Skip to main content

Chelicerates as Parasites

  • Chapter
  • First Online:
The Evolution and Fossil Record of Parasitism

Part of the book series: Topics in Geobiology ((TGBI,volume 49))

Abstract

Among Chelicerata, larval instars of sea spiders (Pycnogonida) can be parasitic. The oldest putative sea spider from the Cambrian ‘Orsten’ is immature and resembles comparable instars of modern species with a parasitic phase to their life cycle. All other parasitic chelicerates are mites, with several examples in both the Acariformes and Parasitiformes clades. Fossils revealing parasitic behaviour, or belonging to purely parasitic clades, come from various amber sources from the mid-Cretaceous onwards. From Acariformes there are records of Parasitengona, Myobiidae, Pterygosomatoidea, Resinacaridae, Acarophenacidae, Pyemotidae and Apotomelidae. Parasitiformes is represented by several ticks (Ixodida) and potentially Laelapidae from the Mesostigmata. Parasitism appears to have evolved independently within mites on several occasions. Possible transitions to this lifestyle via nest associations and/or phoresy are discussed. Arachnids as victims of parasites include amber records of nematode worms (Mermithidae), erythraeid mites (Erythraeidae), mantid flies (Neuroptera: Mantispidae), ichneumon wasps (Hymenoptera: Ichneumonidae) and spider flies (Diptera: Acroceridae).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta LE, Machado G (2007) Diet and foraging. In: Pinto-da-Richa R, Machado G, Giribet G (eds) Harvestmen. The biology of Opiliones. Harvard University Press, Cambridge, MA, pp 309–338

    Google Scholar 

  • Akrami MA, Saboori A, Eslami A (2007) Observations on oribatid mites (Acari: Oribatida) serving as intermediate hosts of Moniezia expansa (Cestoda: Anoplocephalidae) in Iran. Int J Acarol 33:365–369

    Article  Google Scholar 

  • Alberti G, Kanarek G, Dabert J (2016) Unusual way of feeding by the deutonymph of Neottialges evansi (Actinotrichida, Astigmata, Hypoderatidae), a subcutaneous parasite of cormorants, revealed by fine structural analyses. J Morph 277:1368–1389

    Article  CAS  Google Scholar 

  • André HM, Fain A (2000) Phylogeny, ontogeny and adaptive radiation in the superfamily Tydeoidea (Acari: Actinedida), with a reappraisal of morphological characters. Zool J Linnean Soc 130:405–448

    Article  Google Scholar 

  • Aoki J (1974) [On the fossil mites in Mizunami amber from Gifu Prefecture, Central Japan.] Bull Mizunami Foss Mus 1:397–399 [in Japanese with English summary]

    Google Scholar 

  • Arillo A, Blagoderov V, Peñalver E (2018) Early Cretaceous parasitism in amber: a new species of Burmazelmira fly (Diptera: Archizelmiridae) parasitized by a Leptus sp. mite (Acari, Erythraeidae). Cretac Res 86:24–32

    Article  Google Scholar 

  • Bamber RN (2007) A holistic re-interpretation of the phylogeny of the Pycnogonida Latreille, 1810 (Arthropoda). Zootaxa 1668:295–312

    Article  Google Scholar 

  • Barker SC, Murrell A (2002) Phylogeny, evolution and historical zoogeography of ticks: a review of recent progress. Exp Appl Acarol 28:55–68

    Article  Google Scholar 

  • Barker SC, Murrell A (2004) Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 129:S15–S36

    Article  Google Scholar 

  • Bartsch I (1987) Australacarus inexpectatus gen. et spec. nov. (Halacaroidea, Acari), mit einer Ubersicht über parasitisch lebende Halacariden. Zool Anz 218:17–24

    Google Scholar 

  • Bartsch I (1989) Marine mites (Halacaroidea: Acari): a geographical and ecological survey. Hydrobiologia 178:21–42

    Article  Google Scholar 

  • Beccaloni J (2009) Arachnids. The Natural History Museum, London. 320 pp

    Google Scholar 

  • Beck W (2008) Occurrence of a house-infesting Tropical rat mite (Ornithonyssus bacoti) on murides and human beings. Trav Med Infect Dis 6:245–249

    Article  CAS  Google Scholar 

  • Binns ES (1982) Phoresy as migration – some functional aspects of phoresy in mites. Biol Rev 57:571–620

    Google Scholar 

  • Bochkov AV (2009) A review of mites of the parvorder Eleutherengona (Acariformes: Prostigmata)—permanent parasites of mammals. Acarina 1(Suppl):1–149

    Google Scholar 

  • Bolton SJ, Philipp E, Chetverikov PE, Klompen H (2017) Morphological support for a clade comprising two vermiform mite lineages: Eriophyoidea (Acariformes) and Nematalycidae (Acariformes). Syst Appl Acarol 22:1096–1131

    Google Scholar 

  • Botton ML, Shuster CN Jr, Keinath JA (2003) Horseshoe crabs in a food web: who eats whom? In: Shuster CN Jr, Barlow HB, Brockmann HJ (eds) The American horseshoe crab. Harvard University Press, Cambridge, MA, pp 133–153

    Google Scholar 

  • Braverman H, Leibovitz L, Lewbart GA (2012) Green algal infection of American horseshoe crab (Limulus polyphemus) exoskeletal structures. J Invert Pathol 111:90–93

    Article  Google Scholar 

  • Brenneis G, Bogomolova EV, Arango CP, Krapp F (2017) From egg to “no-body”: an overview and revision of developmental pathways in the ancient arthropod lineage Pycnogonida. Front Zool 16:6. https://doi.org/10.1186/s12983-017-0192-2

  • Chitimia-Dobler L, De Araujo BC, Ruthensteiner B, Pfeffer T, Dunlop JA (2017) Amblyomma birmitum a new species of hard tick in Burmese amber. Parasitology 144:1441–1448

    Article  CAS  Google Scholar 

  • Chitimia-Dobler L, Pfeffer T, Dunlop JA (2018) Haemaphysalis cretacea a nymph of a new species of hard tick in Burmese amber. Parasitology 145:1440–1451

    Article  Google Scholar 

  • Cockerell TDA (1917) Arthropods in Burmese amber. Psyche 24:40–45

    Article  Google Scholar 

  • De Baets K, Littlewood DTJ (2015) The importance of fossils in understanding the evolution of parasites and their vectors. Adv Parasitol 90:1–51

    Article  Google Scholar 

  • De Baets K, Dentzian-Dias PC, Upeniece I, Verneau O, Donoghue PCJ (2015) Constraining the deep origin of parasitic flatworms and host-interactions with fossil evidence. Adv Parasitol 90:93–135

    Article  Google Scholar 

  • De Baets K, Huntley JW, Klompmaker AA, Schiffbauer JD, Muscente AD (2021a) The fossil record of parasitism: Its extent and taphonomic constraints. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: Coevolution and paleoparasitological techniques. Topics in Geobiology 50

    Google Scholar 

  • De Baets K, Budil P, Fatka O, Geyer G (2021b) Trilobites as hosts for parasites: From paleopathologies to ethiologies. In: De Baets K, Huntley JW (eds). The evolution and fossil record of parasitism: Coevolution and paleoparasitological techniques. Topics in Geobiology 50

    Google Scholar 

  • de la Fuente J (2003) The fossil record and the origin of ticks (Acari: Parasitiformes: Ixodida). Exp Appl Acarol 29:331–344

    Article  Google Scholar 

  • de la Fuente J, Estrada-Peña A, Venzal JM, Kocan KM, Sonenshine DE (2008) Overview: ticks as vectors of pathogens that cause disease in humans and animals. Front Biosci 13:6938–6946

    Article  Google Scholar 

  • de Rojas M, Mora MD, Ubeda JM, Cutillas C, Navajas M, Guevara DC (2001) Phylogenetic relationships in rhinonyssid mites (Acari: Rhinonyssidae) based on mitochondrial 16S rDNA sequences. Exp Appl Acarol 25:957–967

    Article  Google Scholar 

  • Diaz JH (2010) Mite-transmitted dermatoses and infectious diseases in returning travelers. J Travel Med 17:21–31

    Article  Google Scholar 

  • Dowling APG (2009) Ixobioides truncatus (Johnston) comb. nov. (Acari: Mesostigmata: Ixodorhynchidae): a synonymy and redescription. Syst Appl Acarol 14:216–224

    Google Scholar 

  • Dowling APG, OConnor BM (2010) Phylogeny of Dermanyssoidea (Acari: Parasitiformes) suggests multiple origins of parasitism. Acarologia 50:113–129

    Article  Google Scholar 

  • Dubinina HV, Bochkov AV (1996) Pleistocene mites (Acariformes) from the narrow-skulled vole Microtus gregalis egorovi Feigin (Rodentia: Arvicolinae). Acarina 4:35–38

    Google Scholar 

  • Dunlop JA (1996) A trigonotarbid arachnid from the Upper Silurian of Shropshire. Palaeontology 39:605–614

    Google Scholar 

  • Dunlop JA (2010) Geological history and phylogeny of Chelicerata. Arthropod Struct Dev 39:124–142

    Article  Google Scholar 

  • Dunlop JA (2011) The fate and status of the supposed fossil tick Ixodes tertiarius Scudder, 1885. Acarologia 51:399–404

    Article  Google Scholar 

  • Dunlop JA, Alberti G (2008) The affinities of mites and ticks: a review. J Zool Syst Evol Res 46:1–18

    Google Scholar 

  • Dunlop JA, Arango CP (2005) Pycnogonid affinities: a review. J Zool Syst Evol Res 43:8–21

    Article  Google Scholar 

  • Dunlop JA, de Oliveira Bernardi LF (2014) An opilioacarid mite in Cretaceous Burmese amber. Naturwissenschaften 101:759–763

    Article  CAS  Google Scholar 

  • Dunlop JA, Garwood RJ (2018) Terrestrial invertebrates in the Rhynie chert ecosystem. Philos Trans R Soc B 373:20160493

    Article  Google Scholar 

  • Dunlop JA, Penney D (2012) Fossil arachnids. Siri Scientific Press, Manchester

    Google Scholar 

  • Dunlop JA, Wirth S, Penney D, McNeil A, Bradley RS, Withers PJ, Preziosi RF (2012) A minute fossil phoretic mite recovered by phase-contrast X-ray computed tomography. Biol Lett 8:475–460

    Article  Google Scholar 

  • Dunlop JA, Kontschán J, Zwanzig M (2013) Fossil mesostigmatid mites (Mesostigmata: Gamasina, Microgyniina, Uropodina), associated with longhorn beetles (Coleoptera: Cerambycidae) in Baltic amber. Naturwissenschaften 100:337–344

    Article  CAS  Google Scholar 

  • Dunlop JA, Kontschán J, Walter DE, Perrichot V (2014) An ant-associated mesostigmatid mite in Baltic amber. Biol Lett 10:20140531. https://doi.org/10.1098/rsbl.2014.0531

  • Dunlop JA, Apanaskevich DA, Lehmann J, Hoffmann R, Fusseis F, Ehlke M, Zachow S, Xiao X (2016) Microtomography of the Baltic amber tick Ixodes succineus reveals affinities with the modern Asian disease vector Ixodes ovatus. BMC Evol Biol 16:203. https://doi.org/10.1186/s12862-016-0777-y

  • Dunlop JA, Walter DE, Kontschán J (2018) The status of the putative fossil sejid mite in Baltic amber. Acarologia 58:665–672

    Article  Google Scholar 

  • Egan MK, Hunter PE (1975) Redescription of a cockroach mite, Proctolaelaps nauphoetae, with notes on its biology. Ann Entomol Soc Am 68:361–364

    Article  Google Scholar 

  • Eichmann F (2002) Paläosymbiose im Bernstein. Arbeitskreis Päl Hannover 30:1–28

    Google Scholar 

  • Elbardy EA (1972) Observations on the biology of Pergamasus crassipes (L.), a predaceous gamasid mite inhabiting forest soils in Bavaria (Acarina: Mesostigmata: Parasitidae). J Appl Entomol 71:296–303

    Google Scholar 

  • Engel MS, Grimaldi DA (2006) The first Cretaceous spider wasp (Hymenoptera: Pompilidae). J Kansas Entomol Soc 79:359–368

    Article  Google Scholar 

  • Esch GW, Fernández JC (1993) A functional biology of parasitism. Chapman and Hall, London

    Book  Google Scholar 

  • Estrada-Peña A, de la Fuente J (2014) The ecology of ticks and epidemiology of tick-borne viral diseases. Antivir Res 108:104–128

    Article  CAS  Google Scholar 

  • Estrada-Peña A, de la Fuente J (2018) The fossil record and the origin of ticks revisited. Exp Appl Acarol 75:255–261

    Article  Google Scholar 

  • Faasch H, Schaller F (1966) Das Phoresie-Verhalten der Milben Uroobovella marginata Koch 1839 und Uropoda orbicularis Müller (Acari, Uropodina). Zool Anz 176:176–182

    Google Scholar 

  • Fajfer M (2012) Acari (Chelicerata) – parasites of reptiles. Acarina 20:108–129

    Google Scholar 

  • Flechtmann CHW, Johnston DE (1990) Zeterohercon, a new genus of Heterozerconidae (Acari: Mesostigmata) and the description of Zeterohercon amphisbaenae n. sp. from Brazil. Int J Acarol 16:143–148

    Article  Google Scholar 

  • Franks NR, Healy KJ, Byrom L (1991) Studies on the relationship between the ant ectoparasite Antennophorus grandis (Acarina: Antennophoridae) and its host Lasius flavus (Hymenoptera: Formicidae). J Zool 225:59–70

    Article  Google Scholar 

  • Furman DP (1954) A revision of the genus Pneumonyssus (Acarina: Halarachnidae). J Parasitol 40:31–42

    Article  CAS  Google Scholar 

  • Gabryś G, Felska M, Kłosińska A, Staręga W, Mąkol J (2011) Harvestmen (Opiliones) as hosts of Parasitengona (Acari: Actinotrichida, Prostigmata) larvae. J Arachnol 39:349–351

    Article  Google Scholar 

  • Gary NE, Page RE Jr (1989) Tracheal mite (Acari: Tarsonemidae) infestation effects on foraging and survivorship of honey bees (Hymenoptera: Apidae). J Econ Entomol 82:734–739

    Article  Google Scholar 

  • Gerdeman B, Alberti G (2007) First ultrastructural observations on the paired suckers of a heterozerconid mite (Heterozerconidae; Gamasida). In: Morales-Malacara JB et al (eds) Acarology XI: Proceedings of the International Congress, pp 581–584

    Google Scholar 

  • Gettinger D, Gribel R (1989) Spinturnicid mites (Gamasida: Spinturnicidae) associated with bats in Central Brazil. J Med Entomol 26:491–493

    Article  CAS  Google Scholar 

  • Gillung JP, Winterton SL (2017) A review of fossil spider flies (Diptera: Acroceridae) with descriptions of new genera and species from Baltic Amber. J Syst Palaeontol 16:325–350

    Article  Google Scholar 

  • Giribet G (2018) Current views on chelicerate phylogeny—a tribute to Peter Weygoldt. Zool Anz 273:7–13

    Article  Google Scholar 

  • Grimaldi DA, Engel MS, Nascimbene PC (2002) Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am Mus Novit 3361:1–71

    Article  Google Scholar 

  • Haug C (2017) Feeding strategies in arthropods from the Rhynie and Windyfield cherts: ecological diversification in an early non-marine biota. Philos Trans R Soc B 373:20160492

    Article  Google Scholar 

  • Hirst S (1923) On some arachnid remains from the Old Red Sandstone (Rhynie Chert bed, Aberdeenshire). Ann Mag Nat Hist 12(9):455–474

    Article  Google Scholar 

  • Holte AE, Houck MA, Collie NL (2001) Potential role of parasitism in the evolution of mutualism in astigmatid mites: Hemisarcoptes cooremani as a model. Exp Appl Acarol 25:97–107

    Article  CAS  Google Scholar 

  • Houck MA, OConnor BM (1991) Ecological and evolutionary significance of phoresy in the Astigmata. Annu Rev Entomol 36:611–636

    Article  Google Scholar 

  • Hunter PE, Rosario RMT (1988) Associations of Mesostigmata with other arthropods. Annu Rev Entomol 33:393–417

    Article  Google Scholar 

  • Jepson JE, Heads SW, Makarkin VN, Ren D (2013) New fossil mantidflies (Insecta: Neuroptera: Mantispidae) from the Mesozoic of North-Eastern China. Palaeontology 56:603–613

    Article  Google Scholar 

  • Joharchi O, Moradi M (2013) Review of the genus Myrmozercon Berlese (Acari: Laelapidae), with description of two new species from Iran. Zootaxa 3686:244–254

    Article  Google Scholar 

  • Kazimírova M, Štibrániová I (2013) Tick salivary compounds: their role in modulation of host defences and pathogen transmission. Front Cell Infect Microbiol 3(43):1–19

    Google Scholar 

  • Keegen HK, Yunker CR, Baker EW (1960) Hystrichonyssus turneri, n. sp., n. g., representing a new subfamily of Dermanyssidae (Acarina) from a Malayan porcupine. Malaya 29:205–208

    Google Scholar 

  • Keirans JE, Lane RS, Cauble R (2002) A series of larval Amblyomma species (Acari: Ixodidae) from amber deposits in the Dominican Republic. Int J Acarol 28:61–66

    Article  Google Scholar 

  • Kerr PH, Winterton SL (2008) Do parasitic flies attack mites? Evidence in Baltic amber. Biol J Linn Soc 93:9–13

    Article  Google Scholar 

  • Khaustov AA, Perkovsky EE (2010) The first fossil record of mites of the family Pyemotidae (Acari: Heterostigmata), with description of a new species from Rovno Amber. Palaeontol J 44:418–421

    Article  Google Scholar 

  • Khaustov AA, Poinar GO Jr (2010) Protoresinacarus brevipedis gen. n., sp. n. from Early Cretaceous Burmese amber: the first fossil record of mites of the family Resinacaridae (Acari: Heterostigmata: Pyemotoidea). Hist Biol 23:219–222

    Article  Google Scholar 

  • Klimov PB, OConnor BM, Chetverikov PE, Bolton SJ, Pepato AR, Mortazavi AL, Tolstikov AV, Bauchan GR, Ochoa R (2018) Comprehensive phylogeny of acariform mites (Acariformes) provides insights on the origin of the four-legged mites (Eriophyoidea), a long branch. Mol Phylogenet Evol 119:105–117

    Article  Google Scholar 

  • Klompen H (2010) Holothyrids and ticks: new insights from larval morphology and DNA sequencing, with the description of a new species of Diplothyrus (Parasitiformes: Neothyridae). Acarologia 50:269–285

    Article  Google Scholar 

  • Klompen H, Grimaldi D (2001) First Mesozoic record of a parasitiform mite: a larval argasid tick in Cretaceous amber (Acari: Ixodida: Argasidae). Ann Entomol Soc Am 94:10–15

    Article  Google Scholar 

  • Klompen JSH, Black WC, Keirans JE, Oliver JH Jr (1996) Evolution of ticks. Annu Rev Entomol 41:141–161

    Article  CAS  Google Scholar 

  • Klompmaker AA, Chistoserdov AY, Felder DL (2016) Possible shell disease in 100 million-year-old crabs. Dis Aquat Org 119:91–99

    Article  Google Scholar 

  • Konishi K, Shimazaki K (1998) Halarachnid mites infesting the respiratory tract of Stellar sea lions. Biosphere Cons 1:45–48

    Google Scholar 

  • Krantz GW (2009) Habits and habitats. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 64–82

    Google Scholar 

  • Labandeira CC, Li L (2021). The history of insect parasitism and the mid-Mesozoic parasitoid revolution. In: De Baets K, Huntley JW (eds) The Evolution and Fossil Record Of Parasitism: Identification and Macroevolution of Parasites. Topics in Geobiology 49

    Google Scholar 

  • Lamsdell JC (2013) Revised systematics of Palaeozoic ‘horseshoe crabs’ and the myth of monophyletic Xiphosura. Zool J Linnean Soc 167:1–27

    Article  Google Scholar 

  • Lamsdell JC, Braddy SJ (2010) Cope’s Rule and Romer’s theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates. Biol Lett 6:265–269

    Article  Google Scholar 

  • Lane RS, Poinar GO Jr (1986) First fossil tick (Acari: Ixodidae) in New World amber. Int J Acarol 12:75–78

    Article  Google Scholar 

  • Le Conte Y, Ellis M, Ritter W (2010) Varroa mites and honey bee health: can Varroa explain part of the colony losses. Apidologie 41:353–363

    Article  Google Scholar 

  • Legg DA (2014) Sanctacaris uncata: the oldest chelicerate (Arthropoda). Naturwissenschaften 101:1065–1073

    Article  CAS  Google Scholar 

  • Leibovitz L, Lwebart GA (2003) Diseases and symbionts: vulnerability despite tough shells. In: Shuster CN Jr, Barlow HB, Brockmann HJ (eds) The American horseshoe crab. Harvard University Press, Cambridge, MA, pp 245–267

    Google Scholar 

  • Leung TLF (2017) Fossils of parasites: what can the fossil record tell us about the evolution of parasitism? Biol Rev 92:410–430

    Article  Google Scholar 

  • Lindquist EE (1986) The world genera of Tarsonemidae (Acari: Heterostigmata): a morphological, phylogenetic, and systematic revision, with a reclassification of family-group taxa in the Heterostigmata. Mem Entomol Soc Canada 136:1–517

    Google Scholar 

  • Lindquist EE, Krantz GW, Walter DE (2009) Classification. In: Krantz GW, Walter DE (eds) A manual of acarology, 3rd edn. Texas Tech University Press, Lubbock, pp 97–103

    Google Scholar 

  • Lozano-Fernandez J, Tanner AR, Giacomelli M, Carton R, Vinther J, Edgecombe GD, Pisani D (2019) Increasing species sampling in chelicerate genomic-scale datasets provides support for monophyly of Acari and Arachnida. Nat Commun 10:2295

    Article  CAS  Google Scholar 

  • Lyubarsky GY, Perkovsky EE (2012) The first Eocene species of the genus Cryptophagus (Coleoptera, Clavicornia, Cryptophagidae). Vest Zool 46:36–40

    Article  Google Scholar 

  • Magowski WŁ (1994) Discovery of the first representative of the mite subcohort Heterostigmata (Arachinida: Acari) in the Mesozoic Siberian amber. Acarologia 35:229–241

    Google Scholar 

  • Magowski WŁ (1995) Fossil heterostigmatid mites in amber – 85 million year-old an arthropod mite relationships. In: Kropczynska D, Boczek J, Tomczyk A (eds) The Acari: physiological and ecological aspects of Acari – host relationships. Dabor, Warsaw, pp 53–58

    Google Scholar 

  • Mąkol J, Felska M (2011) New records of spiders (Araneae) as hosts of terrestrial Parasitengona mites (Acari: Actinotrichida: Prostigmata). J Arachnol 39:352–354

    Article  Google Scholar 

  • Mans BJ, de Klerk D, Pienaar R, Castro MH, Latif AA (2012) The mitochondrial genomes of Nuttalliella namaqua (Ixodoidea: Nuttalliellidae) and Argas africolumbae (Ixodoidea: Argasidae): estimation of divergence dates for the major tick lineages and reconstruction of ancestral blood-feeding characteristics. PLoS One 7(11):e4946

    Article  CAS  Google Scholar 

  • Mans BJ, de Castro MH, Pienaar R, de Klerk D, Gaven P, Genu S, Latif AA (2016) Ancestral reconstruction of tick lineages. Ticks Tick Borne Dis 7:509–535

    Article  Google Scholar 

  • Martill DM, Davis PG (1998) Did dinosaurs come up to scratch? Nature 396:528–529

    Article  CAS  Google Scholar 

  • Martyn KP (1988) A new species of the mite genus Spelaeorhynchus (Acarina: Mesostigmata) parasitic on bats of the family Phyllostomidae. J Nat Hist 22:757–765

    Article  Google Scholar 

  • Mayr GL (1868) Die Ameisen des baltischen Bernsteins. Koch, Königsberg

    Google Scholar 

  • McKellar RC, Kopylov DS, Engel MS (2013) Ichneumonidae (Insecta: Hymenoptera) in Canadian Late Cretaceous amber. Foss Rec 16:217–227

    Article  Google Scholar 

  • Meredith RW, Gatesy J, Murphy WJ, Ryder OA, Springer MS (2009) Molecular decay of the tooth gene enamelin (ENAM) mirrors the loss of enamel in the fossil record of placental mammals. PLoS Genet 5(9):e1000634

    Article  CAS  Google Scholar 

  • Nagler C, Haug JT (2015) From fossil parasitoids to vectors: insects as parasites and hosts. Adv Parasitol 90:137–200

    Article  Google Scholar 

  • Nava S, Guglielmone AA, Mangold AJ (2009) An overview of systematics and evolution of ticks. Front Biosci 14:2857–2877

    Article  CAS  Google Scholar 

  • Nel A (2005) Oldest representatives of the Sphecidae: Trypoxylini in the Early Eocene French amber (Insecta: Hymenoptera). C R Palevol 4:17–24

    Article  Google Scholar 

  • Nemati A, Riahi E, Gwiazdowicz DJ (2015) Description of a new species of Julolaelaps (Acari, Mesostigmata, Laelapidae) from Iran. ZooKeys 526:105–116

    Article  Google Scholar 

  • OConnor BM (1994) Life-history modifications in astigmatid mites. In: Houck MA (ed) Mites. Chapman and Hall, New York, pp 136–159

    Chapter  Google Scholar 

  • Ohl M (2011) Aboard a spider—a complex developmental strategy fossilized in amber. Naturwissenschaften 98:453–456

    Article  Google Scholar 

  • Peñalver E, Arillo A, Delclòs X, Peris D, Grimaldi DA, Anderson SR, Nascimbene PC, Pérez-de la Fuente R (2017) Ticks parasitized feathered dinosaurs as revealed by Cretaceous amber assemblages. Nat Commun 8:1924. https://doi.org/10.1038/s41467-017-01550-z

  • Pence DB, Spalding MG, Bergan JF, Cole RA, Newman S, Gray PN (1997) New records of subcutaneous mites (Acari: Hypoderatidae) in birds, with examples of potential host colonization events. J Med Entomol 34:411–416

    Article  CAS  Google Scholar 

  • Pepato AR, Klimov PB (2015) Origin and higher-level diversification of acariform mites – evidence from nuclear ribosomal genes, extensive taxon sampling, and secondary structure alignment. BMC Evol Biol 15:178. https://doi.org/10.1186/s12862-015-0458-2

  • Pepato AR, Rocha CEF, Dunlop JA (2010) Phylogenetic position of the actinotrichid mites: sensitivity to homology assessment under total evidence. BMC Evol Biol 10:235. https://doi.org/10.1186/1471-2148-10-235

  • Poinar GO Jr (1985a) Fossil evidence of insect parasitism by mites. Int J Acarol 11:37–38

    Article  Google Scholar 

  • Poinar GO Jr (1985b) Mermithid (Nematoda) parasites of spiders and harvestmen. J Arachnol 13:121–128

    Google Scholar 

  • Poinar GO Jr (1987) Fossil evidence of spider parasitism by Ichneumonidae. J Arachnol 14:399–400

    Google Scholar 

  • Poinar GO Jr (1988) Hair in Dominican amber: evidence for Tertiary land mammals in the Antilles. Experientia 44:88–89

    Article  Google Scholar 

  • Poinar GO Jr (1995) First fossil soft tick, Ornithodoros antiquus n. sp. (Acari: Argasidae) in Dominican amber with evidence of their mammalian host. Exp Dermatol 51:584–587

    Google Scholar 

  • Poinar GO Jr (1998) Fossils explained 22: palaeontology of amber. Geol Today 1998:154–160

    Article  Google Scholar 

  • Poinar GO Jr (2000) Heydenius araneus n.sp. (Nematoda: Mermithidae), a parasite of a fossil spider, with an examination of helminths from extant spiders (Arachnida: Araneae). Invert Biol 119:388–393

    Article  Google Scholar 

  • Poinar GO Jr (2004) Fossil evidence of spider egg parasitism by ichneumonid wasps. Beitr Araneol 3B:1874–1877

    Google Scholar 

  • Poinar GO Jr (2015a) Rickettsial-like cells in the Cretaceous tick, Cornupalpatum burmanicum (Ixodida: Ixodidae). Cretac Res 52:623–627

    Article  Google Scholar 

  • Poinar GO Jr (2015b) Spirochete-like cells in a Dominican amber Amblyomma tick (Arachnida: Ixodidae). Hist Biol 27:565–570

    Google Scholar 

  • Poinar G (2021) Fossil record of viruses, parasitic bacteria and parasitic protozoa. In: De Baets K, Huntley JW (eds) The Evolution and Fossil Record Of Parasitism: Identification and Macroevolution of Parasites. Topics in Geobiology 49

    Google Scholar 

  • Poinar GO Jr, Brown AE (2003) A new genus of hard ticks in Cretaceous Burmese amber (Acari: Ixodida: Ixodidae). Syst Parasitol 54:199–205

    Article  Google Scholar 

  • Poinar GO Jr, Buckley R (2008) Compluriscutula vetulum (Acari: Ixodida: Ixodidae), a new genus and species of hard tick from Lower Cretaceous Burmese amber. Proc Entomol Soc Washington 110:445–450

    Article  Google Scholar 

  • Poinar GO Jr, Treat AE, Southcott RV (1991) Mite parasitism of moths: examples of paleosymbiosis in Dominican amber. Experientia 47:210–212

    Article  Google Scholar 

  • Poinar GO Jr, Krantz GW, Boucot AJ, Pike TM (1997) A unique Mesozoic parasitic association. Naturwissenschaften 84:321–322

    Article  CAS  Google Scholar 

  • Poulin R (2011) Evolutionary ecology of parasites. Princeton University Press, Princeton

    Google Scholar 

  • Proctor H (2003) Feather mites (Acari: Astigmata): ecology behaviour, and evolution. Annu Rev Entomol 48:185–209

    Article  CAS  Google Scholar 

  • Radovsky FJ, Yunker CR (1971) Xenarthronyssus furmani, n. gen., n. sp. (Acarina: Dasponyssidae), parasites of armadillos, with two subspecies. J Med Entomol 8:135–142

    Article  CAS  Google Scholar 

  • Rapp A (1959) Zur Biologie und Ethologie der Käfermilbe Parasitus coleoptratorum L. 1758 (Ein Beitrag zum Phoresie-Problem). Zool Jahrb Syst 86:303–366

    Google Scholar 

  • Reeves WK, Loftis AD, Szumlas DE, Abbassy MM, Helmy IM, Hanafi HA, Dasch GA (2007) Rickettsial pathogens in the tropical rat mite Ornithonyssus bacoti (Acari: Macronyssidae) from Egyptian rats (Rattus spp.). Exp Appl Acarol 41:101–107

    Article  CAS  Google Scholar 

  • Robin N, Béthoux O, Sidorchuk E, Cui Y, Li Y, Germain D, King A, Berenguer F, Ren D (2016) A Carboniferous mite on an insect reveals the antiquity of an inconspicuous interaction. Curr Biol 26:1–7

    Article  CAS  Google Scholar 

  • Robin N (2021) Importance of data on fossil symbioses for parasite-host evolution. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: Coevolution and paleoparasitological techniques. Topics in Geobiology 50

    Google Scholar 

  • Rodriguez J, Waichert C, von Dohlen CD, Poinar GO Jr, Pitts JP (2016) Eocene and not Cretaceous origin of spider wasps: fossil evidence from amber. Acta Palaeotol Polon 61:89–96

    Google Scholar 

  • Rosenkrantz P, Aumeier P, Zigelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119

    Article  Google Scholar 

  • Rota-Stabelli O, Daley AC, Pisani D (2013) Molecular timetrees reveal a Cambrian colonization of land and a new scenario for ecdysozoan evolution. Curr Biol 23:1–7

    Article  CAS  Google Scholar 

  • Sanchez JP, Nava S, Lareschi M, Ortiz PE, Guglielmone AA (2010) Finding of an ixodid tick inside a Late Holocene owl pellet from northwestern Argentina. J Parasitol 96:820–822

    Article  CAS  Google Scholar 

  • Schille F (1916) Entomologie aus der Mammut- und Rhinoceros-Zeit Galiziens. Entomol Z 30:42–43

    Google Scholar 

  • Scudder SH (1885) 3. Classe. Arachnoidea. Spinnen. Skorpione. In: Zittel KA (ed) Handbuch der Palaeontologie. I. Abtheilung. Palaeozoologie 2. R. Oldenbourg, München, pp 732–746

    Google Scholar 

  • Selden PA (1981) Functional morphology of the prosoma of Baltoeurypterus tetragonophthalmus (Fischer) (Chelicerata: Eurypterida). Trans R Soc Edinburgh Earth Sci 72:9–48

    Article  Google Scholar 

  • Sharma PP, Giribet G (2014) A revised dated phylogeny of the arachnid order Opiliones. Front Genet 5:255

    Article  Google Scholar 

  • Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X (2012) Age constraint on Burmese amber based on U–Pb dating of zircons. Cretac Res 37:155–163

    Article  Google Scholar 

  • Shultz JW (2007) A phylogenetic analysis of the arachnid orders based on morphological characters. Zool J Linnean Soc 150:221–265

    Article  Google Scholar 

  • Sidorchuk EA (2018) Mites as fossils: forever small? Int J Acarol 44:349–359

    Article  Google Scholar 

  • Sidorchuk EA, Khaustov AA (2018) A parasite without host: the first fossil pterygosomatid mite (Acari: Prostigmata: Pterygosomatidae) from French Lower Cretaceous amber. Cretac Res 91:131–139

    Article  Google Scholar 

  • Sidorchuk EA, Perrichot V, Lindquist EE (2016) A new fossil mite from French Cretaceous amber (Acari: Heterostigmata: Nasutiacaroidea superfam. nov.), testing evolutionary concepts within the Eleutherengona (Acariformes). J Syst Palaeontol 14:297–317

    Article  Google Scholar 

  • Sidorchuk EA, Bochkov AV, Weiterschan T, Chernova OF (2019) A case of mite-on-mammal ectoparasitism from Eocene Baltic amber (Acari: Prostigmata: Myobiidae and Mammalia: Erinaceomorpha). J Syst Palaeontol 17:331–347

    Article  Google Scholar 

  • Sonenshine D, Roe RM (eds) (2013) Biology of ticks, 2nd Edn. 1–2. Oxford University Press, Oxford

    Google Scholar 

  • Stiller D, Lim BL, Nadchatram M (1977) Entonyssus asiaticus Fain, 1960 (Acari: Entonyssidae), a lung parasite of Malaysian snakes with notes on the immature stages. Southeast Asian J Trop Med Public Health 8:129–130

    CAS  Google Scholar 

  • Stunkard HW (1951) Observation on the morphology and life history of Microphallus n. sp. (Trematoda: Microphallidae). Biol Bull 191:307–318

    Article  Google Scholar 

  • Townsend VR Jr, Proud DN, Moore MK, Tibbetts JA, Burns JA, Hunter RK, Lazarowitz SR, Felgenhauer BE (2008) Parasitic and phoretic mites associated with Neotropical harvestmen from Trinidad, West Indies. Ann Entomol Soc Am 101:1026–1032

    Article  Google Scholar 

  • Türk E (1963) A new tyroglyphid deutonymph in amber from Chiapas, Mexico. Uni Cal Pub Entomol 31:49–51

    Google Scholar 

  • Valiente Moro C, Chauve C, Zenner L (2005) Vectorial role of some dermanyssoid mites (Acari, Mesostigmata, Dermanyssoidea). Parasite 12:99–109

    Article  CAS  Google Scholar 

  • van Helsdingen PJ (2011) Spiders in a hostile world (Arachnoidea, Araneae). Arachnol Mitt 40:55–64

    Google Scholar 

  • Waddington J, Rudkin DM, Dunlop JA (2015) A new mid-Silurian aquatic scorpion—one step closer to land? Biol Lett 11:20140815

    Article  Google Scholar 

  • Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian Orsten of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45:421–446

    Article  Google Scholar 

  • Walter DE (1987) Life history, trophic behavior, and description of Gamasellodes vermivorax n. sp. (Mesostigmata: Ascidae), a predator of nematodes and arthropods in semiarid grassland soils. Can J Zool 65:1689–1685

    Article  Google Scholar 

  • Walter DE, Proctor HC (1998) Feeding behavior and phylogeny: observations on early derivative mites. Exp Appl Acarol 22:39–50

    Article  Google Scholar 

  • Warnock RCM, Yang Z, Donoghue PCJ (2012) Exploring uncertainty in the calibration of the molecular clock. Biol Lett 8:156–159

    Article  Google Scholar 

  • Warnock RCM, Engelstädter J (2021) The molecular clock as tool for understanding host-parasite evolution. In: De Baets K, Huntley JW (eds) The evolution and fossil record of parasitism: Coevolution and paleoparasitological techniques. Topics in Geobiology 50

    Google Scholar 

  • Weidner H (1964) Eine Zecke, Ixodes succineus sp. n. im Batischen Bernstein. Veöffent Überseemus Bremen 3:143–151

    Google Scholar 

  • Weinstein SB, Kuris AM (2016) Independent origins of parasitism in Animalia. Biol Lett 12:20160324

    Article  Google Scholar 

  • Wohltmann A (2000) The evolution of life histories in Parasitengona (Acari: Prostigmata). Acarologia 41:145–204

    Google Scholar 

  • Wolfe J, Daley AC, Legg DA, Edgecombe GD (2016) Fossil calibrations for the arthropod Tree of Life. Earth Sci Rev 160:43–110

    Article  Google Scholar 

  • Wunderlich J (2004) Parasites, parasitoids and other enemies of fossil spiders and their egg sacs. Beitr Araneol 3A:115–126

    Google Scholar 

  • Zhang Z-Q (1995) Review of the systematics and biology of Otopheidomenidae (Acari: Mesostigmata) with a description of Eickwortius gen. nov. from a termite (Isoptera: Termitidae). Syst Entomol 20:239–246

    Article  Google Scholar 

Download references

Acknowledgements

I thank Kenneth de Baets for inviting this contribution and Lidia Chitimia-Dobler, Enrique Peñalver, David Penney, Michael Ohl, George Poinar Jr., Ekaterina Sidochuk, Dieter Waloszek and Michael Zwanzig for providing images of specimens. Kenneth de Baets, an anonymous reviewer and Ekaterina Sidochuk provided valuable comments on the typescript. Ekaterina died in January 2019, and I would like to dedicate this work to her memory for her extensive contributions to our understanding of fossil mites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Dunlop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dunlop, J.A. (2021). Chelicerates as Parasites. In: De Baets, K., Huntley, J.W. (eds) The Evolution and Fossil Record of Parasitism. Topics in Geobiology, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-030-42484-8_9

Download citation

Publish with us

Policies and ethics