar 

  49. Barrie HJ. Hypertrophy and laminar calcification of cartilage in loose bodies as probable evidence of an ossification abnormality. J Pathol. 1980;132(2):161–8.

    CAS  PubMed  Google Scholar 

  50. Barrie HJ. Hypothesis--a diagram of the form and origin of loose bodies in osteochondritis dissecans. J Rheumatol. 1984;11(4):512–3.

    CAS  PubMed  Google Scholar 

  51. Barrie HJ. Osteochondritis dissecans 1887-1987. A centennial look at Konig’s memorable phrase. J Bone Joint Surg Br. 1987;69(5):693–5.

    CAS  PubMed  Google Scholar 

  52. Bernstein M. Osteochondritis dissecans. J Bone Joint Surg. 1925;7:319–29.

    Google Scholar 

  53. White J. Osteochondritis dissecans in association with dwarfism. J Bone Joint Surg Br. 1957;39-B(2):261–7.

    CAS  PubMed  Google Scholar 

  54. Hanley WB, McKusick VA, Barranco FT. Osteochondritis dissecans with associated malformations in two brothers. A review of familial aspects. J Bone Joint Surg Am. 1967;49(5):925–37.

    CAS  PubMed  Google Scholar 

  55. Ludloff K. Zur frage der osteochondritis dissecans am knie. Arch Klin Chir. 1908;87:552–70.

    Google Scholar 

  56. Axhausen G. Ueber einfache, aseptische knochen-und knorpelnekrose, chondritis dissecans und arthritis deformans. Arch Klin Chir. 1912;99:519–74.

    Google Scholar 

  57. Axhausen G. Die entstehung der freien gelenkkorper und ihre beziehungen zur arthritis deformans. Arch Klin Chir. 1914;104:581–679.

    Google Scholar 

  58. Axhausen G. Zur entstehung der freien solitarkorper des kniegelenks. Deut Med Wochens. 1920;46:825–6.

    Google Scholar 

  59. Axhausen G. Uever vorkommen und bedeutung epiphysarer ernahrungsunterbrechungen beim menschen. Munch Med Wochens. 1922;69:881–4.

    Google Scholar 

  60. Axhausen G. Uber der abgrenzungsvorgang au epiphysaren knochen (osteochondritis dissecans Konig). Virch Arch Path Anat. 1924;252:458–518.

    Google Scholar 

  61. Hildebrand O. Experimenteller beitrag zur lehre von den freien gelenkkorpern. Deut z Chir. 1895;42:292–308.

    Google Scholar 

  62. Riedel. Einige gelenkpraparate: osteochondritis dissecans. Verhandl Deutsch Gesellsch Chir. 1890;19:399–417.

    Google Scholar 

  63. Schmieden. Ein beitrag zur lehre von den gelenkmausen. Arch Klin Chir. 1900;62:532.

    Google Scholar 

  64. Konjetzny. Diskussionsbemerkung zum vortage ehmann uber osteochondritis. Zentral bl f Chir. 1924;51:2451–3.

    Google Scholar 

  65. Kappis M. Osteochondritis dissecans und traumaische gelenkmaus. Deutsch Z Chir. 1920;157:187–213.

    Google Scholar 

  66. Hellstrom J. Beitrag zur kenntnis der sogenannten osteochondritis dissecans in kniegelenk. Acta Chir Scand. 1922;75:273–318.

    Google Scholar 

  67. Von Dittrich K. Uber osteochondrolysis traumatica (osteochondritis dissecans gen. Konig). Eine klinische u. histologische studie. Virchows Arch Pathol Anat Physiol Klin Med. 1925;258:795–819.

    Google Scholar 

  68. Freiberg A. Osteochondritis dissecans. J Bone Joint Surg. 1923;5:3–16.

    Google Scholar 

  69. Gebele H. Zur Frage: unfall und osteochondritis dissecans. Zentralbl f Chir. 1936;63:2293–9.

    Google Scholar 

  70. Liebman C, Iseman R. Osteochondritis dissecans. Am J Roentgenol. 1940;43:865–70.

    Google Scholar 

  71. Nagura S. The so-called osteochondritis dissecans of Konig. Clin Orthop. 1960;18:100–21.

    Google Scholar 

  72. Jaffe HL. Osteochondritis Dissecans. In: Metabolic, degenerative, and inflammatory diseases of bones and joints. Philadelphia: Lea and Febiger; 1972. p. 584–98.

    Google Scholar 

  73. Milgram JW. Radiological and pathological manifestations of osteochondritis dissecans of the distal femur. Radiology. 1978;126:305–11.

    CAS  PubMed  Google Scholar 

  74. Green WT, Banks HH. Osteochondritis dissecans in children. J Bone Joint Surg Am. 1953;35-A(1):26–47. passim.

    CAS  PubMed  Google Scholar 

  75. Lofgren L. Spontaneous healing of osteochondritis dissecans in children and adolescents; a case of multiple ossification centres in the distal epiphysis of the humerus and a rare os epicondylitis medialis humeri. Acta Chir Scand. 1954;106(6):460–78.

    CAS  PubMed  Google Scholar 

  76. Wiberg. Spontaneous healing of osteochondritis dissecans in the knee joint. Acta Orthop Scand. 1943;14:270–7.

    Google Scholar 

  77. Chiroff RT, Cooke CP 3rd. Osteochondritis dissecans: a histologic and microradiographic analysis of surgically excised lesions. J Trauma. 1975;15(8):689–96.

    CAS  PubMed  Google Scholar 

  78. Koch S, Kampen WU, Laprell H. Cartilage and bone morphology in osteochondritis dissecans. Knee Surg Sports Traumatol Arthrosc. 1997;5(1):42–5.

    CAS  PubMed  Google Scholar 

  79. Linden B, Telhag H. Osteochondritis dissecans: a histologic and autoradiographic study in man. Acta Orthop Scand. 1977;48:682–6.

    CAS  PubMed  Google Scholar 

  80. Yonetani Y, Nakamura N, Natsuume T, Shiozaki Y, Tanaka Y, Horibe S. Histological evaluation of juvenile osteochondritis dissecans of the knee: a case series. Knee Surg Sports Traumatol Arthrosc. 2010;18:723–30.

    PubMed  Google Scholar 

  81. Uozumi H, Takehiko S, Aizawa T, Takahashi A, Ohnuma M, Itoi E. Histologic findings and possible causes of osteochondritis Dissecans of the knee. Am J Sports Med. 2009;37:2003–8.

    PubMed  Google Scholar 

  82. Jacobi M, Wahl P, Bouaicha S, Jakob RP, Gautier E. Association between mechanical axis of the leg and osteochondritis dissecans of the knee. Radiographic study on 103 knees. Am J Sports Med. 2010;38:1425–8.

    PubMed  Google Scholar 

  83. Twyman RS, Desai K, Aichroth PM. Osteochondritis dissecans of the knee. A long-term study. J Bone Joint Surg Br. 1991;73(3):461–4.

    CAS  PubMed  Google Scholar 

  84. Crawfurd EJ, Emery RJ, Aichroth PM. Stable osteochondritis dissecans--does the lesion unite? J Bone Joint Surg Br. 1990;72(2):320.

    CAS  PubMed  Google Scholar 

  85. Hughston JC, Hergenroeder PT, Courtenay BG. Osteochondritis dissecans of the femoral condyles. J Bone Joint Surg Am. 1984;66(9):1340–8.

    CAS  PubMed  Google Scholar 

  86. DeSmet AA, Fisher DR, Graf BK, Lange RH. Osteochondritis dissecans of the knee: value of MR imaging in determining lesion stability and the presence of articular cartilage defects. AJR Am J Roentgenol. 1990;155(3):549–53.

    CAS  Google Scholar 

  87. DeSmet AA, Fisher DR, Graf BK, Lange RH. Untreated osteochondritis dissecans of the femoral condyles: prediction of patient outcome using radiographic and MR findings. Skelet Radiol. 1990;26:463–7.

    Google Scholar 

  88. McGill JJ, Demos TC, Lomasney LM. Osteochondritis dissecans: imaging modalities. Orthopedics. 1995;18(12):1180–5.

    CAS  PubMed  Google Scholar 

  89. Gebarski K, Hernandez RJ. Stage-I osteochondritis dissecans versus normal variants of ossification in the knee in children. Pediatr Radiol. 2005;35:880–6.

    PubMed  Google Scholar 

  90. Mesgarzadeh M, Sapega AA, Bonakdarpour A, et al. Osteochondritis dissecans: analysis of mechanical stability with radiography, scintigraphy, and MR imaging. Radiology. 1987;165(3):775–80.

    CAS  PubMed  Google Scholar 

  91. DeSmet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skelet Radiol. 1996;25:159–63.

    CAS  Google Scholar 

  92. O’Connor MA, Palaniappan M, Khan N, Bruce CE. Osteochondritis dissecans of the knee in children. A comparison of MRI and arthroscopic findings. J Bone Joint Surg Br. 2002;84B:258–62.

    Google Scholar 

  93. Cahill BR, Phillips MR, Navarro R. The results of conservative management of juvenile osteochondritis dissecans using joint scintigraphy. A prospective study. Am J Sports Med. 1989;17(5):601–5. discussion 605–606.

    CAS  PubMed  Google Scholar 

  94. Beduoelle J. L’osteochondrite dissequante des condyles femoraux chez l’enfant et l’adolescent. Cahlers d’enseignement de la SOF-COT. Expansion Scientifique Francaise. 1988:61–93.

    Google Scholar 

  95. Clanton TO, JC DL. Osteochondritis dissecans. History, pathophysiology and current treatment concepts. Clin Orthop Relat Res. 1982;167:50–64.

    Google Scholar 

  96. Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41:988–1020.

    PubMed  Google Scholar 

  97. Rodegerdts U, Gleissner B. Langzeiterfahrungen mit der operativen therapie der osteochondrosis dissecans des kniegelenkes. Orthop Prax. 1979;8:612–22.

    Google Scholar 

  98. DiPaola JD, Nelson DW, Colville MR. Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy. 1991;7:101–4.

    CAS  PubMed  Google Scholar 

  99. Jurgensen I, Bachmann G, Schleicher I, Haas H. Arthroscopic versus conservative treatment of osteochondritis dissecans of the knee: value of magnetic resonance imaging in therapy planning and follow-up. Arthroscopy. 2002;18:378–86.

    PubMed  Google Scholar 

  100. Hefti F, Beguiristain J, Krauspe R, Moller-Madsen B, Ricco V, Tschauner C, et al. Osteochondritis dissecans: a multicenter study of the European Pediatric Orthopedic Society. J Pediatr Orthop B. 1999;8:231–45.

    CAS  PubMed  Google Scholar 

  101. Hughes JA, Cook JV, Churchill MA, et al. Juvenile osteochondritis dissecans: a 5-year review of the natural history using clinical and MRI evaluation. Pediatr Radiol. 2003;33:410–7.

    PubMed  Google Scholar 

  102. Guhl JF. Arthroscopic treatment of osteochondritis dissecans. Clin Orthop Relat Res. 1982;167:65–74.

    Google Scholar 

  103. Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am. 2003;85(Suppl 2):58–69.

    PubMed  Google Scholar 

  104. Jacobs JC Jr, Archibald-Seiffer N, Grimm NL, Carey JL, Shea KG. A review of arthroscopic classification systems for osteochondritis dissecans of the knee. Orthop Clin North Am. 2015;46:133–9.

    PubMed  Google Scholar 

  105. Carey JL, Wall EJ, Grimm NL, Ganley TJ, Edmonds EW, Anderson AF, et al. Novel arthroscopic classification of osteochondritis dissecans of the knee. A multicenter reliability study. Am J Sports Med. 2016;44:1694–8.

    PubMed  Google Scholar 

  106. Wall EJ, Polousky JD, Shea KG, Carey JL, Ganley TJ, Grimm NL, et al. Novel radiographic feature classification of osteochondritis dissecans. A multicenter reliability study. Am J Sports Med. 2015;43:303–9.

    PubMed  Google Scholar 

  107. Ewing JW, Voto SJ. Arthroscopic surgical management of osteochondritis dissecans of the knee. Arthroscopy. 1988;4:37–40.

    CAS  PubMed  Google Scholar 

  108. Decker P. Guerison d’une osteo-chondrite dissequante bilaterale du genou. Medizin Wochenschr (J Suisse Med). 1938;68:221–3.

    Google Scholar 

  109. Hellstrom J, Ostling K. Ein Klinischer beitrag zur kenntnis der osteochondritis dissecans. Acta Chir Scand. 1934;75:273–318.

    Google Scholar 

  110. Van Demark R. Osteochondritis dissecans with spontaneous healing. J Bone Joint Surg. 1952;34A:143–8.

    Google Scholar 

  111. Green JP. Osteochondritis dissecans of the knee. J Bone Joint Surg Br. 1966;48(1):82–91.

    CAS  PubMed  Google Scholar 

  112. Bradley J, Dandy DJ. Results of drilling osteochondritis dissecans before skeletal maturity. J Bone Joint Surg Br. 1989;71(4):642–4.

    CAS  PubMed  Google Scholar 

  113. Kocher MS, Tucker R, Ganley TJ, Flynn JM. Management of osteochondritis dissecans of the knee: current concepts review. Am J Sports Med. 2006;34(7):1181–91.

    PubMed  Google Scholar 

  114. Wall EJ, Vourazeris J, Myer GD, Emery KH, Divine JG, Nick TG, Hewett TE. The healing potential of stable juvenile osteochondritis dissecans knee lesions. J Bone Joint Surg Am. 2008;90:2655–64.

    PubMed  PubMed Central  Google Scholar 

  115. Gunton MJ, Carey JL, Shaw CR, Murnaghan ML. Drilling juvenile osteochondritis dissecans: retro- or transarticular? Clin Orthop Relat Res. 2013;471:1144–51.

    PubMed  Google Scholar 

  116. Donaldson LD, Wojtys EM. Extraarticular drilling for stable osteochondritis dissecans in the skeletally immature knee. J Pediatr Orthop. 2008;28:831–5.

    PubMed  Google Scholar 

  117. Adachi N, Deie M, Nakamae A, Ishikawa M, Motoyama M, Ochi M. Functional and radiographic outcome of stable juvenile osteochondritis dissecans of the knee treated with retroarticular drilling without bone grafting. Arthroscopy. 2009;25:145–52.

    PubMed  Google Scholar 

  118. Boughanem J, Riaz R, Patel RM, Sarwark JF. Functional and radiographic outcomes of juvenile osteochondritis dissecans of the knee treated with extra-articular retrograde drilling. Am J Sports Med. 2011;39:2212–7.

    PubMed  Google Scholar 

  119. Edmonds EW, Albright J, Bastrom T, Chambers HG. Outcomes of extra-articular, intra-epiphyseal drilling for osteochondritis dissecans of the knee. J Pediatr Orthop. 2010;30:870–8.

    PubMed  Google Scholar 

  120. Anderson AF, Richards DB, Pagnani MJ, Hovis WD. Antegrade drilling for osteochondritis dissecans of the knee. Arthroscopy. 1997;13(3):319–24.

    CAS  PubMed  Google Scholar 

  121. Aglietti P, Buzzi R, Bassi PB, Fioriti M. Arthroscopic drilling in juvenile osteochondritis dissecans of the medial femoral condyle. Arthroscopy. 1994;10:286–91.

    CAS  PubMed  Google Scholar 

  122. Kocher MS, Micheli LJ, Yaniv M, Zurakowski D, Ames A, Adrignolo AA. Functional and radiographic outcome of juvenile osteochondritis dissecans of the knee treated with transarticular arthroscopic drilling. Am J Sports Med. 2001;29:562–6.

    CAS  PubMed  Google Scholar 

  123. Abouassaly M, Peterson D, Salci L, Farrokhyar F, D’Souza J, Bhandari M, Ayeni OR. Surgical management of osteochondritis dissecans of the knee in the paediatric population: a systematic review addressing surgical techniques. Knee Surg Sports Traumatol Arthrosc. 2014;22:1216–24.

    CAS  PubMed  Google Scholar 

  124. Kocher MS, Czarnecki JJ, Andersen JS, Micheli LJ. Internal fixation of juvenile osteochondritis dissecans lesions of the knee. Am J Sports Med. 2007;35(5):712–8.

    PubMed  Google Scholar 

  125. Din R, Annear P, Scaddan J. Internal fixation of undisplaced lesions of osteochondritis dissecans in the knee. J Bone Joint Surg Br. 2006;88B:900–4.

    Google Scholar 

  126. Tabaddor RR, Banffy MB, Andersen JS, McFeely E, Ogunwole O, Micheli LJ, Kocher MS. Fixation of juvenile osteochondritis dissecans lesions of the knee using poly 96L/4D-lactide copolymer bioabsorbable implants. J Pediatr Orthop. 2010;30:14–20.

    PubMed  Google Scholar 

  127. Johnson LL, Uitvlugt G, Austin MD, Detrisac DA, Johnson C. Osteochondritis dissecans of the knee: arthroscopic compression screw fixation. Arthroscopy. 1990;6:179–89.

    CAS  PubMed  Google Scholar 

  128. Webb JE, Lewallen LW, Christopherson C, Krych AJ, McIntosh AL. Clinical outcome of internal fixation of unstable osteochondritis dissecans lesions of the knee. Orthopedics. 2013;36:e1444–9.

    PubMed  Google Scholar 

  129. Camathias C, Festring JD, Gaston MS. Bioabsorbable lag screw fixation of knee osteochondritis dissecans in the skeletally immature. J Pediatr Orthop B. 2011;20:74–80.

    PubMed  Google Scholar 

  130. Dhillon MS, Lokesh AV. Bioabsorbable implants in orthopaedics. Indian J Orthop. 2006;40:205–9.

    Google Scholar 

  131. Böstman O, Pihlajamäki HK. Adverse tissue reactions to bioabsorbable fixation devices. Clin Orthop Relat Res. 2000;371:216–27.

    Google Scholar 

  132. Aglietti P, Ciardullo A, Giron F, Ponteggia F. Results of arthroscopic excision of the fragment in the treatment of osteochondritis dissecans of the knee. Arthroscopy. 2001;17:741–6.

    CAS  PubMed  Google Scholar 

  133. Murray JRD, Chitnavis J, Dixon P, Hogan NA, Parker G, Parish EN, Cross MJ. Osteochondritis dissecans of the knee; long-term clinical outcome following arthroscopic debridement. Knee. 2007;14:94–8.

    CAS  PubMed  Google Scholar 

  134. Wright RW, McLean M, Matava MJ, Shively RA. Osteochondritis dissecans of the knee: long-term results of excision of the fragment. Clin Orthop Relat Res. 2004;424:239–43.

    Google Scholar 

  135. Pascual-Garrido C, Tanoira I, Muscolo DL, Ayerza MA, Makino A. Viability of loose body fragments in osteochondritis dissecans of the knee. A series of cases. Int Orthop. 2010;34:827–31.

    PubMed  PubMed Central  Google Scholar 

  136. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75(4):532–53.

    CAS  PubMed  Google Scholar 

  137. Steadman JR, Rodkey WG, Singleton S, Briggs KK. Microfracture technique forfull-thickness chondral defects: technique and clinical results. Oper Tech Orthop. 1997;7:300–4.

    Google Scholar 

  138. Steadman JR, Briggs KK, Rodrigo JJ, Kocher MS, Gill TJ, Rodkey WG. Outcomes of microfracture for traumatic chondral defects of the knee: average 11-year follow-up. Arthroscopy. 2003;19(5):477–84.

    PubMed  Google Scholar 

  139. Yen YM, Cascio B, O'Brien L, Stalzer S, Millett PJ, Steadman JR. Treatment of osteoarthritis of the knee with microfracture and rehabilitation. Med Sci Sports Exerc. 2008;40(2):200–5.

    PubMed  Google Scholar 

  140. Hangody L, Feczko P, Bartha L, Bodo G, Kish G. Mosaicplasty for the treatment of articular defects of the knee and ankle. Clin Orthop Relat Res. 2001;391:S328–36.

    Google Scholar 

  141. Hangody L, Fules P. Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints. J Bone Joint Surg Am. 2003;85(suppl 2):25–32.

    PubMed  Google Scholar 

  142. Miniaci A, Tytherleigh-Strong G. Fixation of unstable osteochondritis dissecans lesions of the knee using arthroscopic autogenous osteochondral grafting (mosaicplasty). Arthroscopy. 2007;23:845–51.

    PubMed  Google Scholar 

  143. Fonseca F, Balaco I. Fixation with autogenous osteochondral grafts for the treatment of osteochondritis dissecans (stages III and IV). Int Orthop. 2009;33(1):139–44.

    PubMed  Google Scholar 

  144. Ollat D, Lebel B, Thaunat M, Jones D, Mainard L, Dubrana F, Versier G. Mosaic osteochondral transplantations in the knee joint, midterm results of the SFA multicenter study. Orthop Traumatol Surg Res. 2011;97:S160–6.

    CAS  PubMed  Google Scholar 

  145. Bobic V. Autologous osteo-chondral grafts in the management of articular cartilage lesions. Orthopade. 1999;28:19–25.

    CAS  PubMed  Google Scholar 

  146. Brittberg M, Lindahl A, Nilsson A. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331(14):889–95.

    CAS  PubMed  Google Scholar 

  147. Brittberg M, Peterson L, Sjogren-Jansson E, Tallheden T, Lindahl A. Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J Bone Joint Surg Am. 2003;85-A(Suppl 3):109–15.

    Google Scholar 

  148. Jones DG, Peterson L. Autologous chondrocyte implantation. J Bone Joint Surg Am. 2006;88A:2502–20.

    Google Scholar 

  149. Vanlauwe J, Almqvist F, Bellemans J, Huskin JP, Verdonk R, Victor J. Repair of symptomatic cartilage lesions of the knee: the place of autologous chondrocyte implantation. Acta Orthop Belg. 2007;73(2):145–58.

    PubMed  Google Scholar 

  150. Peterson L, Minas T, Brittberg M, Lindahl A. Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation: results at two to ten years. J Bone Joint Surg Am. 2003;85-A(Suppl 2):17–24.

    Google Scholar 

  151. Pareek A, Carey JL, Reardon PJ, Peterson L, Stuart MJ, Krych AJ. Long-term outcomes after autologous chondrocyte implantation. A systematic review at mean follow-up of 11.4 years. Cartilage. 2016;7:298–308.

    PubMed  PubMed Central  Google Scholar 

  152. Emmerson BC, Gortz S, Jamali AA, Chung C, Amiel D, Bugbee WD. Fresh osteochondral allografting in the treatment of osteochondritis dissecans of the femoral condyle. Am J Sports Med. 2007;35:907–14.

    PubMed  Google Scholar 

  153. Sadr KN, Pulido PA, McCauley JC, Bugbee WD. Osteochondral allograft transplantation in patients with osteochondritis dissecans of the knee. Am J Sports Med. 2016;44:2870–5.

    PubMed  Google Scholar 

  154. Lyon R, Nissen C, Liu XC, Curtin B. Can fresh osteochondral allografts restore function in juveniles with osteochondritis dissecans of the knee? Clin Orthop Relat Res. 2013;471:1166–73.

    PubMed  Google Scholar 

  155. Rubak JM. Reconstruction of articular cartilage defects with free periosteal grafts. An experimental study. Acta Orthop Scand. 1982;53(2):175–80.

    CAS  PubMed  Google Scholar 

  156. Rubak JM, Poussa M, Ritsila V. Chondrogenesis in repair of articular cartilage defects by free periosteal grafts in rabbits. Acta Orthop Scand. 1982;53(2):181–6.

    CAS  PubMed  Google Scholar 

  157. Rubak JM, Poussa M, Ritsila V. Effects of joint motion on the repair of articular cartilage with free periosteal grafts. Acta Orthop Scand. 1982;53(2):187–91.

    CAS  PubMed  Google Scholar 

  158. O’Driscoll SW, Salter RB. The induction of neochondrogenesis in free intra-articular periosteal autografts under the influence of continuous passive motion. An experimental investigation in the rabbit. J Bone Joint Surg Am. 1984;66(8):1248–57.

    PubMed  Google Scholar 

  159. Angermann P, Riegels-Nielsen P, Pedersen H. Osteochondritis dissecans of the femoral condyle treated with periosteal transplantation. Poor outcome in 14 patients followed for 6-9 years. Acta Orthop Scand. 1998;69(6):595–7.

    CAS  PubMed  Google Scholar 

  160. Madsen BL, Noer HH, Carstensen JP, Normark F. Long-term results of periosteal transplantation in osteochondritis dissecans of the knee. Orthopedics. 2000;23(3):223–6.

    CAS  PubMed  Google Scholar 

  161. Knutsen G, Drogset JO, Engebretsen L, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am. 2007;89(10):2105–12.

    PubMed  Google Scholar 

  162. Gudas R, Kalesinskas RJ, Kimtys V, et al. A prospective randomized clinical study of mosaic osteochondral autologous transplantation versus microfracture for the treatment of osteochondral defects in the knee joint in young athletes. Arthroscopy. 2005;21(9):1066–75.

    PubMed  Google Scholar 

  163. Gudas R, Simonaityte R, Cekanauskas E, Tamosiunas R. A prospective, randomized clinical study of osteochondral autologous transplantation versus microfracture for the treatment of osteochondritis dissecans in the knee joint in children. J Pediatr Orthop. 2009;29(7):741–8.

    PubMed  Google Scholar 

  164. Bentley G, Biant LC, Carrington RW, et al. A prospective, randomized comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg Br. 2003;85:223–30.

    CAS  PubMed  Google Scholar 

  165. Safran MR, Seiber K. The evidence for surgical repair of articular cartilage in the knee. J Am Acad Orthop Surg. 2010;18:259–66.

    PubMed  Google Scholar 

  166. Messner K, Maletius W. The long-term prognosis for severe damage to weight-bearing cartilage in the knee. A 14-year clinical and radiographic follow-up in 28 young athletes. Acta Orthop Scand. 1996;67:165–8.

    CAS  PubMed  Google Scholar 

  167. Schindler OS. Osteochondritis dissecans of the knee. Curr Orthop. 2007;21:47–58.

    CAS  Google Scholar 

  168. Gomoll AH, Farr J, Gillogly SD, Kercher J, Minas T. Surgical management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92:2470–90.

    CAS  PubMed  Google Scholar 

  169. Erickson BJ, Chalmers PN, Yanke AB, Cole BJ. Surgical management of osteochondritis dissecans of the knee. Curr Rev Musculoskelet Med. 2013;6:102–14.

    PubMed  PubMed Central  Google Scholar 

  170. Pascual-Garrido C, Moran CJ, Green DW, Cole BJ. Osteochondritis dissecans of the knee in children and adolescents. Curr Opin Pediatr. 2013;25:46–51.

    PubMed  Google Scholar 

  171. Heyworth BE, Kocher MS. Osteochondritis dissecans of the knee. JBJS Rev. 2015;3(7):e1–12.

    Google Scholar 

  172. Dietz WH Jr, Gross WL, Kirkpatrick JA Jr. Blount disease (tibia vara): another skeletal disorder associated with childhood obesity. J Pediatr. 1982;101(5):735–7.

    PubMed  Google Scholar 

  173. Sabharwal S, Zhao C, McClemens E. Correlation of body mass index and radiographic deformities in children with Blount Disease. J Bone Joint Surg Am. 2007;89:1275–83.

    PubMed  Google Scholar 

  174. Scott AC, Kelly CH, Sullivan E. Body mass index as a prognostic factor in development of infantile Blount disease. J Pediatr Orthop. 2007;27:921–5.

    PubMed  Google Scholar 

  175. Bowen JR, Assis M, Sinha K, Hassink S, Littleton A. Associations among slipped capital femoral epiphysis, tibia vara, and type 2 juvenile diabetes. J Pediatr Orthop. 2009;29:341–4.

    PubMed  Google Scholar 

  176. Blount W. Tibia Vara: osteochondrosis deformans tibiae. J Bone Joint Surg. 1937;19:1–29.

    Google Scholar 

  177. DeMoraes F. Tibia Vara (genu varum par osteochondrose tibiale). Acta Orthop Belg. 1959;25:285–316.

    CAS  Google Scholar 

  178. Simon L. Tibia vara epiphysarea. Paediatr Danub. 1948;6:93–7.

    Google Scholar 

  179. Erlacher P. Deformierende prozesse der epiphysengegend bei kindern. Arch Orthop Unfallchir. 1922;20:81–96.

    Google Scholar 

  180. Langenskiold F. Demonstration eines mit genu-varum bildung einhergeheden dunklen leidens in der oberen tibiaepiphyse, sowie uber die technik der bogenformigen osteotomie. Acta Chir Scand. 1929;54:193.

    Google Scholar 

  181. Nilsonne H. Genu varum mit eigentumlichen epiphysenwer-anderungen. Acta Chir Scand. 1929;44:187–92.

    Google Scholar 

  182. Langenskiold A. Tibia vara; (osteochondrosis deformans tibiae); a survey of 23 cases. Acta Chir Scand. 1952;103(1):1–22.

    CAS  PubMed  Google Scholar 

  183. Langenskiold A, Riska E. Tibia vara (osteochondrosis deformans tibiae): a survey of seventy-one cases. J Bone Joint Surg. 1964;57B:325–30.

    Google Scholar 

  184. Zayer M. Natural history of osteochondrosis tibial (Mb. Blount). Lund: Lagerblads; 1973.

    Google Scholar 

  185. Catonné Y, Pacault C, Azaloux H, Tiré J, Ridarch A, Blanchard P. Radiological appearances in Blount’s disease [article in French]. J Radiol. 1980;61:171–6.

    PubMed  Google Scholar 

  186. Catonné Y, Dintimille H, Arfi S, Mouchet A. Blount’s disease in the Antilles. Apropos of 26 cases [article in French]. Rev Chir Orthop Reparatrice Appar Mot. 1983;69:131–40.

    PubMed  Google Scholar 

  187. Ducou le Pointe H, Mousselard H, Rudelli A, Montagne J-P, Filipe G. Blount’s disease: magnetic resonance imaging. Pediatr Radiol. 1995;25:12–4.

    CAS  PubMed  Google Scholar 

  188. Golding J, McNeil-Smith J. Observations of the etiology of tibia vara. J Bone Joint Surg. 1963;45B:320–5.

    Google Scholar 

  189. Bathfield CA, Beighton PH. Blount disease. A review of etiological factors in 110 patients. Clin Orthop Relat Res. 1978;135:29–33.

    Google Scholar 

  190. Bateson EM. The relationship between Blount’s disease and bow legs. Br J Radiol. 1968;41(482):107–14.

    CAS  PubMed  Google Scholar 

  191. Cook SD, Lavernia CJ, Burke SW, Skinner HB, Haddad RJ Jr. A biomechanical analysis of the etiology of tibia vara. J Pediatr Orthop. 1983;3(4):449–54.

    CAS  PubMed  Google Scholar 

  192. Siffert RS, Katz JF. The intra-articular deformity in osteochondrosis deformans tibiae. J Bone Joint Surg Am. 1970;52(4):800–4.

    CAS  PubMed  Google Scholar 

  193. Langenskiold A. Aspects of the pathology of tibia vara (osteochondrosis deformans tibiae). Ann Chir Gynaecol Fenn. 1955;44(1):58–63.

    CAS  PubMed  Google Scholar 

  194. Sloane D, Sloane M, Gold A. Dyschondroplastic bow legs. J Bone Joint Surg. 1936;18:183–7.

    Google Scholar 

  195. Lamy L, Weissman L. Tibia vara. J Radiol Electrol. 1946;27:409–14.

    Google Scholar 

  196. Gorman TM, Vanderwerff R, Pond M, MacWilliams B, Santora SD. Mechanical axis following staple epiphysiodesis for limb-length inequality. J Bone Joint Surg Am. 2009;91:2430–9.

    PubMed  Google Scholar 

  197. Levine AM, Drennan JC. Physiological bowing and tibia vara. The metaphyseal-diaphyseal angle in the measurement of bowleg deformities. J Bone Joint Surg Am. 1982;64(8):1158–63.

    CAS  PubMed  Google Scholar 

  198. Auerbach JD, Radomisli TE, Simoncini J, Ulin RI. Variability of the metaphyseal-diaphyseal angle in tibia vara: a comparison of two methods. J Pediatr Orthop. 2004;24(1):75–8.

    PubMed  Google Scholar 

  199. Lavelle WF, Shovlin J, Drvaric DM. Reliability of the metaphyseal-diaphyseal angle in tibia vara as measured on digital images by pediatric orthopaedic surgeons. J Pediatr Orthop. 2008;28(6):695–8.

    PubMed  Google Scholar 

  200. Feldman MD, Schoenecker PL. Use of the metaphyseal-diaphyseal angle in the evaluation of bowed legs. J Bone Joint Surg Am. 1993;75(11):1602–9.

    CAS  PubMed  Google Scholar 

  201. Hagglund G, Ingvarsson T, Ramgren B, Zayer M. Metaphyseal-diaphyseal angle in Blount’s disease. A 30-year follow-up of 13 unoperated children. Acta Orthop Scand. 1997;68(2):167–9.

    CAS  PubMed  Google Scholar 

  202. McCarthy JJ, Betz RR, Kim A, Davids JR, Davidson RS. Early radiographic differentiation of infantile tibia vara from physiologic bowing using the femoral-tibial ratio. J Pediatr Orthop. 2001;21(4):545–8.

    CAS  PubMed  Google Scholar 

  203. Chotigavanichaya C, Salinas G, Green T, Moseley CF, Otsuka NY. Recurrence of varus deformity after proximal tibial osteotomy in Blount disease: long-term follow-up. J Pediatr Orthop. 2002;22(5):638–41.

    PubMed  Google Scholar 

  204. Dalinka MK, Coren G, Hensinger R, Irani RN. Arthrography in Blount’s disease. Radiology. 1974;113(1):161–4.

    CAS  PubMed  Google Scholar 

  205. Evensen A, Steffensen J. Tibia vara (osteochondrosis deformans tibia). Acta Orthop Scand. 1957;26:200–10.

    CAS  PubMed  Google Scholar 

  206. Ho-Fung V, Jaimes C, Delgado J, Davidson RS, Jaramillo D. MRI evaluation of the knee in children with infantile Blount disease: tibial and extra-tibial findings. Pediatr Radiol. 2013;43:1316–26.

    PubMed  Google Scholar 

  207. Sabharwal S. Blount disease. Current concepts review. J Bone Joint Surg Am. 2009;91:1758–76.

    PubMed  Google Scholar 

  208. Sabharwal S, Wenokor C, Mehta A, Zhao C. Intra-articular morphology of the knee joint in children with Blount disease. A case-control study using MRI. J Bone Joint Surg Am. 2012;94:883–90.

    PubMed  Google Scholar 

  209. Ferriter P, Shapiro F. Infantile tibia vara: factors affecting outcome following proximal tibial osteotomy. J Pediatr Orthop. 1987;7(1):1–7.

    CAS  PubMed  Google Scholar 

  210. Oyemade GA. The correction of primary knee deformities in children. Int Orthop. 1981;5(4):241–5.

    CAS  PubMed  Google Scholar 

  211. Loder RT, Johnston CE 2nd. Infantile tibia vara. J Pediatr Orthop. 1987;7(6):639–46.

    CAS  PubMed  Google Scholar 

  212. Bradway JK, Klassen RA, Peterson HA. Blount disease: a review of the English literature. J Pediatr Orthop. 1987;7(4):472–80.

    CAS  PubMed  Google Scholar 

  213. de Sanctis N, Della Corte S, Pempinello C, Di Gennaro G, Gambardella A. Infantile type of Blount’s disease: considerations concerning etiopathogenesis and treatment. J Pediatr Orthop B. 1995;4(2):200–3.

    PubMed  Google Scholar 

  214. Greene WB. Infantile tibia vara. Instr Course Lect. 1993;42:525–38.

    CAS  PubMed  Google Scholar 

  215. Hansson LI, Zayer M. Physiological genu varum. Acta Orthop Scand. 1975;46(2):221–9.

    CAS  PubMed  Google Scholar 

  216. Johnston CE. Infantile tibia vara. Clin Orthop Relat Res. 1989;255:13–23.

    Google Scholar 

  217. Schoenecker PL, Meade WC, Pierron RL, Sheridan JJ, Capelli AM. Blount’s disease: a retrospective review and recommendations for treatment. J Pediatr Orthop. 1985;5(2):181–6.

    CAS  PubMed  Google Scholar 

  218. Smith CF. Tibia vara (Blount’s disease). J Bone Joint Surg Am. 1982;64(4):630–2.

    CAS  PubMed  Google Scholar 

  219. Eamsobhana P, Kaewpornsawan K, Yusuwan K. Do we need to do overcorrection in Blount’s disease? Int Orthop. 2014;38:1661–4.

    PubMed  PubMed Central  Google Scholar 

  220. Medboe I. Tibia Vara (Osteochondrosis Deformans Tibiae or Blount’s Disease). Treatment and Follow-up Examination. Acta Orthop Scand. 1964;34:323–36.

    CAS  PubMed  Google Scholar 

  221. Roy L, Chaise F. Maladie de Blount: Revue de huit cas. Rev Chir Orthop. 1979;65:187–90.

    Google Scholar 

  222. Shinohara Y, Kamegaya M, Kuniyoshi K, Moriya H. Natural history of infantile tibia vara. J Bone Joint Surg Br. 2002;84(2):263–8.

    CAS  PubMed  Google Scholar 

  223. Price CT, Scott DS, Greenberg DA. Dynamic axial external fixation in the surgical treatment of tibia vara. J Pediatr Orthop. 1995;15(2):236–43.

    CAS  PubMed  Google Scholar 

  224. Alekberov C, Shevtsov VI, Karatosun V, Gunal I, Alici E. Treatment of tibia vara by the Ilizarov method. Clin Orthop Relat Res. 2003;409:199–208.

    Google Scholar 

  225. Feldman DS, Madan SS, Koval KJ, van Bosse HJ, Bazzi J, Lehman WB. Correction of tibia vara with six-axis deformity analysis and the Taylor Spatial Frame. J Pediatr Orthop. 2003;23(3):387–91.

    PubMed  Google Scholar 

  226. Nadeem D, Quick T, Eastwood D. Focal dome osteotomy for the correction of tibial deformity in children. J Pediatr Orthop B. 2005;14(5):340–6.

    Google Scholar 

  227. Sabharwal S, Lee J Jr, Zhao C. Multiplanar deformity analysis of untreated Blount disease. J Pediatr Orthop. 2007;27:260–5.

    PubMed  Google Scholar 

  228. Schroerlucke S, Bertrand S, Clapp J, Bundy J, Gregg FO. Failure of Orthofix eight-plate for the treatment of Blount disease. J Pediatr Orthop. 2009;29(1):57–60.

    PubMed  Google Scholar 

  229. Wiemann JM, Tryon C, Szalay EA. Physeal stapling versus 8-plate hemiepiphysiodesis for guided correction of angular deformity about the knee. J Pediatr Orthop. 2009;29(5):481–5.

    PubMed  Google Scholar 

  230. Scott AC. Treatment of infantile Blount disease with lateral tension band plating. J Pediatr Orthop. 2012;32:29–34.

    PubMed  Google Scholar 

  231. Langenskiold A. An operation for partial closure of an epiphyseal plate in children, and its experimental basis. J Bone Joint Surg Br. 1975;57(3):325–30.

    CAS  PubMed  Google Scholar 

  232. Langenskiold A. Tibia vara. A critical review. Clin Orthop Relat Res. 1989;246:195–207.

    Google Scholar 

  233. Beck CL, Burke SW, Roberts JM, Johnston CE II. Physeal bridge resection in infantile Blount disease. J Pediatr Orthop. 1987;7:161–3.

    CAS  PubMed  Google Scholar 

  234. Osorio F, Costa EB. La desepiphysiodese associee a l’osteotomie tbiale le traitement de la maladie de Blount: a propos de 2 observations. Rev Chir Orthop. 1985;71:167–71.

    CAS  PubMed  Google Scholar 

  235. Andrade N, Johnston CE. Medial epiphysiolysis in severe infantile tibia vara. J Pediatr Orthop. 2006;26(5):652–8.

    PubMed  Google Scholar 

  236. Canadell J, de Pablos J. Breaking bony bridges by physeal distraction. A new approach. Int Orthop. 1985;9(4):223–9.

    CAS  PubMed  Google Scholar 

  237. Storen H. Operative elevation of the medial tibial joint surface in Blount’s disease-one case observed for 18 years after operation. Acta Orthop Scand. 1970;40:788–96.

    Google Scholar 

  238. Siffert RS. Intraepiphyseal osteotomy for progressive tibia vara: case report and rationale of management. J Pediatr Orthop. 1982;2(1):81–5.

    CAS  PubMed  Google Scholar 

  239. Sasaki T, Yagi T, Monji J, Yasuda K, Kanno Y. Transepiphyseal plate osteotomy for severe tibia vara in children: follow-up study of four cases. J Pediatr Orthop. 1986;6(1):61–5.

    CAS  PubMed  Google Scholar 

  240. Gregosiewicz A, Wosko I, Kandzierski G, Drabik Z. Double-elevating osteotomy of tibiae in the treatment of severe cases of Blount’s disease. J Pediatr Orthop. 1989;9(2):178–81.

    CAS  PubMed  Google Scholar 

  241. Janoyer M, Jabbari H, Rouvillain JL, et al. Infantile Blount’s disease treated by hemiplateau elevation and epiphyseal distraction using a specific external fixator: preliminary report. J Pediatr Orthop B. 2007;16(4):273–80.

    PubMed  Google Scholar 

  242. Hosalkar HS, Jones S, Hartley J, Hill R. Three-dimensional tomography of relapsed infantile Blount’s disease. Clin Orthop Relat Res. 2005;431:176–80.

    Google Scholar 

  243. Accadbled F, Laville JM, Harper L. One-step treatment for evolved Blount’s disease: four cases and review of the literature. J Pediatr Orthop. 2003;23(6):747–52.

    PubMed  Google Scholar 

  244. van Huyssteen AL, Hastings CJ, Olesak M, Hoffman EB. Double-elevating osteotomy for late-presenting infantile Blount’s disease: the importance of concomitant lateral epiphysiodesis. J Bone Joint Surg Br. 2005;87(5):710–5.

    PubMed  Google Scholar 

  245. Hefny H, Shalaby H, El-kawy S, Thakeb M, Elmoatasem E. A new double elevating osteotomy in management of severe neglected infantile tibia vara using the Ilizarov technique. J Pediatr Orthop. 2006;26:233–7.

    PubMed  Google Scholar 

  246. Jones S, Hosalkar HS, Hill RA, Hartley J. Relapsed infantile Blount's disease treated by hemiplateau elevation using the Ilizarov frame. J Bone Joint Surg Br. 2003;85(4):565–71.

    CAS  PubMed  Google Scholar 

  247. Eidelman M, Bialik V, Katzman A. Correction of deformities in children using the Taylor spatial frame. J Pediatr Orthop B. 2006;15(6):387–95.

    PubMed  Google Scholar 

  248. Pandya NK, Clarke SE, McCrthy JJ, Horn BD, Hosalkar HS. Correction of Blount’s disease by a multi-axial external fixation system. J Child Orthop. 2009;3:291–9.

    PubMed  PubMed Central  Google Scholar 

  249. Clarke SE, McCarthy JJ, Davidson RS. Treatment of Blount disease: a comparison between the multiaxial correction system and other external fixators. J Pediatr Orthop. 2009;29(2):103–9.

    PubMed  Google Scholar 

  250. Feldman DS, Madan SS, Ruchelsman DE, Sala DA, Lehman WB. Accuracy of correction of tibia vara: acute versus gradual correction. J Pediatr Orthop. 2006;26(6):794–8.

    PubMed  Google Scholar 

  251. Gilbody J, Thomas G, Ho K. Acute versus gradual correction of idiopathic tibia vara in children: a systematic review. J Pediatr Orthop. 2009;29(2):110–4.

    PubMed  Google Scholar 

  252. Zayer M. Osteoarthritis following Blount’s disease. Int Orthop. 1980;4(1):63–6.

    CAS  PubMed  Google Scholar 

  253. Hofmann A, Jones RE, Herring JA. Blount’s disease after skeletal maturity. J Bone Joint Surg Am. 1982;64(7):1004–9.

    CAS  PubMed  Google Scholar 

  254. Thompson GH, Carter JR. Late-onset tibia vara (Blount’s disease). Current concepts. Clin Orthop Relat Res. 1990;255:24–35.

    Google Scholar 

  255. Beskin JL, Burke SW, Johnston CE 2nd, Roberts JM. Clinical basis for a mechanical etiology in adolescent Blount’s disease. Orthopedics. 1986;9(3):365–70.

    CAS  PubMed  Google Scholar 

  256. Loder RT, Schaffer JJ, Bardenstein MB. Late-onset tibia vara. J Pediatr Orthop. 1991;11(2):162–7.

    CAS  PubMed  Google Scholar 

  257. Thompson GH, Carter JR, Smith CW. Late-onset tibia vara: a comparative analysis. J Pediatr Orthop. 1984;4(2):185–94.

    CAS  PubMed  Google Scholar 

  258. Wenger DR, Mickelson M, Maynard JA. The evolution and histopathology of adolescent tibia vara. J Pediatr Orthop. 1984;4(1):78–88.

    CAS  PubMed  Google Scholar 

  259. Henderson RC, Green WB. Biology of late-onset tibia vara: is varus alignment a prerequisite? J Pediatr Orthop. 1994;14:143–6.

    CAS  PubMed  Google Scholar 

  260. Currarino G, Kirks DR. Lateral widening of epiphyseal plates in knees of children with bowed legs. AJR Am J Roentgenol. 1977;129(2):309–12.

    CAS  PubMed  Google Scholar 

  261. Henderson RC, Kemp GJ, Hayes PR. Prevalence of late-onset tibia vara. J Pediatr Orthop. 1993;13(2):255–8.

    CAS  PubMed  Google Scholar 

  262. Kline SC, Bostrum M, Griffin PP. Femoral varus: an important component in late-onset Blount’s disease. J Pediatr Orthop. 1992;12(2):197–206.

    CAS  PubMed  Google Scholar 

  263. Gordon JE, King DJ, Luhmann SJ, Dobbs MB, Schoenecker PL. Femoral deformity in tibia vara. J Bone Joint Surg Am. 2006;88A:380–6.

    Google Scholar 

  264. Carter JR, Leeson MC, Thompson GH, Kalamchi A, Kelly CM, Makley JT. Late-onset tibia vara: a histopathologic analysis. A comparative evaluation with infantile tibia vara and slipped capital femoral epiphysis. J Pediatr Orthop. 1988;8(2):187–95.

    CAS  PubMed  Google Scholar 

  265. Pitzen P, Marquardt W. O-beinbildung durch umschriebene epiphysenwachstumsstorung. Zeitschr f Orthop. 1939;69:174–86.

    Google Scholar 

  266. Gordon JE, Heidenreich FP, Carpenter CJ, Kelly-Hahn J, Schoenecker PL. Comprehensive treatment of late-onset tibia vara. J Bone Joint Surg Am. 2005;87A:1561–70.

    Google Scholar 

  267. Westberry D, Davids J, Pugh L, Blackhurst D. Tibia vara: results of hemiepiphyseodesis. J Pediatr Orthop B. 2004;14(6):374–8.

    Google Scholar 

  268. Bushnell BD, May R, Campion ER, Schmale GA, Henderson RC. Hemiepiphyseodesis for late-onset tibia vara. J Pediatr Orthop. 2009;29(3):285–9.

    PubMed  Google Scholar 

  269. Park S-S, Gordon JE, Luhmann SJ, Dobbs MB, Schoenecker PL. Outcome of hemiepihyseal stapling for late-onset tibia vara. J Bone Joint Surg Am. 2005;87:2259–66.

    PubMed  Google Scholar 

  270. McIntosh AL, Hanson CM, Rathjen KE. Treatment of adolescent tibia vara with hemiepiphysiodesis: risk factors for failure. J Bone Joint Surg Am. 2009;91:2873–9.

    PubMed  Google Scholar 

  271. Shabtai L, Herzenberg JE. Limits of growth modulation using tension band plates in the lower extremities. J Am Acad Orthop Surg. 2016;24:691–701.

    PubMed  Google Scholar 

  272. Miller S, Radomisli T, Ulin R. Inverted arcuate osteotomy and external fixation for adolescent tibia vara. J Pediatr Orthop. 2000;20(4):450–4.

    CAS  PubMed  Google Scholar 

  273. Eidelman M, Bialik V, Katzman A. The use of the Taylor spatial frame in adolescent Blount’s disease: is fibular osteotomy necessary? J Child Orthop. 2008;2(3):199–204.

    PubMed  PubMed Central  Google Scholar 

  274. Osgood R. Lesions of the tibial tubercle occurring during adolescence. Boston Med Surg J. 1903;148:114–7.

    Google Scholar 

  275. Schlatter C. Verletzungen des schnabelformigen fortsatzes der oberen tibiaepiphyse. Beitr Klin Chir. 1903;38:874–87.

    Google Scholar 

  276. Key. Singular injury near to the knee joint, fracture of the tubercle of the tiba, with complete laceration of the ligamentum patellae. Lancet [issue of April 5, 1828] II: page 32,1827–1828.

    Google Scholar 

  277. Gaudier B. De l’arrachement de la tuberosite anterieure du tibia. Rev Chir. 1905;32:305–44.

    Google Scholar 

  278. Dunlop J. The adolescent tibial tubercle. An anatomical and pathological study. J Bone Joint Surg. 1912;S 2–9:313–45.

    Google Scholar 

  279. Gosselin L. Clinical Lectures on Surgery. Paper presented at: Delivered at the Hospital of La Charite. Translation by LA Stimson 1878; Philadelphia.

    Google Scholar 

  280. Gosselin L. Osteites epiphysaines des adolescents. Arch Gen Med. 1858;ii:513.

    Google Scholar 

  281. Lannelongue O-M. Note sur des osteites apophysaires pendant la croissance. Bull Mem Soc Chirurg Paris (Paris) 1878;4(nouvelle series):162–71.

    Google Scholar 

  282. Archambault E-R. Osteoperiostite rhumatismale de la tuberosite anterieure du tibia chez les jeune sujets. Bull Soc Clin Paris (Paris). 1879;2:52–6.

    Google Scholar 

  283. Pollosson M. De l’osteite apophysaire non suppuree de la tuerosite anterieure du tibia. La Province Médicale. 1887;1:611–3.

    Google Scholar 

  284. Makins G. Three cases of separation of the descending process of the upper tibial epiphysis in adolescents. Lancet. 1905;ii:213–6.

    Google Scholar 

  285. Kirschner A. Die vordere Epiphyse und der untere Tuberositaskern der Tibia beim Menschen und in der Saugetierreihe. Die Tuberositas tibiae des Menschen. Archiv f Anat u Entwickelungsgeschichte. 1908;84:237–320.

    Google Scholar 

  286. Cole J. A study of Osgood-Schlatter disease. Surg Gynecol Obstet. 1937;65:55–67.

    Google Scholar 

  287. Ehrenborg G. The Osgood-Schlatter lesion: a clinical study of 170 cases. Acta Chir Scand. 1961;124:89–105.

    Google Scholar 

  288. Ehrenborg G. The Osgood-Schlatter lesion: a clinical and experimental study. Acta Chir Scand. 1962;288:1–36.

    Google Scholar 

  289. Ogden JA, Southwick WO. Osgood-Schlatter’s disease and tibial tuberosity development. Clin Orthop Relat Res. 1976;116:180–9.

    Google Scholar 

  290. Uhry E. Osgood-Schlatter disease. Arch Surg. 1944;48:406–14.

    Google Scholar 

  291. Willner P. Osgood-Schlatter’s disease: etiology and treatment. Clin Orthop Relat Res. 1969;62:178–9.

    CAS  PubMed  Google Scholar 

  292. Ehrenborg G, Lagergren C. Roentgenologic changes in the Osgood-Schlatter lesion. Acta Chir Scand. 1961;121:315–27.

    CAS  PubMed  Google Scholar 

  293. Ehrenborg G, Engfeldt B. Histologic changes in the Osgood-Schlatter lesion. Acta Chir Scand. 1961;121:328–37.

    CAS  PubMed  Google Scholar 

  294. Ehrenborg G, Lagergren C. The normal arterial pattern of tuberositas tibiae in adolescents and in growing dogs. Acta Chir Scand. 1961;121:500–10.

    Google Scholar 

  295. Sen RK, Sharma LR, Thakur SR, Lakhanpal VP. Patellar angle in Osgood-Schlatter disease. Acta Orthop Scand. 1989;60(1):26–7.

    CAS  PubMed  Google Scholar 

  296. Blackburne JS, Peel TE. A new method measuring patellar height. J Bone Joint Surg Br. 1977;59B:241–2.

    Google Scholar 

  297. Jakob RP, von Gumppenberg S, Engelhardt P. Does Osgood-Schlatter disease influence the position of the patella? J Bone Joint Surg Br. 1981;63B(4):579–82.

    CAS  PubMed  Google Scholar 

  298. Aparicio G, Abril JC, Calvo E, Alvarez L. Radiologic study of patellar height in Osgood-Schlatter disease. J Pediatr Orthop. 1997;17:63–6.

    CAS  PubMed  Google Scholar 

  299. Huberti HH, Hayes WC, Stone JL, Shybut GT. Force ratios in the quadriceps tendon and ligamentum patellae. J Orthop Res. 1984;2(1):49–54.

    CAS  PubMed  Google Scholar 

  300. Yashar A, Loder RT, Hensinger RN. Determination of skeletal age in children with Osgood-Schlatter disease by using radiographs of the knee. J Pediatr Orthop. 1995;15(3):298–301.

    CAS  PubMed  Google Scholar 

  301. Hulting B. Roentgenologic features of fracture of the tibial tuberosity _Osgood-Schlatter’s disease. Acta Radiol. 1957;48:161–74.

    CAS  PubMed  Google Scholar 

  302. Hughes ES, Sunderland S. The tibial tuberosity and the insertion of the ligamentum patellae. Anat Rec. 1946;96(4):439–44.

    CAS  PubMed  Google Scholar 

  303. Lewis OJ. The tubercle of the tibia. J Anat. 1958;92(4):587–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  304. Lazerte GD, Rapp IH. Pathogenesis of Osgood-Schlatter’s disease. Am J Pathol. 1958;34(4):803–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Asada T, Kato S. Zur atiologie der sogenanntem Schlatterschen krankheit. Zeit f Orthop Chir. 1927;48:191–216.

    Google Scholar 

  306. von Lutterotti M. Beitrag zur genese der schlatterschen krankheit. Zeit f Orthop. 1948;77:160–75.

    Google Scholar 

  307. Jentzer A, Perrot A. Remarques sur la maladie d’Osgood-Schlatter. Rev Orthop. 1941;27:176–91.

    Google Scholar 

  308. Hirano A, Fukubayashi T, Ishii T, Ochiai N. Magnetic resonance imaging of Osgood-Schlatter disease: the course of the disease. Sketelal Radiol. 2002;31(6):334–42.

    Google Scholar 

  309. Bosworth D. Autogenous bone pegging for epiphysitis of the tibial tubercle. J Bone Joint Surg. 1934;16:829–38.

    Google Scholar 

  310. Thomson JE. Operative treatment of osteochondritis of the tibial tubercle. J Bone Joint Surg Am. 1956;38-A(1):142–8.

    CAS  PubMed  Google Scholar 

  311. Ferciot CF. Surgical management of anterior tibial epiphysis. Clin Orthop Relat Res. 1955;5:204–6.

    CAS  Google Scholar 

  312. Mital MA, Matza RA, Cohen J. The so-called unresolved Osgood-Schlatter lesion: a concept based on fifteen surgically treated lesions. J Bone Joint Surg Am. 1980;62(5):732–9.

    CAS  PubMed  Google Scholar 

  313. Glynn M, Regan B. Surgical treatment of Osgood-Schlatter’s disease. J Pediatr Orthop. 1983;3:216–9.

    CAS  PubMed  Google Scholar 

  314. Binazzi R, Felli L, Vaccari V, Borelli P. Surgical treatment of unresolved Osgood-Schlatter lesion. Clin Orthop Relat Res. 1993;289:202–4.

    Google Scholar 

  315. Flowers MJ, Bhadreshwar DR. Tibial tuberosity excision for symptomatic Osgood-Schlatter disease. J Pediatr Orthop. 1995;15(3):292–7.

    CAS  PubMed  Google Scholar 

  316. Orava S, Malinen L, Karpakka J, Kvist M, Leppilahti J, Rantanen J, Kujala UM. Results of surgical treatment of unresolved Osgood-Schlatter lesion. Ann Chir Gynaecol. 2000;89(4):298–302.

    CAS  PubMed  Google Scholar 

  317. Weiss JM, Jordan SS, Andersen JS, Lee BM, Kocher M. Surgical treatment of unresolved Osgood-Schlatter disease: ossicle resection with tibial tubercleplasty. J Pediatr Orthop. 2007;27(7):844–7.

    PubMed  Google Scholar 

  318. El-Husseini TF, Abdelgawad AA. Results of surgical treatment of unresolved Osgood-Schlatter disease in adults. J Knee Surg. 2010;23:103–8.

    PubMed  Google Scholar 

  319. Nierenberg G, Falah M, Keren Y, Eidelman M. Surgical treatment of residual Osgood- Schlatter disease in young adults: role of the mobile osseous fragment. Orthopedics. 2011;34(3):176.

    PubMed  Google Scholar 

  320. Stirling R. Complications of Osgood-Schlatter’s disease. J Bone Joint Surg Br. 1952;34B:149–50.

    Google Scholar 

  321. Jeffreys TE. Genu recurvatum after Osgood-Schlatter’s disease; report of a case. J Bone Joint Surg Br. 1965;47:298–9.

    CAS  PubMed  Google Scholar 

  322. Zimbler S, Merkow S. Genu recurvatum: a possible complication after Osgood-Schlatter disease. Case report. J Bone Joint Surg Am. 1984;66(7):1129–30.

    CAS  PubMed  Google Scholar 

  323. Lynch MC, Walsh H. Case report: tibia recurvatum as a complication of Osgood-Schlatter’s disease: a report of two cases. J Pediatr Orthop. 1991;11:543–4.

    CAS  PubMed  Google Scholar 

  324. Woolfrey BF, Chandler EF. Manifestations of Osgood-Schlatter’s disease in late teen age and early adulthood. J Bone Joint Surg Am. 1960;42-A:327–32.

    CAS  PubMed  Google Scholar 

  325. Pihlajamaki HK, Mattila VM, Parviainen M, Kiuru MJ, Visuri TI. Long-term outcome after surgical treatment of unresolved Osgood-Schlatter disease in young men. J Bone Joint Surg Am. 2009;91:2350–8.

    PubMed  Google Scholar 

  326. Krause BL, Williams JP, Catterall A. Natural history of Osgood-Schlatter disease. J Pediatr Orthop. 1990;10(1):65–8.

    CAS  PubMed  Google Scholar 

  327. Schwarz I. Morbus Osgood-Schlatter. Eine Erkrankungder Rontgenara? In: MAR LZ, Thomann K-D, editors. Erst-und Fruhbeschreibungen orthopadischer Krankheitsbilder. Darmstadt: Steinkopff Verlag; 2003. p. 63–82.

    Google Scholar 

  328. Gholve PA, Scher DM, Khakharia S, Widmann RF, Green DW. Osgood Schlatter syndrome. Curr Opin Pediatr. 2007;19(1):44–50.

    PubMed  Google Scholar 

  329. Prince LD. Congenital genu recurvatum. Surg Gynecol Obstet. 1917;24:714–25.

    Google Scholar 

  330. Chatelain A-C. Observation d’une luxation congenitale du tibia en arrier. Bibliotheque Med. 1822;75:103–5.

    Google Scholar 

  331. Potel G. Etude sur les malformations congenitales du genou. Lille: L Danel; 1897.

    Google Scholar 

  332. Drehmann G. Die congenitalen Luxation des Kniegelenks. Zeitschr f Orthop Chir. 1900;vii(4):459.

    Google Scholar 

  333. Phocas G. Genu recurvatum congenital ou luxation congenitale du tibia en avant. Rev Orthop. 1891;2:50–64.

    Google Scholar 

  334. Muskat G. Die congenitalen Luxationen im Kniegelenk. Arch f Klin Chir. 1897;54:852–84.

    Google Scholar 

  335. Drehmann. In: Handbuch der Orthop Chir; 1905, p. 440.

    Google Scholar 

  336. Magnus F. Uber totale congenitae Luxation der Kniegelenke bei drei Geschwistern. Deut Zeitschr f Chir. 1905;78:555–73.

    Google Scholar 

  337. Perthes G. Zur Pathologie und Therapie der angeborenen Luxation des Kniegelenkes. Zeitschr f Orthop Chir. 1905;14:629–35.

    Google Scholar 

  338. Mayer L. Congenital anterior subluxation of the knee. Am J Orthop Surg. 1913;10:411–37.

    Google Scholar 

  339. Kopits E. Beitrage zur pathologie und therapie der angebotenen kniegelenkssubluxationem. Arch Orthop Unfallchir. 1924;23:593–609.

    Google Scholar 

  340. Bensahel H, Dal Monte A, Hjelmstedt A, et al. Congenital dislocation of the knee. J Pediatr Orthop. 1989;9(2):174–7.

    CAS  PubMed  Google Scholar 

  341. Curtis BH, Fisher RL. Congenital hyperextension with anterior subluxation of the knee. Surgical treatment and long-term observations. J Bone Joint Surg Am. 1969;51(2):255–69.

    CAS  PubMed  Google Scholar 

  342. Jacobsen K, Vopalecky F. Congenital dislocation of the knee. Acta Orthop Scand. 1985;56(1):1–7.

    CAS  PubMed  Google Scholar 

  343. Katz MP, Grogono BJ, Soper KC. The etiology and treatment of congenital dislocation of the knee. J Bone Joint Surg Br. 1967;49(1):112–20.

    CAS  PubMed  Google Scholar 

  344. Johnson E, Audell R, Oppenheim WL. Congenital dislocation of the knee. J Pediatr Orthop. 1987;7(2):194–200.

    CAS  PubMed  Google Scholar 

  345. Laurence M. Genu recurvatum congenitum. J Bone Joint Surg Br. 1967;49(1):121–34.

    CAS  PubMed  Google Scholar 

  346. Niebauer JJ, King DE. Congenital dislocation of the knee. J Bone Joint Surg Am. 1960;42-A:207–25.

    CAS  PubMed  Google Scholar 

  347. Leveuf J, Pais C. Les dislocations congenitales du genou (genu recurvatum, subluxation, luxation). Rev Orthop. 1946;32:313–50.

    Google Scholar 

  348. Middleton D. The pathology of congenital genu recurvatum. Br J Surg. 1935;22:696–702.

    Google Scholar 

  349. Shattock S. Genu recurvatum in a fetus at term. Trans Pathol Soc Lond. 1891;42:280–92.

    Google Scholar 

  350. Ooishi T, Sugioka Y, Matsumoto S, Fujii T. Congenital dislocation of the knee. Its pathologic features and treatment. Clin Orthop Relat Res. 1993;287:187–92.

    Google Scholar 

  351. Parsch K, Schulz R. Ultrasonography in congenital dislocation of the knee. J Pediatr Orthop B. 1994;3:76–81.

    Google Scholar 

  352. Ko JY, Shih CH, Wenger DR. Congenital dislocation of the knee. J Pediatr Orthop. 1999;19(2):252–9.

    CAS  PubMed  Google Scholar 

  353. Roy DR, Crawford AH. Percutaneous quadriceps recession: a technique for management of congenital hyperextension deformities of the knee in the neonate. J Pediatr Orthop. 1989;9:717–9.

    CAS  PubMed  Google Scholar 

  354. Ferris B, Aichroth P. The treatment of congenital knee dislocation. A review of nineteen knees. Clin Orthop Relat Res. 1987;216:135–40.

    Google Scholar 

  355. Bell MJ, Atkins RM, Sharrard WJ. Irreducible congenital dislocation of the knee. Aetiology and management. J Bone Joint Surg Br. 1987;69(3):403–6.

    CAS  PubMed  Google Scholar 

  356. Shah NR, Limpaphayom N, Dobbs MB. A minimally invasive treatment protocol for the congenital dislocation of the knee. J Pediatr Orthop. 2009;29(7):720–5.

    PubMed  Google Scholar 

  357. Oetgen ME, Walick KS, Tulchin K, Karol LA, Johnston CE. Functional results after surgical treatment for congenital knee dislocation. J Pediatr Orthop. 2010;30:216–33.

    PubMed  Google Scholar 

  358. Abdelaziz TH, Samir S. Congenital dislocation of the knee: a protocol for management based on degree of knee flexion. J Child Orthop. 2011;5:143–9.

    PubMed  PubMed Central  Google Scholar 

  359. Kramer DE, Micheli LJ. Meniscal tears and discoid meniscus in children: diagnosis and treatment. J Am Acad Orthop Surg. 2009;17(11):698–707.

    PubMed  Google Scholar 

  360. Jordan MR. Lateral meniscal variants: evaluation and treatment. J Am Acad Orthop Surg. 1996;4(4):191–200.

    CAS  PubMed  Google Scholar 

  361. Aichroth PM, Patel DV, Marx CL. Congenital discoid lateral meniscus in children. A follow-up study and evolution of management. J Bone Joint Surg Br. 1991;73(6):932–6.

    CAS  PubMed  Google Scholar 

  362. Young RB. The external semilunar cartilage as a complete disc. In: Cleland J, Mackay JY, Young RB, editors. Memoirs and memoranda in anatomy. London: Williams and Norgate; 1889. p. 179.

    Google Scholar 

  363. Higgins H. The semilunar fibro-cartilages and transverse ligament of the knee-joint. J Anat Physiol. 1895;29:390–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  364. Kroiss F. Die verletzungen der kniegelenkoszwischenknorpel und ihrer verbindungen. Beitr Klin Chir. 1910;66:598–801.

    Google Scholar 

  365. Yaniv M, Blumberg N. The discoid meniscus. J Child Orthop. 2007;1(2):89–96.

    PubMed  PubMed Central  Google Scholar 

  366. Fisher AGT. Internal derangements of the knee joint. Their pathology and treatment by modern methods. New York: Macmillan Co.; 1933.

    Google Scholar 

  367. Finder JG. Discoid external semilunar cartilage: a cause of internal derangement of the knee joint. J Bone Joint Surg Am. 1934;16:804–10.

    Google Scholar 

  368. Karlen A. Discoids in the knee-joint. Acta Orthop Scand. 1951;20:231–9.

    Google Scholar 

  369. Fairbank HAT. Clicking knee due to lesion of the external cartilage. Proc Roy Soc Med. 1930;23:1001.

    Google Scholar 

  370. Smillie IS. The congenital discoid meniscus. J Bone Joint Surg Br. 1948;30B(4):671–82.

    CAS  PubMed  Google Scholar 

  371. Kaplan EB. The embryology of the menisci of the knee joint. Bull Hosp Joint Dis. 1955;16(2):111–24.

    CAS  PubMed  Google Scholar 

  372. Washington ER 3rd, Root L, Liener UC. Discoid lateral meniscus in children. Long-term follow-up after excision. J Bone Joint Surg Am. 1995;77(9):1357–61.

    PubMed  Google Scholar 

  373. Papadopoulos A, Kirkos JM, Kapetanos GA. Histomorphologic study of discoid meniscus. Arthroscopy. 2009;25(3):262–8.

    PubMed  Google Scholar 

  374. Le Minor J. Comparative morphology of the lateral meniscus of the knee in primates. J Anat. 1990;170:161–71.

    PubMed  PubMed Central  Google Scholar 

  375. Watanabe M. Arthroscopy: the present state. Orthop Clin North Am. 1979;10(3):505–22.

    CAS  PubMed  Google Scholar 

  376. Dickhaut SC, DeLee JC. The discoid lateral-meniscus syndrome. J Bone Joint Surg Am. 1982;64(7):1068–73.

    CAS  PubMed  Google Scholar 

  377. Klingele KE, Kocher MS, Hresko MT, Gerbino P, Micheli LJ. Discoid lateral meniscus: prevalence of peripheral rim instability. J Pediatr Orthop. 2004;24(1):79–82.

    PubMed  Google Scholar 

  378. Good CR, Green DW, Griffith MH, Valen AW, Widmann RF, Rodeo SA. Arthroscopic treatment of symptomatic discoid meniscus in children: classification, technique, and results. Arthroscopy. 2007;23(2):157–63.

    PubMed  Google Scholar 

  379. Abdon P, Turner MS, Pettersson H, Lindstrand A, Stenstrom A, Swanson A. A long-term follow-up study of total meniscectomy in children. Clin Orthop Relat Res. 1990;257:166–70.

    Google Scholar 

  380. Wroble RR, Henderson RC, Campion ER, El-Khoury GY, Albright JP. Meniscectomy in children and adolescents. A long-term follow-up study. Clin Orthop Relat Res. 1992;279:180–9.

    Google Scholar 

  381. Raber DA, Friederich NF. Hefti F. Discoid lateral meniscus in children. Long-term follow-up after total meniscectomy. J Bone Joint Surg Am. 1998;80(11):1579–86.

    CAS  PubMed  Google Scholar 

  382. Habata T, Uematsu K, Kasanami R, et al. Long-term clinical and radiographic follow-up of total resection for discoid lateral meniscus. Arthroscopy. 2006;22(12):1339–43.

    PubMed  Google Scholar 

  383. Okazaki K, Miura H, Matsuda S. Arthroscopic resection of the discoid lateral meniscus. Arthroscopy. 2006;22:967–71.

    PubMed  Google Scholar 

  384. Fujikawa K, Iseki F, Mikura Y. Partial resection of the discoid meniscus in the child's knee. J Bone Joint Surg Br. 1981;63B:391–5.

    Google Scholar 

  385. Kim SJ, Chun YM, Jeong JH, Ryu SW, Oh KS, Lubis AM. Effects of arthroscopic meniscectomy on the long-term prognosis for the discoid lateral meniscus. Knee Surg Sports Traumatol Arthrosc. 2007;15(11):1315–20.

    PubMed  Google Scholar 

  386. Pellacci F, Montanari G, Prosperi P, Galli G, Celli V. Lateral discoid meniscus: treatment and results. Arthroscopy. 1992;8(4):526–30.

    CAS  PubMed  Google Scholar 

  387. Lee DH, Kim TH, Kim JM, Bin SI. Results of subtotal/total or partial meniscectomy for discoid lateral meniscus in children. Arthroscopy. 2009;25(5):496–503.

    PubMed  Google Scholar 

  388. Jordan MR. Lateral meniscal variants. Oper Tech Orthop. 2000;10:234–44.

    Google Scholar 

  389. Adachi N, Ochi M, Uchio Y, Kurikawa M, Shinomiya R. Torn discoid lateral meniscus treated using partial central meniscectomy and suture of the peripheral tear. Arthroscopy. 2004;20:536–42.

    PubMed  Google Scholar 

  390. Vandermeer RD, Cunningham FK. Arthroscopic treatment of the discoid lateral meniscus: results of long-term follow-up. Arthroscopy. 1989;5:101–9.

    CAS  PubMed  Google Scholar 

  391. Ahn JH, Lee SH, Yoo JC, Lee YS, Ha HC. Arthroscopic partial meniscectomy with repair of the peripheral tear for symptomatic discoid lateral meniscus in children: results of a minimum 2 years of follow-up. Arthroscopy. 2008;24:888–98.

    PubMed  Google Scholar 

  392. Ahn JH, Kim K-I, Wang JH, Jeo JW, Cho YC, Lee SH. Long-term results of arthroscopic reshaping for symptomatic discoid lateral meniscus in children. Arthroscopy. 2015;31:867–73.

    PubMed  Google Scholar 

  393. Green D, Haskel J, Uppstrom T, Dare D, Rodeo S. Long-term clinical follow-up of arthroscopic treatment of symptomatic discoid lateral meniscus in children. Arthroscopy. 2015;31(suppl):e26.

    Google Scholar 

  394. Wasser L, Knörr J, Accadbled F, Abid A, Sales de Gauzy J. Arthroscopic treatment of discoid meniscus in children: clinical and MRI results. Orthop Traumatol: Surg Res. 2011;97:297–303.

    CAS  Google Scholar 

  395. Yoon KH, Lee SH, Park SY, Jung GY, Chung KY. Meniscus allograft transplantation for discoid lateral meniscus: clinical comparison between discoid lateral meniscus and nondiscoid lateral meniscus. Arthroscopy. 2014;30:724–30.

    PubMed  Google Scholar 

  396. Marchetti ME, Jones DC, Fischer DA, Boyd JL, Fritts HM. Bilateral discoid medial menisci of the knee. Am J Orthop (Belle Mead NJ). 2007;36(6):317–21.

    Google Scholar 

  397. Dwyer FC, Taylor C. Congenital discoid internal cartilage. Br Med J. 1945;2(4417):287.

    CAS  PubMed  PubMed Central  Google Scholar 

  398. Lee BI, Lee YS, Kwon SW, Choi SW, Cho KH, Kwon YJ. Bilateral symptomatic discoid medial meniscus: report of three cases. Knee Surg Sports Traumatol Arthrosc. 2007;15(6):739–43.

    PubMed  Google Scholar 

  399. Thomas NP, Jackson AM, Aichroth PM. Congenital absence of the anterior cruciate ligament. A common component of knee dysplasia. J Bone Joint Surg Br. 1985;67B:572–5.

    Google Scholar 

  400. Cozen L. Fracture of the proximal portion of the tibia followed by valgus deformity. Surg Gynecol Obstet. 1953;97:183–188.t.

    CAS  PubMed  Google Scholar 

  401. Balthazar DA, Pappas AM. Acquired valgus deformity of the tibia in children. J Pediatr Orthop. 1984;4(5):538–41.

    CAS  PubMed  Google Scholar 

  402. Jackson DW, Cozen L. Genu valgum as a complication of proximal tibial metaphyseal fractures in children. J Bone Joint Surg Am. 1971;53(8):1571–8.

    CAS  PubMed  Google Scholar 

  403. Jordan SE, Alonso JE, Cook FF. The etiology of valgus angulation after metaphyseal fractures of the tibia in children. J Pediatr Orthop. 1987;7(4):450–7.

    CAS  PubMed  Google Scholar 

  404. Ogden JA, Ogden DA, Pugh L, Raney EM, Guidera KJ. Tibia valga after proximal metaphyseal fractures in childhood: a normal biologic response. J Pediatr Orthop. 1995;15(4):489–94.

    CAS  PubMed  Google Scholar 

  405. Robert M, Khouri N, Carlioz H, Alain JL. Fractures of the proximal tibial metaphysis in children: review of a series of 25 cases. J Pediatr Orthop. 1987;7(4):444–9.

    CAS  PubMed  Google Scholar 

  406. Zionts LE, Harcke HT, Brooks KM, MacEwen GD. Posttraumatic tibia valga: a case demonstrating asymmetric activity at the proximal growth plate on technetium bone scan. J Pediatr Orthop. 1987;7(4):458–62.

    CAS  PubMed  Google Scholar 

  407. Nenopoulos S, Vrettakos A, Chaftikis N, Beslikas T, Dadoukis D. The effect of proximal tibial fractures on the limb axis in children. Acta Orthop Belg. 2007;73:345–53.

    PubMed  Google Scholar 

  408. Kakel R. Trampoline fractures of the proximal tibial metaphysis in children may not progress into valgus: a report of 7 cases and a brief review. Orthop Traumatol Surg Res. 2012;98:446–9.

    CAS  PubMed  Google Scholar 

  409. Aronson DD, Stewart MC, Crissman JD. Experimental tibial fractures in rabbits simulating proximal tibial metaphyseal fractures in children. Clin Orthop Relat Res. 1990;255:61–7.

    Google Scholar 

  410. Green NE. Tibia valga caused by asymmetrical overgrowth following a nondisplaced fracture of the proximal tibial metaphysis. J Pediatr Orthop. 1983;3(2):235–7.

    CAS  PubMed  Google Scholar 

  411. Houghton GR, Rooker GD. The role of the periosteum in the growth of long bones. An experimental study in the rabbit. J Bone Joint Surg Br. 1979;61-B(2):218–20.

    CAS  PubMed  Google Scholar 

  412. Blumensaat C. Die Lagaebweichungen und verrenkungen die kniescheibe. Ergeb Chir Orthop. 1938;31:149–233.

    Google Scholar 

  413. Seyahi A, Atalar AC, Koyuncu LO, Cinar BM, Demirhan M. Blumensaat line and patellar height. Acta Orthop Traumatol Turc. 2006;40:240–7.

    PubMed  Google Scholar 

  414. Bergman NR, Williams PF. Habitual dislocation of the patella in flexion. J Bone Joint Surg Br. 1988;70B:415–9.

    Google Scholar 

  415. Koplewitz BZ, Babyn PS, Cole WG. Congenital dislocation of the patella. AJR. 2005;184:1640–6.

    PubMed  Google Scholar 

  416. Goldthwait JE. Slipping or recurrent dislocation of the patella: with the report of eleven cases. Am J Orthop Surg. 1904;21:293–308.

    Google Scholar 

  417. Roux C. Recurrent dislocation of the patella. Operative treatment.[Reprinted in: Clin Orthop Rel Res 1979;144:4–8].

    Google Scholar 

  418. Goldthwait JE. Permanent dislocation of the patella. The report of a case of twenty years’ duration, successfully treated by transplntation of the patella tendons, with the tubercle of the tibia. Ann Surg. 1899;29:62–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  419. Støren H. Congenital complete dislocation of patella causing serious disability in childhood: the operative treatment. Acta Orthop Scand. 1965;36:301–13.

    PubMed  Google Scholar 

  420. Green JP, Waugh W. Congenital lateral dislocation of the patella. J Bone Joint Surg Br. 1968;50B:285–9.

    Google Scholar 

  421. Stanisavljevic S, Zemenick G, Miller D. Congenital, irreducible, permanent lateral dislocation of the patella. Clin Orthop Relat Res. 1976;116:190–9.

    Google Scholar 

  422. Jones RDWS, Fisher RL, Curtis BH. Congenital dislocation of the patella. Clin Orthop Relat Res. 1976;119:177–83.

    Google Scholar 

  423. Langenskiold A, Ritsilia V. Congenital dislocation of the patella and its operative treatment. J Pediatr Orthop. 1992;12:315–23.

    CAS  PubMed  Google Scholar 

  424. Gordon JE, Schoenecker PL. Surgical treatment of congenital dislocation of the patella. J Pediatr Orthop. 1999;19:260–4.

    CAS  PubMed  Google Scholar 

  425. Ghanem I, Wattincourt L, Seringe R. Congenital dislocation of the patella. Part I: pathologic anatomy. J Pediatr Orthop. 2000;20:812–6.

    CAS  PubMed  Google Scholar 

  426. Wada A, Fujii TF, Takamura K, Yanagida H, Yanagida H, Surijamorn P. Congenital dislocation of the patella. J Child Orthop. 2008;2:119–23.

    PubMed  PubMed Central  Google Scholar 

  427. Gao G-X, Lee EH, Bose K. Surgical management of congenital and habitual dislocation of the patella. J Pediatr Orthop. 1990;10:255–60.

    CAS  PubMed  Google Scholar 

  428. Colvin AC, West RV. Patellar instability. J Bone Joint Surg Am. 2008;90(12):2751–62.

    PubMed  Google Scholar 

  429. Iliadis AD, Jaiswal PK, Khan W, Johnstone D. The operative management of patellar malalignment. Open Orthop J. 2012;6(Suppl 2:M11):327–39.

    PubMed  PubMed Central  Google Scholar 

  430. Kraus T, Lidder S, Svehlik M, Rippel K, Schneider F, Eberl R, Linhart W. Patella re-alignment in children with a modified Grammont technique. Outcome in 65 knees after a mean of 8 years. Acta Orthop. 2012;83:504–10.

    PubMed  PubMed Central  Google Scholar 

  431. Longo UG, Rizzello G, Ciuffreda M, Loppini M, Baldari A, Maffulli N, Denaro V. Elmslie-Trillat, Maquet, Fulkerson, Roux Goldthwait and other realignment procedures for the management of patellar dislocation: systematic review and quantitative synthesis of the literature. Arthroscopy. 2016;32:929–43.

    PubMed  Google Scholar 

  432. Masse Y. Trochleoplasty. Restoration of the intercondylar groove in subluxation and dislocation of the patella. Rev Chir Orthop. 1978;64:3–17.

    CAS  PubMed  Google Scholar 

  433. Dejour H, Walch G, Neyret P, Adeleine P. Dysplasia of the femroal trochlea. Rev Chir Orthop. 1990;76:45–54.

    CAS  PubMed  Google Scholar 

  434. Dejour H, Walch G, Nove-Josserand L, Guier C. Factors of patellar instability: an anatomic radiographic study. Knee Surg Sports Traumatol Arthrosc. 1994;2:19–26.

    CAS  PubMed  Google Scholar 

  435. Dejour D, Le Coultre B. Osteotomies in patello-femoral instabilities. Sports Med Arthrosc Rev. 2007;15:39–46.

    PubMed  Google Scholar 

  436. DeJour D, Saggin P. The sulcus deepening trochleoplasty--the Lyon’s procedure. Int Orthop. 2010;34:311–6.

    PubMed  PubMed Central  Google Scholar 

  437. Gruber W. In Bildungsanomalie mit Bildungshemmung begrundete Bipartition beider Patellae eines jungen Subjectes. Virchow’s Archiv f Path Anat. 1883;94:358–61.

    Google Scholar 

  438. Oohashi Y. Developmental anomaly of ossification type patella partita. Knee Surg Sports Traumatol Arthrosc. 2015;23:1071–6.

    PubMed  Google Scholar 

  439. Saupe E. Beitrag zur patella bipartita. Fortschr Röntgenstr. 1921;28:37–41.

    Google Scholar 

  440. Siemens W. Patella partita. Dtsch Zeitschr f Chir. 1931;233:727–55.

    Google Scholar 

  441. Oohashi Y, Koshino T, Oohashi Y. Clinical features and classification of bipartite or tripartite patella. Knee Surg Sports Traumatol Arthrosc. 2010;18:1465–9.

    PubMed  Google Scholar 

  442. Ogden JA. Radiology of postnatal skeletal development. X. Patella and tibial tuberosity. Skelet Radiol. 1984;11:246–57.

    CAS  Google Scholar 

  443. Oohashi Y, Noriki S, Koshino T, Fukuda M. Histopathological abnormalities in painful bipartite patellae in adolescents. Knee. 2006;13:189–93.

    PubMed  Google Scholar 

  444. George R. Bilateral bipartite patellae. Brit J Surg. 1935;22:555–60.

    Google Scholar 

  445. Atesok K, Doral MN, Lowe J, Finsterbush A. Symptomatic bipartite patella: treatment alternatives. J Am Assoc Orthop Surg. 2008;16:455–61.

    Google Scholar 

  446. Weckstrom M, Parvianinem M, Pihlajamaki HK. Excision of painful bipartite patella. Good long-term outcome in young adults. Clin Orthop Relat Res. 2008;466:2848–55.

    PubMed  PubMed Central  Google Scholar 

  447. Sinding-Larsen MF. A hitherto unknown affection of the patella in children. Acta Radiol. 1921;1:171–3.

    Google Scholar 

  448. Johansson S. En forut icke beskriven sjukdom i patella. Hygiea. 1922;84:161–6.

    Google Scholar 

  449. Medlar RC, Lyne ED. Sinding-Larsen-Johansson disease. Its etiology and natural history. J Bone Joint Surg Am. 1978;60(8):1113–6.

    CAS  PubMed  Google Scholar 

  450. Rosenthal RK, Levine DB. Fragmentation of the distal pole of the patella in spastic cerebral palsy. J Bone Joint Surg Am. 1977;59(7):934–9.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shapiro, F. (2019). Developmental Disorders of the Knee. In: Pediatric Orthopedic Deformities, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-030-02021-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-02021-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-02019-4

  • Online ISBN: 978-3-030-02021-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics