Skip to main content

Wood Deterioration by Marine Borers

  • Chapter
  • First Online:
Biodeterioration of Wooden Cultural Heritage
  • 737 Accesses

Abstract

Cultural Heritage wood exposed in saline and brackish waters may be subjected to severe damage by marine borers in a relatively short time compared to fungi and bacteria. This chapter discusses the wood-boring molluscan families Teredinidae, Pholadidae and Xylophagaidae and the crustacean families Limnoriidae, Sphaeromatidae and Cheluridae.

An introduction of each family is first provided which includes aspects of taxonomy and phylogeny grounded on molecular data and morphological features’ analyses. Elements of animals’ morphology and physiology are then examined. Their body plan, size, shape, segmentation, bearing appendages etc. are illustrated. Animals’ reproductive systems and fertilization modes in both dioecious and hermaphroditic taxa are presented and the life histories of oviparous or larviparous species are described. Behavioural features associated to populations’ growth, such as mating, parental care and migration tactics, to wood detection, such as chemoreception and mechanoreception and to wood settlement, such as phototaxis, thigmotaxis and geotaxis are also considered.

Marine borers’ distribution, habitat and niche are then explored with special reference to environmental factors such as temperature, salinity, pH, dissolved oxygen and depth and to the biota with which may have symbiotic relationships. Factors related to the wooden substrate, such as species, grain orientation, lignification, water content, preservatives’ treatment, presence of decaying fungi, which are influencing their colonizing behaviour, development and boring activity are also mentioned.

Finally, wood boring mechanisms and feeding habits are elucidated for seston feeders using wood solely as a shelter and for xylophagous borers utilizing it as a source of nourishment. Animals’ adaptations for settlement and boring are explored and decay patterns and burrows morphology are exemplified. Wood digestive mechanisms, employed by wood feeders are also discussed, along with the lignocellulose enzyme systems used, produced either endogenously or by symbiotic microorganisms harbouring animals’ digestive truck.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The International Commission on Zoological Nomenclature (2018), has emended the spelling of the name Xylophagidae Purchon, 1941 (Mollusca, Bivalvia) to Xylophagaidae, to remove homonymy with Xylophagidae Fallén, 1810 (Insecta, Diptera). Opinion 2429 on the case 3717 (Coan et al. 2017).

  2. 2.

    Family: Teredinidae; Superfamily: Pholadoidea; Order: Myida; Superorder: Imparidentia; Infraclass: Euheterodonta; Subclass: Heterodonta; Class: Bivalvia; Phylum: Mollusca; Kingdom: Animalia.

  3. 3.

    Waterborne chemical cues are used for several interactions among marine organisms such as communication, habitat selection, mating, kinship recognition, symbiotic relationships and predator–prey interactions (Decho et al. 1998).

  4. 4.

    A byssus is a bundle of threads secreted by a gland in many species of bivalve molluscs during their post-larva life, which functions to attach the organisms to the solid substrate.

  5. 5.

    Taxobases are characteristics on which the taxonomic position of a group of organisms is based (Davis and Meyer 2009).

  6. 6.

    Family: Pholadidae; Superfamily: Pholadoidea; Order: Myida; Superorder: Imparidentia; Infraclass: Euheterodonta; Subclass: Heterodonta; Class: Bivalvia; Phylum: Mollusca; Kingdom: Animalia.

  7. 7.

    Lithophaga dactylus is not a recognized species. It is belived that corresponds to Lithophaga llithophaga:Mytilidae, (syn. Lithodomus dactylus), rather than the Pholas dactylus:Pholadidae, which was scarce in the Mediterranean (Knight 1984).

  8. 8.

    Family: Xylophagaidae; Superfamily: Pholadoidea; Order: Myida; Superorder: Imparidentia; Infraclass: Euheterodonta; Subclass: Heterodonta; Class: Bivalvia; Phylum: Mollusca; Kingdom: Animalia (MolluscaBase 2020).

  9. 9.

    Distel et al. (2011) have introduced the term “xylotrepetic” attempting to describe the boring activity. The Greek suffix “trepetic” refers to the creation of a hole; however, Xylophagaidae may burrow into wood from side to side and thus the term “xylodiatretic” is adopted herein.

  10. 10.

    Family: Limnoriidae; Superfamily: Limnorioidea; Suborder: Limnoriidea; Order: Isopoda; Superorder: Peracarida; Subclass: Eumalacostraca; Class: Malacostraca; Superclass: Multicrustacea; Subphylum: Crustacea; Phylum: Arthropoda; Kingdom: Animalia.

  11. 11.

    The correct term for cephalon would be “cephalothorax” as the first thoracomer is fused with the actual head (Kuhne 1971).

  12. 12.

    Synonym to “pereiopods” and to “pereopods”.

  13. 13.

    Setation (chaetotaxy, trichiation) is the arrangement of hairs on the body of an arthropod.

  14. 14.

    The behaviour of aquatic organisms to orient into a current.

  15. 15.

    The motion of a motile organism or cell in response to light is phototaxis and to the force of gravity is geotaxis. Taxis towards the source of stimulation is positive and away from it is negative.

  16. 16.

    The motion or orientation of an organism in response to a touch stimulus.

  17. 17.

    Family: Sphaeromatidae; Superfamily: Sphaeromatoidea; Suborder: Sphaeromatidea; Order: Isopoda; Superorder: Peracarida; Subclass: Eumalacostraca; Class: Malacostraca; Superclass: Multicrustacea; Subphylum: Crustacea; Phylum: Arthropoda; Kingdom: Animalia.

  18. 18.

    A biramous appendage branches into two rami, and each ramus may consists of a series of segments.

  19. 19.

    Cutting process or incisor process is the biting portion of the gnathal lobe of mandible (McLaughlin 1980).

  20. 20.

    Family: Cheluridae; Superfamily: Cheluroidea; Parvorder:Corophiidira; Infraorder: Corophiida; Suborder: Senticaudata; Order: Amphipoda; Superorder: Peracarida; Subclass: Eumalacostraca; Class: Malacostraca; Superclass: Multicrustacea; Subphylum: Crustacea; Phylum: Arthropoda; Kingdom: Animalia

References

  • Allman, G. J. (1847). On Chelura terebrans, Philippi, an amphipodous crustacean destructive to submarine timberworks. Annals and Magazine of Natural History, 1(19), 361–370.

    Article  Google Scholar 

  • Allsopp, D., Seal, K. J., & Gaylarde, C. C. (2004). Introduction to biodeterioration. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Amon, D. J., Sykes, D., Ahmed, F., Copley, J. T., Kemp, K. M., Tyler, P. A., et al. (2015). Burrow forms, growth rates and feeding rates of wood-boring Xylophagaidae bivalves revealed by micro-computed tomography. Frontiers in Marine Science, 2, 10.

    Article  Google Scholar 

  • Anderson, J. W., & Reish, D. J. (1967). The effects of varied dissolved oxygen concentrations and temperature on the wood-boring isopod genus Limnoria. Marine Biology, 1(1), 56–59.

    Article  Google Scholar 

  • Barnacle, J. E. (1987). Limnoria quadripunctata Holthuis - a review of its status as a marine wood borer. Material und Organismen (Germany, FR).

    Google Scholar 

  • Barnacle, J. E., & Cookson L. J. (1989). Does Limnoria lignorum (Rathke) or other cold water xylophagous limnorid species exist in southern oceans? The International Research Group on Wood Preservation, Document No. IRG/WP/4152.

    Google Scholar 

  • Barnacle, J. E., Cookson, L. J., & McEvoy, C. N. (1983). Limnoria quadripunctata Holthuis – a threat to copper-treated wood. The International Research Group on Wood Preservation, Document No. IRG/WP/4100.

    Google Scholar 

  • Barnard, J. L. (1950). The occurrence of Chelura terebrans Philippi in Los Angeles and San Francisco Harbors. Bulletin of the Southern California Academy of Sciences, 49(3), 90–97.

    Google Scholar 

  • Barnard, J. L. (1955). The wood boring habits of Chelura terebrans Philippi in Los Angeles Harbor. In Essays in the natural sciences in honor of Captain Allan Hancock (pp. 87–97).

    Google Scholar 

  • Barnard, J. L. (1959). Generic partition in the amphipod family Cheluridae, marine wood borers and Liljeborgiid amphipods of southern Californian coastal bottoms, with a revision of the family. Pacific Naturalist, 1(3–4), 1–28.

    Google Scholar 

  • Barnard, J. L. (1976). Amphipoda (Crustacea) from the Indo-Pacific tropics: A review. Micronesica, 12(1), 169–176.

    Google Scholar 

  • Bartsch, P., & Rehder, H. A. (1945). The West Atlantic boring mollusks of the genus Martesia. In Smithsonian Miscellaneous Collections, Publication 3804 (Vol. 104, Number 11). City of Washington: Published by The Smithsonian Institution.

    Google Scholar 

  • Becker, G. (1971). On the biology, physiology, and ecology of marine wood-boring crustaceans. In E. B. G. Jones & S. K. Eltringham (Eds.), Marine borers, fungi and fouling organisms (pp. 303–326). Paris: Organization for Economic Cooperation and Development (OCDE).

    Google Scholar 

  • Beermann, J., Dick, J. T. A., & Thiel, M. (2015). Social recognition in Amphipods: An overview. In L. Aquiloni & E. Tricarico (Eds.), Social recognition in invertebrates: The knowns and the unknowns (pp. 85–100). New York: Springer.

    Chapter  Google Scholar 

  • Bellan-Santini, D. (2015). Order Amphipoda Latreille, 1816. Treatise on zoology–anatomy, taxonomy, biology. The Crustacea, 5, 93–248.

    Google Scholar 

  • Benson, L. K., Rice, S. A., & Johnson, B. R. (1999). Evidence of cellulose digestion in the wood boring isopod Sphaeroma terebrans. Florida Scientist, 128–144.

    Google Scholar 

  • Betcher, M. A., Fung, J. M., Han, A. W., O’Connor, R., Seronay, R., Concepcion, G. P., et al. (2012). Microbial distribution and abundance in the digestive system of five shipworm species (Bivalvia: Teredinidae). PLoS One, 7(9), e45309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bienhold, C., Ristova, P. P., Wenzhöfer, F., Dittmar, T., & Boetius, A. (2013). How deep-sea wood falls sustain chemosynthetic life. PLoS One, 8(1), e53590.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Björdal, C. G. (2012). Microbial degradation of waterlogged archaeological wood. Journal of Cultural Heritage, 13(3), S118–S122.

    Article  Google Scholar 

  • Björdal, C. G., Gregory, D., Manders, M., Al-Hamdani, Z., Appelqvist, C., Haverhand, J., & Dencker, J. (2012). Strategies for protection of wooden underwater cultural heritage in the Baltic Sea against marine borers. The EU Project ‘WreckProtect’. Conservation and Management of Archaeological Sites, 14(1–4), 201–214.

    Article  Google Scholar 

  • Bolotov, I. N., Aksenova, O. V., Bakken, T., Glasby, C. J., Gofarov, M. Y., Kondakov, A. V., et al. (2018). Discovery of a silicate rock-boring organism and macrobioerosion in fresh water. Nature Communications, 9(2882).

    Google Scholar 

  • Borges, L. M. S. (2014). Biodegradation of wood exposed in the marine environment: Evaluation of the hazard posed by marine wood-borers in fifteen European sites. International Biodeterioration & Biodegradation, 96, 97–104.

    Article  CAS  Google Scholar 

  • Borges, L. M. S. (2016). The internal structure of the pallets of Nototeredo norvagica and Psiloteredo megotara (Bivalvia: Teredinidae): Implications for subfamilial allocations. Zoomorphology, 135(1), 33–41.

    Article  Google Scholar 

  • Borges, L. M., Cragg, S. M., Bergot, J., Williams, J. R., Shayler, B., & Sawyer, G. S. (2008). Laboratory screening of tropical hardwoods for natural resistance to the marine borer Limnoria quadripunctata: The role of leachable and non-leachable factors. Holzforschung, 62(1), 99–111.

    Article  CAS  Google Scholar 

  • Borges, L. M. S., Cragg, S. M., & Busch, S. (2009). A laboratory assay for measuring feeding and mortality of the marine wood borer Limnoria under forced feeding conditions: A basis for a standard test method. International Biodeterioration & Biodegradation, 63(3), 289–296.

    Article  Google Scholar 

  • Borges, L. M. S., Valente, A. A., Palma, P., & Nunes, L. (2010). Changes in the wood boring community in the Tagus Estuary: case study. Marine Biodiversity Records, 3, 1.

    Article  Google Scholar 

  • Borges, L. M., Sivrikaya, H., Le Roux, A., Shipway, J. R., Cragg, S. M., & Costa, F. O. (2012). Investigating the taxonomy and systematics of marine wood borers (Bivalvia: Teredinidae) combining evidence from morphology, DNA barcodes and nuclear locus sequences. Invertebrate Systematics, 26(6), 572–582.

    Article  Google Scholar 

  • Borges, L. M., Merckelbach, L. M., Sampaio, Í., & Cragg, S. M. (2014). Diversity, environmental requirements, and biogeography of bivalve wood-borers (Teredinidae) in European coastal waters. Frontiers in zoology, 11(1), 13.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bosire, C. M., Abubakar, L., Ochanda, J., & Bosire, J. O. (2013). Lignocellulolytic activities of crude gut extracts of marine woodborers Dicyathifer mannii and Sphaeroma terebrans. International Journal of Microbiology and Mycology, 5, 1–18.

    Google Scholar 

  • Bowman, T. E., & Kuhne, H. (1974). Cymodetta gambosa, a new sphaeromatid isopod (Crustacea) from Australia, with notes on its mating behaviour. Records of the Australian Museum, 29(9), 235–242.

    Article  Google Scholar 

  • Boyko, C. B., Bruce, N. L., Hadfield, K. A., Merrin, K. L., Ota, Y., Poore, G. C. B., Taiti, S., Schotte, M., & Wilson, G. D. F. (Eds) (2008). World marine, freshwater and terrestrial Isopod Crustaceans database. Limnoriidae White, 1850. Retrieved November 16, 2019, from World Register of Marine Species http://www.marinespecies.org/aphia.php?p=taxdetails&id=118275

  • Boyle, P. J., & Turner, R. D. (1976). The larval development of the wood boring piddock Martesia striata (L.) (Mollusca: Bivalvia: Pholadidae). Journal of Experimental Marine Biology and Ecology, 22(1), 55–68.

    Article  Google Scholar 

  • Brusca, R. C., & Iverson, E. W. (1985). A guide to the marine isopod Crustacea of Pacific Costa Rica (Vol. 33). San Jose: Universidad de Costa Rica.

    Google Scholar 

  • Castelló, J. (2011). The genus Limnoria (Limnoriidae, Isopoda, Crustacea) in Europe, including a key to species. Zootaxa, 2968, 1–12.

    Article  Google Scholar 

  • Çevik, C., Ozcan, T., & Gündoğdu, S. (2015). First record of the striate piddock Martesia striata (Linnaeus, 1758) (Mollusca: Bivalvia: Pholadidae) in the Mediterranean Sea. Bioinvasions Records, 4(4), 277–280.

    Article  Google Scholar 

  • Chanley, P. E. (1965). Larval development of a boring clam, Barnea truncata. Chesapeake Science, 6(3), 162–166.

    Article  Google Scholar 

  • Cheriyan, P. V., & Cherian, C. J. (1980). Salinity and survival of Martesia striata (Linn) in Cochin Harbour. Fishery Technology, 17(2), 111–114.

    Google Scholar 

  • Clausen, C. A. (2010). Biodeterioration of wood. Wood handbook: Wood as an engineering material: Chapter 14. In Centennial ed. General technical report FPL; GTR-190 (pp. 14.1–14.16, 190, 14–1). Madison, WI: US Department of Agriculture, Forest Service, Forest Products Laboratory.

    Google Scholar 

  • Coan, E. V., Carlton, J. T., & Evenhuis, N. L. (2017). Case 3717—Xylophagidae Purchon, 1941 (Mollusca: Bivalvia): Proposed emendation of the spelling to xylophagaidae to remove homonymy with xylophagidae Fallén, 1810 (Insecta: Diptera). The Bulletin of Zoological Nomenclature, 73(2-4), 103–105.

    Article  Google Scholar 

  • Coleman, C. O., & Renz, A. (2009). Cheluridae. Zootaxa, 2260(1), 339–343.

    Article  Google Scholar 

  • Cookson, L. J. (1990a). Annotated check-list of the Limnoriidae. The International Research Group on Wood Preservation, Document No. IRG/WP/4160.

    Google Scholar 

  • Cookson, L. J. (1990b). A laboratory bioassay method for testing preservatives against the marine borers Limnoria tripunctata, L. quadripunctata (Crustacea) and Lyrodus pedicellatus (Mollusca). The International Research Group on Wood Preservation, Document No. IRG/WP/4159.

    Google Scholar 

  • Cookson, L. J. (1994). Observations on the activities of Sphaeroma in Australia. The International Research Group on Wood Preservation, Document No. IRG/WP/94-10059.

    Google Scholar 

  • Cookson, L. J. (1997). Additions to the taxonomy of the Limnoriidae. Memoirs of the Museum of Victoria, 56(1), 129–143.

    Article  Google Scholar 

  • Cookson, L. J. (1999). Twenty year marine trial of single and double preservative treated timber specimens in Australia. Material und Organismen, 33(1), 65–79.

    Google Scholar 

  • Cookson, L. J., & Cragg, S. M. (1988). Two new species of Limnoriidae (Isopoda) from Papua New Guinea. Journal of Natural History, 22(6), 1507–1516.

    Article  Google Scholar 

  • Cookson, L. J., & Poore, G. C. (1994). New species of Lynseia and transfer of the genus to Limnoriidae (Crustacea: Isopoda). Memoirs of the Museum of Victoria, 54(1), 79–189.

    Article  Google Scholar 

  • Cookson, L. J., & Scown, D. K. (2001). Recent marine wood preservation research in Australia. In 10th International Congress on Marine Corrosion and Fouling, 1999, University of Melbourne, pp. 172–195.

    Google Scholar 

  • Cookson, L. J., Barnacle, J. E., & Beesley, J. (1991). Australian marine test of pesticides impregnated as supplementary treatments for creosote- or CCA-treated wood. Wood Protection, 1, 43–48.

    Google Scholar 

  • Cookson, L. J., Cragg, S. M., & Hendy, I. W. (2012). Wood-boring limnoriids (Crustacea, Isopoda) including a new species from mangrove forests of the Tukang Besi Archipelago, Indonesia. Zootaxa, 3248(1), 25–34.

    Article  Google Scholar 

  • Cragg, S. (1988). The wood-boring isopod, Sphaeroma: A threat to maritime structures in warm waters. In D. R. Houghton, R. N. Smith, & H. O. W. Eggins (Eds.), Biodeterioration (Vol. 7, pp. 727–732). London and New York: Elsevier Applied Science.

    Chapter  Google Scholar 

  • Cragg, S. M. (2003). Marine wood boring arthropods: Ecology, functional anatomy, and control measures. In B. Goodell et al. (Eds.), Wood deterioration and preservation (ACS Symposium Series) (pp. 272–287). Washington, DC: American Chemical Society.

    Chapter  Google Scholar 

  • Cragg, S. M., & Daniel, G. (1992). Chelura terebrans (Crustacea: Amphipoda) is capable of degrading wood independently of its associate, Limnoria. The International Research Group on Wood Preservation, Document No. IRG/WP/4180-92.

    Google Scholar 

  • Cragg, S. M., & Icely, J. D. (1982). An interim report on studies of the tolerance by Sphaeroma (Crustacea: Isopoda) of CCA-treated timber. The International Research Group on Wood Preservation, Document No. IRG/WP/491.

    Google Scholar 

  • Cragg, S. M., Pitman, A. J., & Henderson, S. M. (1999). Developments in the understanding of the biology of marine wood boring crustaceans and in methods of controlling them. International Biodeterioration & Biodegradation, 43(4), 197–205.

    Article  Google Scholar 

  • Cragg, S. M., Danjon, C., & Mansfield-Williams, H. (2007). Contribution of hardness to the natural resistance of a range of wood species to attack by the marine borer Limnoria. Holzforschung, 61(2), 201–206.

    Article  CAS  Google Scholar 

  • Cragg, S. M., Jumel, M. C., Al-Horani, F. A., & Hendy, I. W. (2009). The life history characteristics of the wood-boring bivalve Teredo bartschi are suited to the elevated salinity, oligotrophic circulation in the Gulf of Aqaba, Red Sea. Journal of Experimental Marine Biology and Ecology, 375(1–2), 99–105.

    Article  Google Scholar 

  • Culliney, J. L., & Turner, R. D. (1976). Larval development of the deep-water wood boring bivalve, Xylophaga atlantica Richards (Mollusca, Bivalvia, Pholadidae). Ophelia, 15(2), 149–161.

    Article  Google Scholar 

  • Daniel, G., Nilsson, T., & Cragg, S. (1991). Limnoria lignorum ingest bacterial and fungal degraded wood. Holz als Roh-und werkstoff, 49(12), 488–490.

    Article  CAS  Google Scholar 

  • Davis, R. A., & Meyer, D. L. (2009). A sea without fish: Life in the Ordovician sea of the Cincinnati region. Bloomington: Indiana University Press.

    Google Scholar 

  • de Moraes Akamine, D. T., da Silva, D. D. A. C., de Lima Câmara, G., Carvalho, T. V., & Brienzo, M. (2018). Endoglucanase activity in Neoteredo reynei (Bivalvia, Teredinidae) digestive organs and its content. World Journal of Microbiology and Biotechnology, 34(6), 84.

    Article  CAS  PubMed  Google Scholar 

  • De Silva, D., & Hillis, W. E. (1980). The contribution of silica to the resistance of wood to marine borers. Holzforschung, 34, 95–97.

    Article  Google Scholar 

  • Decho, A. W., Browne, K. A., & Zimmer-Faust, R. K. (1998). Chemical cues: Why basic peptides are signal molecules in marine environments. Limnology and Oceanography, 43(7), 1410–1417.

    Article  CAS  Google Scholar 

  • Distel, D. L. (2003). The biology of marine wood boring bivalves and their bacterial endosymbionts. Wood Deterioration and Preservation, 845, 253–271.

    Article  CAS  Google Scholar 

  • Distel, D. L., & Roberts, S. J. (1997). Bacterial endosymbionts in the gills of the deep-sea wood-boring bivalves Xylophaga atlantica and Xylophaga washingtona. The Biological Bulletin, 192(2), 253–261.

    Article  CAS  PubMed  Google Scholar 

  • Distel, D. L., DeLong, E. F., & Waterbury, J. B. (1991). Phylogenetic characterization and in situ localization of the bacterial symbiont of shipworms (Teredinidae: Bivalvia) by using 16S rRNA sequence analysis and oligodeoxynucleotide probe hybridization. Applied and environmental microbiology, 57(8), 2376–2382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Distel, D. L., Morrill, W., MacLaren-Toussaint, N., Franks, D., & Waterbury, J. (2002). Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic gamma-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). International Journal of Systematic and Evolutionary Microbiology, 52(6), 2261–2269.

    CAS  PubMed  Google Scholar 

  • Distel, D. L., Amin, M., Burgoyne, A., Linton, E., Mamangkey, G., Morrill, W., et al. (2011). Molecular phylogeny of Pholadoidea Lamarck, 1809 supports a single origin for xylotrophy (wood feeding) and xylotrophic bacterial endosymbiosis in Bivalvia. Molecular Phylogenetics and Evolution, 61(2), 245–254.

    Article  PubMed  Google Scholar 

  • Distel, D. L., Altamia, M. A., Lin, Z., Shipway, J. R., Han, A., Forteza, I., et al. (2017). Discovery of chemoautotrophic symbiosis in the giant shipworm Kuphus polythalamia (Bivalvia: Teredinidae) extends wooden-steps theory. Proceedings of the National Academy of Sciences. doi: https://doi.org/10.1073/pnas.1620470114

  • Duval, D. M. (1963). Observations On the annual cycle of Barnea candida: (Class Lamellibranchiata, Family Pholadidae). Journal of Molluscan Studies, 35(2–3), 101–102.

    Article  Google Scholar 

  • Dymond, J. (2005). The functional anatomy of the digestive system of the marine wood-boring isopod Limnoria quadripunctata, with evidence of endogenous cellulase production. Doctoral dissertation, University of Portsmouth.

    Google Scholar 

  • Eaton, R. A. (1985). Preservation of marine timbers. In Preservation of Timber in the Tropics (pp. 157–191). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Eaton, R. A., & Cragg, S. M. (1995). Evaluation of creosote fortified with synthetic pyrethroids as wood preservatives for use in the sea. Pt. 1: Efficacy against marine wood-boring molluscs and crustaceans. Material und Organismen (Germany).

    Google Scholar 

  • Eaton, R. A., & Hale, M. D. (1993). Wood: Decay, pests and protection. New York: Chapman & Hall.

    Google Scholar 

  • Edwards, H. G. M., Sibley, M. G., Derham, B., & Heron, C. P. (2004). Raman spectroscopy of archaeological samples from the Barber-Surgeon’s medicine chest on the Mary Rose. Journal of Raman Spectroscopy, 35(8-9), 746–753.

    Article  CAS  Google Scholar 

  • Ellison, A. M., & Farnsworth, E. J. (1990). The ecology of Belizean mangrove-root fouling communities. I. Epibenthic fauna are barriers to isopod attack of red mangrove roots. Journal of Experimental Marine Biology and Ecology, 142(1–2), 91–104.

    Article  Google Scholar 

  • Elshahawi, S. I. (2012). Isolation and biosynthesis of bioactive natural products produced by marine symbionts, PhD Thesis, Oregon Health & Science University

    Google Scholar 

  • El-Shanshoury, A. R., Mona, M. H., Shoukr, F. A., & El-Bossery, A. M. (1994). The enumeration and characterisation of bacteria and fungi associated with marine wood-boring isopods and the ability of these micro-organisms to digest cellulose and wood. Marine Biology, 119, 321–326.

    Article  Google Scholar 

  • Eltringham, S. K. (1961a). The effect of salinity upon the boring activity and survival of Limnoria (Isopoda). Journal of the Marine Biological Association of the United Kingdom, 41(3), 785–797.

    Article  CAS  Google Scholar 

  • Eltringham, S. K. (1961b). Wood-boring activity of Limnoria (Isopoda) in relation to oxygen tension. Nature, London, 196(4775), 512–513.

    Article  Google Scholar 

  • Eltringham, S. K. (1965). The effect of temperature upon the boring activity and survival of Limnoria (Isopoda). Journal of Applied Ecology, 2, 149–157.

    Article  Google Scholar 

  • Eltringham, S. K. (1971). Factors affecting distribution of burrows of marine wood-boring isopod Limnoria. International Biodeterioration Bulletin, 7(2), 61–67.

    Google Scholar 

  • Eltringham, S. K., & Hockley, A. R. (1958). Coexistence of three species of the wood-boring Isopod Limnoria in Southampton water. Nature, 181(4624), 1659–1660.

    Article  Google Scholar 

  • Eltringham, S. K., & Hockley, A. R. (1961). Migration and reproduction of the wood-boring isopod, Limnoria, in Southampton water. Limnology and Oceanography, 6(4), 467–481.

    Article  Google Scholar 

  • Eriksen, A. M., & Gregory, D. (2016). Degradation of archaeological remains by shipworm. Conservation and Management of Archaeological Sites, 18(1–3), 30–39.

    Article  Google Scholar 

  • Eriksen, A. M., Gregory, D., & Shashoua, Y. (2015). Selective attack of waterlogged archaeological wood by the shipworm, Teredo navalis and its implications for in-situ preservation. Journal of Archaeological Science, 55, 9–15.

    Article  CAS  Google Scholar 

  • Estevez, E. D., & Simon, J. L. (1974). Systematics and ecology of Sphaeroma (Crustacea: Isopoda) in the mangrove habitats of Florida. In G. Walsh, S. Snedaker & H. Teas (Eds.), Proceedings of the international symposium on biology and management of mangroves (pp. 286–304). Institute of Food and Agricultural Sciences, Honolulu, Hawaii. Institute of Food and Agricultural Sciences University of Florida, Gainesville.

    Google Scholar 

  • Etxabe, A. G. (2013). The wood boring amphipod Chelura terebrans. PhD Thesis, University of Portsmouth.

    Google Scholar 

  • Evans, J. W. (1970). Sexuality in the rock-boring clam Penitella penita (Conrad 1837). Canadian Journal of Zoology, 48(4), 625–627.

    Article  Google Scholar 

  • Evans, S. (1999). Wood-boring bivalves and boring linings. Bulletin of the Geological Society of Denmark, 45, 130–134.

    Google Scholar 

  • Florian, M.-L. E. (1990). Scope and history of archaeological wood. In R. M. Rowell & R. J. Barbour (Eds.), Archaeological wood. Properties, chemistry and preservation, Advances in Chemistry Series 225 (pp. 3–32). Washington DC: American Chemical Society.

    Google Scholar 

  • Florian, M.-L. E., Seccombe-Hett, C. E., & And Mccaweley, J. C. (1978). The physical chemical and morphological condition of marine archaeological wood should dictate the conservation process. In Papers from the First Southern Hemisphere Conference on Maritime Archaeology, Perth Western Australia 1977 (pp. 128–144). Melbourne: Ocean’s Society of Australia.

    Google Scholar 

  • Gallager, S. M., Turner, R. D., & Berg, C. J., Jr. (1981). Physiological aspects of wood consumption, growth, and reproduction in the shipworm Lyrodus pedicellatus Quatrefages (Bivalvia: Teredinidae). Journal of Experimental Marine Biology and Ecology, 52(1), 63–77.

    Article  Google Scholar 

  • Gaudron, S. M., Haga, T., Wang, H., Laming, S. R., & Duperron, S. (2016). Plasticity in reproduction and nutrition in wood-boring bivalves (Xylophaga atlantica) from the Mid-Atlantic Ridge. Marine biology, 163(10), 213.

    Article  CAS  Google Scholar 

  • Geyer, H. (1981). Effects of wood-inhabiting marine fungi on food selection, feeding intensity and reproduction of Limnoria tripunctata Menzies (Crustacea, Isop.). The International Research Group on Wood Preservation, Document No. IRG/WP/480.

    Google Scholar 

  • Haga, T., & Kase, T. (2008). Jouannetia (Pholadopsis) spinosa: A new species of spinous rock-boring pholadid (Bivalvia: Myoida) from the West Pacific. Venus, 67(1–2), 27–40.

    Google Scholar 

  • Haga, T., & Kase, T. (2013). Progenetic dwarf males in the deep-sea wood-boring genus Xylophaga (Bivalvia: Pholadoidea). Journal of Molluscan Studies, 79(1), 90–94.

    Article  Google Scholar 

  • Hall, G. S., & Saunders, R. G. (1967) Incidence of marine borers round the Britain’ s coasts, Timber Research and Development Association, Research report B/RR/6, Hughenden Valley, High Wycombe, Bucks, 17 pp.

    Google Scholar 

  • Harrison, K. (1984). The morphology of the sphaeromatid brood pouch (Crustacea: Isopoda: Sphaeromatidae). Zoological Journal of the Linnean Society, 82(4), 363–407.

    Article  Google Scholar 

  • Harrison, K., & Ellis, J. P. (1991). The genera of the Saphaeromatidae (Crustacea: Isopoda): A key and distribution list. Invertebrate Systematics, 5(4), 915–952.

    Article  Google Scholar 

  • Harrison, K., & Holdich, D. M. (1984). Hemibranchiate sphaeromatids (Crustacea: Isopoda) from Queensland, Australia, with a world-wide review of the genera discussed. Zoological Journal of the Linnean Society, 81(4), 275–387.

    Article  Google Scholar 

  • Helsing, G. G. (1981). Recognizing and controlling marine wood borers. Bull SG-49, Extension Marine Advisory Program. Oregon State University.

    Google Scholar 

  • Henderson, S. M. (2000). The swimming behavior of the marine wood borer Limnoria quadripunctata (Isopoda: Limnoriidae). In C. J. von Vaupel Klein & F. R. Schram (Eds.), Proceedings of the Fourth International Crustacean Congress, The Biodiversity Crisis and Crustaceans (pp. 227–238), July 20–24, 1998. Amsterdam: the Netherlands.

    Google Scholar 

  • Henderson, S. M., & Cragg, S. M. (1996). The role of contact chemoreception in location of wood by marine borer Limnoria: Isopoda, The International Research Group on Wood Preservation, Document No. IRG/WP 96-10157.

    Google Scholar 

  • Henderson, S. M., Cragg, S. M., & Pitman, A. J. (1995). Wood detection by the marine isopod Limnoria. The International Research Group on Wood Preservation, Document No. IRG/WP/95-10134.

    Google Scholar 

  • Hochman, H. (1973). Degradation and protection from marine organisms. In D. D. Nicholas (Ed.), Wood deterioration and its prevention by preservative treatments, Volume 1: Degradation and protection of wood (pp. 247–275). New York: Syracuse University Press.

    Google Scholar 

  • Hochman, H., Vind, H., Roe Jr, T., Muraoka, J., & Casey, J. (1956). The role of Limnoria tripunctata in promoting early failure of creosoted piling (No. NCEL-TM-109). Port Hueneme, CA: Naval Civil Engineering Lab.

    Google Scholar 

  • Hocker, E. (2006, April). From the micro-to the macro-: Managing the conservation of the warship, Vasa. In Macromolecular symposia (Vol. 238, No. 1, pp. 16–21). Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  • Horton, T.; Lowry, J.; De Broyer, C.; Bellan-Santini, D.; Coleman, C.O.; Corbari, L.; Costello, M.J.; Daneliya, M.; Dauvin, J.-C.; Fišer, C.; Gasca, R.; Grabowski, M.; Guerra-García, J.M.; Hendrycks, E.; Hughes, L.; Jaume, D.; Jazdzewski, K.; Kim, Y.-H.; King, R.; Krapp-Schickel, T.; LeCroy, S.; Lörz, A.-N.; Mamos, T.; Senna, A.R.; Serejo, C.; Sket, B.; Souza-Filho, J.F.; Tandberg, A.H.; Thomas, J.D.; Thurston, M.; Vader, W.; Väinölä, R.; Vonk, R.; White, K.; Zeidler, W. (2019). World amphipoda database. Cheluridae Allman, 1847. Retrieved from November 16, 2019, from World Register of Marine Species http://www.marinespecies.org/aphia.php?p=taxdetails&id=101483

  • Hossain, M. B., & Bamber, R. N. (2013). New record of a wood-boring isopod, Sphaeroma terebrans (Crustacea: Sphaeromatidae) from Sungai Brunei estuary, Brunei Darussalam. Marine Biodiversity Records, 6, e18.

    Article  Google Scholar 

  • Hurley, D. E., & Jansen, K. P. (1977). The marine fauna of New Zealand: Family Sphaeromatidae (Crustacea Isopoda: Flabellifera) (Vol. 63). Wellington: New Zealand Department of Scientific and Industrial Research.

    Google Scholar 

  • International Commission on Zoological Nomenclature. (2018). Opinion 2429 (CCase 3717)–Xylophagidae Purchon, 1941 (Mollusca, Bivalvia): Emended to Xylophagaidae to remove homonymy with Xylophagidae Fallén, 1810 (Insecta, Diptera). The Bulletin of Zoological Nomenclature, 75(1), 297–299.

    Article  Google Scholar 

  • Jeffreys, J. G. (1867). British conchology: Or, an account of the mollusca which now inhabit the British Isles and the surrounding seas (Vol. 4). J. van Voorst.

    Google Scholar 

  • Jenner, H. A., Rajagopal, S., Van der Velde, G., & Daud, M. S. (2003). Perforation of ABS pipes by boring bivalve Martesia striata: A case study. International Biodeterioration & Biodegradation, 52(4), 229–232.

    Article  CAS  Google Scholar 

  • John, P. A. (1962). Habits structure and development of Sphaeroma Terebrans A wood (boring Isopod). Ph. D Thesis, The Kerala University, Trivandrum.

    Google Scholar 

  • Johnson, M. W. (1935). Seasonal migrations of the wood-borer Limnoria lignorum (Rathke) at Friday Harbor, Washington. The Biological Bulletin, 69(3), 427–438.

    Article  Google Scholar 

  • Johnson, B. R. (1982). A look at CCreosote vs. chromated-copper-arsenate salts as wood preservatives for the marine environment. Industrial & Engineering Chemistry Product Research and Development, 21(4), 704–705.

    Article  CAS  Google Scholar 

  • Johnson, B. R., & Gutzmer, I. D. (1990) Comparison of preservative treatments in marine exposure of small wood panels. USDA Forest Service, Res. Note FPL-RN-0258.

    Google Scholar 

  • Johnson, B., & Jackson, R. (1990). Durability of heartwood in treated southern pine bulkheads. Forest Products Journal, 40(7/8), 41–46.

    Google Scholar 

  • Johnson, M. W., & Menzies, R. J. (1956). The migratory habits of the marine gribble Limnoria tripunctata Menzies in San Diego Harbor, California. The Biological Bulletin, 110(1), 54–68.

    Article  Google Scholar 

  • Johnson, B. R., Estevez, E. D., & Rice, S. A. (1987) Sphaeroma terebrans Bate: A note on distribution and preservative tolerance in Florida Coastal Waters, The International Research Group on Wood Preservation, Document No. IRG/WP/4135.

    Google Scholar 

  • Jones, L. T. (1963). The geographical and vertical distribution of British Limnoria [Crustacea: Isopoda]. Journal of the Marine Biological Association of the United Kingdom, 43(3), 589–603.

    Article  Google Scholar 

  • Karande, A. A., Swami, B. S., & Udhayakumar, M. (1993). Timber deterioration by Limnoria platycauda Menzies (Isopoda) along Karwar coast of India. Raffles Bulletin of Zoology, 41(1), 75–82.

    Google Scholar 

  • Khalaji-Pirbalouty, V., & Waegele, J. W. (2010). A new species and a new record of Sphaeroma Bosc, 1802 (Sphaeromatidae: Isopoda: Crustacea) from intertidal marine habitats of the Persian Gulf. Zootaxa, 2631, 1–18.

    Article  Google Scholar 

  • King, A. J., Cragg, S. M., Li, Y., Dymond, J., Guille, M. J., Bowles, D. J., et al. (2010). Molecular insight into lignocellulose digestion by a marine isopod in the absence of gut microbes. Proceedings of the National Academy of Sciences.

    Google Scholar 

  • Kleemann, K. (1996). Biocorrosion by bivalves. Marine Ecology, 17(1-3), 145–158.

    Article  CAS  Google Scholar 

  • Knight, J. H. (1984). Studies on the biology and biochemistry of Pholas dactylus L. Doctoral dissertation, University of London.

    Google Scholar 

  • Knight, K. Y. (2018). A preliminary study on the growth rate of Lyrodus pedicellatus (Bivalvia: Teredinidae) within the first 5 months after settlement. International Biodeterioration & Biodegradation.

    Google Scholar 

  • Kofoid, C. A., & Miller, R. C. (1927). Marine borers and their relation to marine construction on the Pacific Coast. In C. L. Hill & C. A. Kofoid (Eds.), Final report of the Sand Francisco Bay marine piling committee biological section (pp. 188–343). San Francisco: The Committee.

    Google Scholar 

  • Kohlmeyer, J., Bebout, B., & Vlkmann-Kohlmeyer, B. (1995). Decomposition of mangrove wood by marine fungi and teredinids in Belize. Marine Ecology, 16(1), 27–39.

    Article  Google Scholar 

  • Kühne, H. (1971). The identification of wood boring crustaceans. In E. B. G. Jones, S. K. Eltringham, & B. Gallame (Eds.), Marine borers, fungi and fouling organisms of wood (pp. 66–83). Paris: OCDE.

    Google Scholar 

  • Kussakin, O. G., & Malyutina, M. V. (1989). A new species of deep-sea marine borer of the family Limnoriidae (Isopoda, Flabellifera) from the Okhotsk Sea. Crustaceana, 56(1), 8–13.

    Article  Google Scholar 

  • Leino, M., Ruuskanen, A. T., Flinkman, J., Kaasinen, J., Klemelä, U. E., Hietala, R., & Nappu, N. (2011). The Natural Environment of the Shipwreck Vrouw Maria (1771) in the Northern Baltic Sea: An assessment of her state of preservation. International Journal of Nautical Archaeology, 40(1), 133–150.

    Article  Google Scholar 

  • Li, X.-F. I., Han, C., Zhong, C.-R., Xu, J. Q. X., & Huang, J.-R. (2016). Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene. Zoological Research, 37(5), 307–312.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowry, J. K., & Myers, A. A. (2017). A Phylogeny and Classification of the Amphipoda with the establishment of the new order Ingolfiellida (Crustacea: Peracarida). Zootaxa, 4265(1), 1–89.

    Article  CAS  PubMed  Google Scholar 

  • Maempel, G. Z. (1993). Kuphus melitensis, a new teredinid bivalve from the late Oligocene Lower Coralline Limestone of Malta. Mededelingen van de Werkgroep voor Tertiaire en Kwartaire Geologie, 30(3/4), 155–175.

    Google Scholar 

  • Mancinelli, G. (2008). Quantitative assessment of animal-induced leaf damage: A test with three brackish crustaceans feeding on leaf detritus. Transitional Waters Bulletin, 2(4), 38–48.

    Google Scholar 

  • Manders, M. (Ed) (2011a). Guidelines for protection of submerged wooden cultural heritage, including cost-benefit analysis. Amersfoort: Wreck Proteck.

    Google Scholar 

  • Manders, M. (2011b). Guidelines for predicting decay by shipworm in the Baltic Sea. Wreck Proteck, Amersfoort.

    Google Scholar 

  • Mann, R., & Gallager, S. M. (1984). Physiology of the wood boring mollusc Martesia cuneiformis Say. The Biological Bulletin, 166(1), 167–177.

    Article  Google Scholar 

  • McKoy, J. L. (1981). Seasonal settlement of shipworms (Bivalvia: Teredinidae) in Tauranga harbour and Wellington harbour. New Zealand Journal of Marine and Freshwater Research, 15(2), 171–180.

    Article  Google Scholar 

  • McLaughlin, P. A. (1980). Comparative morphology of recent crustacea. San Francisco: W. H. Freeman and Company.

    Google Scholar 

  • Mejaes, B. A., Poore, A. G., & Thiel, M. (2015). Crustaceans inhabiting domiciles excavated from macrophytes and stone. In The life styles and feeding biology of the crustacea (The Natural History of the Crustacea Series) (pp. 118–144). Oxford: Oxford University Press.

    Google Scholar 

  • Menzies, R. J. (1954a). The comparative biology of reproduction in the wood-boring isopod crustacean Limnoria. Bulletin of the Museum of Comparative Zoology at Harvard College, printed for The Museum, Cambridge, 112(5), 361–388.

    Google Scholar 

  • Menzies, R. J. (1954b). A review of the systematics and ecology of the genus “Exosphaeroma,” with the description of a new genus, a new species, and a new subspecies (Crustacea, Isopoda, Sphaeromidae). American Museum novitates; no. 1683.

    Google Scholar 

  • Menzies, R. J. (1957). The marine borer family Limnoriidae (Crustacea, Isopoda). Part I: Northern and central America: Systematics, distribution, and ecology. Bulletin of Marine Science, 7(2), 101–200.

    Google Scholar 

  • Menzies, R. J., & Glynn, P. W. (1968). The common marine isopod Crustacea of Puerto Rico. Studies on the fauna of Curaçao and other Caribbean Islands, 27(104), 1–133.

    Google Scholar 

  • Messana, G. (2004). How can I mate without an appendix masculina? The case of Sphaeroma terebrans BBate, 1866 (Isopoda, Sphaeromatidae). Crustaceana, 77(4), 499–505.

    Article  Google Scholar 

  • Messana, G., Bartolucci, V., Mwaluma, J., & Osore, M. (1994). Preliminary observations on parental care in Sphaeroma terebrans Bate 1866 (Isopoda Sphaeromatidae), a mangrove wood borer from Kenya. Ethology Ecology & Evolution, 6(Suppl. 1), 125–129.

    Article  Google Scholar 

  • Miller, R. C. (1926). Ecological relations of marine wood-boring organisms in San Francisco Bay. Ecology, 7(3), 247–254.

    Article  Google Scholar 

  • Miranda, L., & Thiel, M. (2008). Active and passive migration in boring isopods Limnoria spp. (Crustacea, Peracarida) from kelp holdfasts. Journal of Sea Research, 60(3), 176–183.

    Article  Google Scholar 

  • MolluscaBase. (2020). MolluscaBase. Teredinidae Rafinesque, 1815. Retrieved November 26, 2019, from World Register of Marine Species http://www.marinespecies.org/aphia.php?p=taxdetails&id=253

  • Monari, S. (2009). Phylogeny and biogeography of pholadid bivalve Barnea (Anchomasa) with considerations on the phylogeny of Pholadoidea. Acta Palaeontologica Polonica, 54(2), 315–335.

    Article  Google Scholar 

  • Nagabhushanam, R. (1961). The effect of low salinity on larvae of Martesia striata. Journal of Scientific & Industrial Research, 20(C), 102–103.

    Google Scholar 

  • Nair, N. B. (1964). Some observations on the problem of marine timber destroying organisms of Indian coasts. Fishery Technology, 1(1), 87–97.

    Google Scholar 

  • Nair, N. B. (1984). The problem of marine timber destroying organisms along the Indian coasts. Proceedings: Animal Sciences, 93(3), 203–223.

    Google Scholar 

  • Nair, N. B., & Ansell, A. D. (1968). The mechanism of boring in Zirphaea crispata (L.) (Bivalvia: Pholadidae). Proceedings of Royal Society of London, Series B, 170(1019), 155–173.

    Google Scholar 

  • Nair, N. B., & Saraswathy, M. (1971). The biology of wood-boring teredinid molluscs. In Advances in marine biology (Vol. 9, pp. 335–509). New York: Academic Press.

    Google Scholar 

  • Nguyen, M. N., Leicester, R. H., Wang, C. H., & Cookson, L. J. (2008). Probabilistic procedure for design of untreated timber piles under marine borer attack. Reliability Engineering & System Safety, 93(3), 482–488.

    Article  Google Scholar 

  • Nishimoto, A., Haga, T., Asakura, A., & Shirayama, Y. (2015). An experimental approach for understanding the process of wood fragmentation by marine wood borers in shallow temperate waters. Marine Ecology Progress Series, 538, 53–65.

    Article  CAS  Google Scholar 

  • Nozères, C. (2015). Photo: Deepsea shipworm Xylophaga, WORMS photogallery. Retrieved from http://www.marinespecies.org/photogallery.php?album=700&pic=106695

  • Nunomura, N. (2008). Marine isopod crustaceans collected from Shijiki Bay, western Japan (1) Valvifera, Cymothoida, Sphaeromatidea, Limnoriidea and Oniscidea. Bulletin of the Toyama Science Museum, 31, 13–43.

    Google Scholar 

  • Nunomura, N. (2012). Marine isopod crustaceans of Seto Inland Sea deposited at Toyama Science Museum, 3. Suborder Cymothoida, Limnoriidea and Sphaeromatidea. Contributions from the Toyama Science Museum, 35, 77–85.

    Google Scholar 

  • O’Connor, R. M., Fung, J. M., Sharp, K. H., Benner, J. S., McClung, C., Cushing, S., et al. (2014). Gill bacteria enable a novel digestive strategy in a wood-feeding mollusk. Proceedings of the National Academy of Sciences, 111(47), E5096–E5104.

    Article  CAS  Google Scholar 

  • Ofori, J. (1985). The durability and preservation of West African timbers. In Preservation of timber in the tropics (pp. 193–203). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Paalvast, P., & van der Velde, G. (2011). Distribution, settlement, and growth of first-year individuals of the shipworm Teredo navalis L.(Bivalvia: Teredinidae) in the Port of Rotterdam area, the Netherlands. International Biodeterioration & Biodegradation, 65(3), 379–388.

    Article  Google Scholar 

  • Paalvast, P., & van der Velde, G. (2013). What is the main food source of the shipworm (Teredo navalis)? A stable isotope approach. Journal of Sea Research, 80, 58–60.

    Article  Google Scholar 

  • Palma, P. (2005). Monitoring of shipwreck sites. International Journal of Nautical Archaeology, 34(2), 323–331.

    Article  Google Scholar 

  • Palma, P., & Santhakumaran, L. N. (2014). Shipwrecks and global ‘worming’ (62 pp). New York: Archeopress.

    Google Scholar 

  • Philippi, A. (1839). Einige zoologische Notizen. Archiv für Naturgeschichte, 8, 113–134.

    Google Scholar 

  • Pillai, N. K. (1965, January 12–15). The role of Crustacea in the destruction of submerged timber. In Proceedings of the symposium on Crustacea, Part III. Ernakulam: MBAI.

    Google Scholar 

  • Pinn, E. H., Richardson, C. A., Thompson, R. C., & Hawkins, S. J. (2005). Burrow morphology, biometry, age and growth of piddocks (Mollusca: Bivalvia: Pholadidae) on the south coast of England. Marine Biology, 147(4), 943–953.

    Article  Google Scholar 

  • Pitman, A. J., Sawyer, G. S., & Daniel, G. (1995). The attack of naturally durable and creosote treated timbers by Limnoria tripunctata Menzies. The International Research Group on Wood Preservation, Document No. IRG/WP 95-10132.

    Google Scholar 

  • Pournou, A. (1999). In situ protection and conservation of the Zakynthos wreck. PhD Thesis, University of Portsmouth.

    Google Scholar 

  • Pournou, A. (2018). Assessing the long-term efficacy of geotextiles in preserving archaeological wooden shipwrecks in the marine environment. Journal of Maritime Archaeology, 13(1), 1–14.

    Article  Google Scholar 

  • Pournou, A., Jones, A. M., & Moss, S. T. (2001). Biodeterioration dynamics of marine wreck-sites determine the need for their in situ protection. International Journal of Nautical Archaeology, 30(2), 299–305.

    Article  Google Scholar 

  • Purchon, R. D. (1941). On the biology and relationships of the lamellibranch Xylophaga dorsalis (Turton). Journal of the Marine Biological Association of the United Kingdom, 25(1), 1–39.

    Article  Google Scholar 

  • Purchon, R. (1955). The structure and function of the British Pholadidae (Rock-boring Lamellibranchia). In Proceedings of the Zoological Society of London (Vol. 124, No. 4, pp. 859–911). Oxford, UK: Blackwell Publishing.

    Google Scholar 

  • Purchon, R. D. (1956). A note on the biology of Martesia striata L. (Lamellibranchia). In Proceedings of the Zoological Society of London (Vol. 126, No. 2, pp. 245–258). Oxford, UK: Blackwell Publishing.

    Google Scholar 

  • Rao, M. V., Sundararaj, R., Pachu, A. V., & Shanbhag, R. R. (2016). Deterioration of imported timber by marine borers along Visakhapatnam tropical harbour, India. International Biodeterioration & Biodegradation, 109, 1–10.

    Article  Google Scholar 

  • Ray, D. L., & Julian, J. R. (1952). Occurrence of cellulase in Limnoria. Nature, 169(4288), 32.

    Article  CAS  PubMed  Google Scholar 

  • Rayner, S. (1974). The status of marine wood preservation research in Papua New Guinea. The International Research Group on Wood Preservation, Document No. IRG/WP/405.

    Google Scholar 

  • Rayner, S. M. (1975). The natural history of Teredinid molluscs and other marine wood borers in Papua New Guinea, International Research Group on Wood Preservation, Document No. IRG/WP/410, 74 pp.

    Google Scholar 

  • Rehm, A., & Humm, H. J. (1973). Sphaeroma terebrans: A threat to the mangroves of southwestern Florida. Science, 182(4108), 173–174.

    Article  CAS  PubMed  Google Scholar 

  • Romano, C., Voight, J. R., Company, J. B., Plyuscheva, M., & Martin, D. (2013). Submarine canyons as the preferred habitat for wood-boring species of Xylophaga (Mollusca, Bivalvia). Progress in Oceanography, 118, 175–187.

    Article  Google Scholar 

  • Romano, C., Voight, J. R., Perez-Portela, R., & Martin, D. (2014). Morphological and genetic diversity of the wood-boring Xylophaga (Mollusca, Bivalvia): New species and records from deep-sea Iberian canyons. PLoS One, 9(7).

    Google Scholar 

  • Romey, W. L., Bullock, R. C., & Dealteris, J. T. (1994). Rapid growth of a deep-sea wood-boring bivalve. Continental Shelf Research, 14(12), 1349–1359.

    Article  Google Scholar 

  • Rotramel, G. (1972). Iais californica and Sphaeroma quoyanum, two symbiotic isopods introduced to California (Isopoda, Janiridae and Sphaeromatidae). Crustaceana. Supplement III, 193–197.

    Google Scholar 

  • Rotramel, G. (1975). Filter-feeding by the marine boring isopod, Sphaeroma quoyanum H. Milne Edwards, 1840 (Isopoda, Sphaeromatidae). Crustaceana, 28(1), 7–10.

    Article  Google Scholar 

  • Santhakumaran, L. N. (1988). On silent saboteurs and shipwrecks. In S. R. Rao (Ed.), Marine Archaeology of Ocean Countries, Indian Conference of Marine Archaeology (pp. 123–126). Dona Paula, Goa: National Institute of Oceanography.

    Google Scholar 

  • Santhakumaran, L. N., & Sneli, J. A. (1978). Natural resistance of different species of timber to marine borer attack in the Trondheimsfjord (Western Norway). The International Research Group on Wood Preservation, Document No. IRG/WP/435.

    Google Scholar 

  • Santhakumaran, L. N., & Sneli, J. A. (1984). Studies on the marine fouling and wood-boring organisms of the Trondheimsfjord (Western Norway). Gunneria 48. Museum of Natural History and Archaeology.

    Google Scholar 

  • Santos, S. M. L., Tagliaro, C. H., Beasley, C. R., Schneider, H., Sampaio, I., Santos Filho, C., & Müller, A. C. D. P. (2005). Taxonomic implications of molecular studies on Northern Brazilian Teredinidae (Mollusca: Bivalvia) specimens. Genetics and Molecular Biology, 28(1), 175–179.

    Article  CAS  Google Scholar 

  • Scheffer, T. C., & Morrell, J. J. (1998). Natural durability of wood: A worldwide checklist of species (Vol. 22). Corvallis, OR: College of Forestry, Forest Research Laboratory, Oregon State University.

    Google Scholar 

  • Sen, S., Sivrikaya, H., & Yalçin, M. (2009). Natural durability of heartwoods from European and tropical Africa trees exposed to marine conditions. African Journal of Biotechnology, 8(18), 4425.

    Google Scholar 

  • Shipway, J. R., O’Connor, R., Stein, D., Cragg, S. M., Korshunova, T., Martynov, A., et al. (2016). Zachsia zenkewitschi (Teredinidae), a rare and unusual seagrass boring bivalve revisited and redescribed. PLoS One, 11(5), e0155269.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shipway, J. R., Altamia, M. A., Rosenberg, G., Concepcion, G. P., Haygood, M. G., & Distel, D. L. (2019). A rock-boring and rock-ingesting freshwater bivalve (shipworm) from the Philippines. Proceedings of the Royal Society B, 286(1905), 20190434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuster, S. M. (1989). Female sexual receptivity associated with molting and differences in copulatory behavior among the three male morphs in Paracerceis sculpta (Crustacea: Isopoda). The Biological Bulletin, 177(3), 331–337.

    Article  Google Scholar 

  • Shuster, S. M. (1990). Courtship and female mate selection in a marine isopod crustacean Paracerceis sculpta. Animal Behaviour, 40(2), 390–399.

    Article  Google Scholar 

  • Si, A., Bellwood, O., & Alexander, C. G. (2002). Evidence for filter-feeding by the wood-boring isopod, Sphaeroma terebrans (Crustacea: Peracarida). Journal of Zoology, 256(4), 463–471.

    Article  Google Scholar 

  • Singh, H. R., & Sasekumar, A. (1994). Distribution and abundance of marine wood borers on the west coast of Peninsular Malaysia. Hydrobiologia, 285, 111–121.

    Article  Google Scholar 

  • Singh, H. R., & Sasekumar, A. (1996). Wooden panel deterioration by tropical marine wood borers. Estuarine, Coastal and Shelf Science, 42(6), 755–769.

    Article  Google Scholar 

  • Sivrikaya, H., Cragg, S. M., & Borges, L. M. (2009). Variation in resistance to marine borers in commercial timbers from Turkey, as assessed by marine trial and laboratory screening. Turkish Journal of Agriculture and Forestry, 33(6), 569–576.

    Google Scholar 

  • Sivrikaya, H., Hafizoglu, H., Cragg, S. M., Carrillo, A., Militz, H., Mai, C., & Borges, L. M. S. (2012). Evaluation of wooden materials deteriorated by marine-wood boring organisms in the Black Sea. Maderas. Ciencia y tecnologia, 14(1), 79–90.

    Google Scholar 

  • Sleeter, T. D., Boyle, P. J., Cundell, A. M., & Mitchell, R. (1978). Relationships between marine microorganisms and the wood-boring isopod Limnoria tripunctata. Marine Biology, 45(4), 329–336.

    Article  Google Scholar 

  • Smith, S. I. (1880). Occurrence of Chelura terebrans, a crustacean destructive to the timber of submarine structures, on the coast of the United States. Proceedings of the United States National Museum, II, 232.

    Article  Google Scholar 

  • Southwell, C. R., & Bultman, J. D. (1971). Marine borer resistance of untreated woods over long periods of immersion in tropical waters. Biotropica, 3, 81–107.

    Article  Google Scholar 

  • Srinivasan, V. V. (1959). Two species of wood-boring pholads of Madras. Proceedings of the Indian Academy of Sciences-Section B, 50(2), 105–111.

    Google Scholar 

  • Srinivasan, V. V. (1992) Research activities on marine wood biodeterioration in Indian waters, International Research Group of Wood Preservation, Document No: IRG/WP/4182-92, 16 pp.

    Google Scholar 

  • St. John James (2016) Photo: Martesia striata (Linnaeus, 1758) in Florida, USA. Retrieved January, 2016, from https://commons.wikimedia.org/wiki/File:Martesia_striata_bivalves_in_wood_borings_(driftwood_on_marine_beach,_Cayo_Costa_Island,_Florida,_USA)_9_(24009470279).jpg

  • Steinmayer, A. G., Jr., & Turfa, J. M. (1996). Effects of shipworm on the performance of ancient Mediterranean warships. International Journal of Nautical Archaeology, 25(2), 104–121.

    Article  Google Scholar 

  • Thiel, M. (1999). Reproductive biology of a wood-boring isopod, Sphaeroma terebrans, with extended parental care. Marine Biology, 135(2), 321–333.

    Article  Google Scholar 

  • Thiel, M. (2003). Reproductive biology of Limnoria chilensis: Another boring peracarid species with extended parental care. Journal of Natural History, 37(14), 1713–1726.

    Article  Google Scholar 

  • Thiel, M., & Gutow, L. (2005). The ecology of rafting in the marine environment. II. The rafting organisms and community. In Oceanography and marine biology (pp. 289–428). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Thiel, M., & Hinojosa, I. (2010). Peracarida (amphipods, isopods, tanaidaceans & cumaceans). Marine benthic fauna of Chilean Patagonia. Nature in Focus, Chile, 671–738.

    Google Scholar 

  • Thomas, J. D. (1979). A Redescription of the Wood-Rasping Amphipod Trophichelura gomezi Ortiz, 1976 (Cheluridae) from the Florida Keys, with notes on its distribution and ecology. Proceedings of the Biological Society of Washington, 92(4), 863.

    Google Scholar 

  • Toth, G. B., Larsson, A. I., Jonsson, P. R., & Appelqvist, C. (2015). Natural populations of shipworm larvae are attracted to wood by waterborne chemical cues. PLoS One, 10(5), e0124950.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Treneman, N. C., Borges, L. M., Shipway, J. R., Raupach, M. J., Altermark, B., & Carlton, J. T. (2018). A molecular phylogeny of wood-borers (Teredinidae) from Japanese Tsunami Marine Debris. Aquatic Invasions, 13(1), 101–112.

    Article  Google Scholar 

  • Tupper, C., Pitman, A. J., & Cragg, S. M. (2000). Copper accumulation in the digestive caecae of Limnoria quadripunctata Holthius (Isopoda: Crustacea) tunnelling CCA-treated wood in laboratory cultures. Holzforschung, 54(6), 570–576.

    Article  CAS  Google Scholar 

  • Turner, R. D. (1954). The family Pholadidae in the western Atlantic and the eastern Pacific I. Pholadinae. Johnsonia, 3, 1–64.

    Google Scholar 

  • Turner, R. D. (1955). The family Pholadidae in the western Atlantic and the eastern Pacific II Martesiinae, Jouannetinae and Xylophaginae. Johnsonia, 3, 65–160.

    Google Scholar 

  • Turner, R. D. (1966). A survey and illustrated catalogue of the Teredinidae (Mollusca: Bivalvia). Cambridge: Museum of Comparative Zoology, Harvard University.

    Book  Google Scholar 

  • Turner, R. D. (1968). The Xylophagainae and the Teredinidae - a study in contrasts. Annual Report of the American Malacological Union for 1967, 46–48.

    Google Scholar 

  • Turner, R. D. (1969). Superfamily Pholadacea Lamarck, 1809. In R. C. Moore (Ed.), Treatise on invertebrate paleontology, Part N, Volume 2, Mollusca 6, Bivalvia (pp. 703–741). Lawrence: The Geological Society of America and the University of Kansas.

    Google Scholar 

  • Turner, R. D. (1971a). Identification of marine wood-boring molluscs. In E. B. G. Jones & S. K. Eltringham (Eds.), Marine borers, fungi and fouling organisms of wood (pp. 17–64). Paris: OECD.

    Google Scholar 

  • Turner, R. D. (1971b). Australian shipworms. Australian Natural History, 17(4), 139–145.

    Google Scholar 

  • Turner, R. D. (1972). A new genus and species of deep water wood-boring bi-valve (Mollusca, Pholadidae, Xylophagainae). Basteria, 36, 97–104.

    Google Scholar 

  • Turner, R. D. (1973). Wood-boring bivalves, opportunistic species in the deep sea. Science, 180(4093), 1377–1379.

    Article  CAS  PubMed  Google Scholar 

  • Turner, R. D. (1988). Cellulolytic nitrogen-fixing bacteria in the Teredinidae (Mollusca: Bivalvia). In Biodeterioration 7 (pp. 743–748). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Turner, R. D. (2002). On the subfamily Xylophagainae (Family Pholadidae, Bivalvia, Mollusca). Bulletin of the Museum of Comparative Zoology, 157(4), 223–307.

    Google Scholar 

  • Turner, R. D., & Johnson, A. C. (1971). Biology of marine wood-boring molluscs. In E. B. G. Jones & S. K. Eltringham (Eds.), Marine borers, fungi and fouling organisms of wood (pp. 259–301). Paris: OECD.

    Google Scholar 

  • Turner, R. D., & Santhakumaran, L. N. (1989). The genera Martesia and Lignopholas in the Indo-Pacific (Mollusca: Bivalvia: Pholadidae). Ophelia, 30(3), 155–186.

    Article  Google Scholar 

  • Turner, R. D., & Yakovlev, Y. (1983). Dwarf males in the teredinidae (Bivalvia, Pholadacea). Science, 219(4588), 1077–1078.

    Article  CAS  PubMed  Google Scholar 

  • Tyler, P. A., Young, C. M., & Dove, F. (2007). Settlement, growth and reproduction in the deep-sea wood-boring bivalve mollusc Xylophaga depalmai. Marine Ecology Progress Series, 343, 151–159.

    Article  Google Scholar 

  • Unger, A., Schniewind, A., & Unger, W. (2001). Conservation of wood artifacts: A handbook. New York: Springer.

    Book  Google Scholar 

  • Velásquez, M., & Shipway, J. R. (2018). A new genus and species of deep-sea wood-boring shipworm (Bivalvia: Teredinidae) Nivanteredo coronata n. sp. from the Southwest Pacific. Marine Biology Research, 14(8), 806–815.

    Article  Google Scholar 

  • Voight, J. R. (2007). Experimental deep-sea deployments reveal diverse Northeast Pacific wood-boring bivalves of Xylophagainae (Myoida: Pholadidae). Journal of Molluscan Studies, 73(4), 377–391.

    Article  Google Scholar 

  • Voight, J. R. (2008). Deep-sea wood-boring bivalves of Xylophaga (Myoida: Pholadidae) on the continental shelf: A new species described. Journal of the Marine Biological Association of the United Kingdom, 88(7), 1459–1464.

    Article  Google Scholar 

  • Voight, J. R. (2009). Diversity and reproduction of near-shore vs offshore wood-boring bivalves (Pholadidae: Xylophagainae) of the deep eastern Pacific ocean, with three new species. Journal of Molluscan Studies, 75(2), 167–174.

    Article  Google Scholar 

  • Voight, J. R. (2015). Xylotrophic bivalves: Aspects of their biology and the impacts of humans. Journal of Molluscan Studies, 81(2), 175–186.

    Article  Google Scholar 

  • Voight, J. R. (2016). New insights on Xylopholas (Mollusca: Xylophagaidae): Diversity, growth and reproduction. American Malacological Bulletin, 34(2), 138–146.

    Article  Google Scholar 

  • Voight, J. R., Marshall, B. A., Judge, J., Halanych, K. M., Li, Y., Bernardino, A. F., Grewe, F., & Maddox, J. D. (2019). Life in wood: Preliminary phylogeny of deep-sea wood-boring bivalves (Xylophagaidae), with descriptions of three new genera and one new species. Journal of Molluscan Studies, 85(2), 232–243.

    Article  Google Scholar 

  • Wall, A. R., Bruce, N. L., & Wetzer, R. (2015). Status of Exosphaeroma amplicauda (Stimpson, 1857), E. aphrodita (Boone, 1923) and description of three new species (Crustacea, Isopoda, Sphaeromatidae) from the north-eastern Pacific. ZooKeys, 504, 11.

    Article  Google Scholar 

  • Waterbury, J. B., Calloway, C. B., & Turner, R. D. (1983). A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). Science, 221(4618), 1401–1403.

    Article  CAS  PubMed  Google Scholar 

  • Watson, C. J. (1936). Destruction of timber by marine organisms in the Port of Brisbane. Queensland Forest Service Bulletin No. 12, 107 pp.

    Google Scholar 

  • Wetzer, R., Perez-Losada, M., & Bruce, N. L. (2013). Phylogenetic relationships of the family Sphaeromatidae Latreille, 1825 (Crustacea: Peracarida: Isopoda) within Sphaeromatidea based on 18S-rDNA molecular data. Zootaxa, 3599(2), 161–177.

    Article  PubMed  Google Scholar 

  • Wetzer, R., Bruce, N. L., & Pérez-Losada, M. (2018). Relationships of the Sphaeromatidae genera (Peracarida: Isopoda) inferred from 18S rDNA and 16S rDNA genes. Arthropod Systematics and Phylogeny, 76(1), 1–30.

    Google Scholar 

  • Wilkinson, L. L. (2004). The Biology of Sphaeroma Terebrans in Lake Pontchartrain, Louisiana with Emphasis on Burrowing. MSc. Thesis, University of New Orleans.

    Google Scholar 

  • Wilson, G. D. (1991). Functional morphology and evolution of isopod genitalia. Crustacean sexual biology (pp. 228–245). New York: Columbia University Press.

    Google Scholar 

  • WoRMS. (2019). World Register of marine species Sphaeromatoidea Latreille, 1825. Retrieved November 16, 2019, from http://www.marinespecies.org/aphia.php?p=taxdetails&id=292950

  • Yakovlev, Y., & Malakov, V. V. (1985). The anatomy of dwarf males of Zachsia zenkewitschi (Bivalvia: Teredinidae). Asian Marine Biology, 2, 47–56.

    Google Scholar 

  • Yang, J. C., Madupu, R., Durkin, A. S., Ekborg, N. A., Pedamallu, C. S., Hostetler, J. B., et al. (2009). The complete genome of Teredinibacter turnerae T7901: An intracellular endosymbiont of marine wood-boring bivalves (shipworms). PLoS One, 4(7), e6085.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yennawar, P. L., Thakur, N. L., Anil, A. C., Venkat, K., & Wagh, A. B. (1999). Ecology of the wood-boring bivalve Martesia striata (Pholadidae) in Indian waters. Estuarine, Coastal and Shelf Science, 49, 123–130.

    Article  Google Scholar 

  • Yoshino, H., & Ohsawa, T. A. (2019). Description of new species of algal-boring Limnoria (Crustacea, Isopoda, Limnoriidae) from Japan and redescription of Limnoria segnoides Menzies, 1957 and L. nagatai Nunomura, 2012. Zootaxa, 4550(2), 236–250.

    Article  PubMed  Google Scholar 

  • Yoshino, H., Watabe, H., & Ohsawa, T. A. (2017). A new species of seagrass-boring Limnoria (Limnoriidae, Isopoda, Crustacea) from Japan. Zootaxa, 4232(2), 251–259.

    Article  Google Scholar 

  • Yoshino, H., Yamaji, F., & Ohsawa, T. A. (2018). Genetic structure and dispersal patterns in Limnoria nagatai (Limnoriidae, Isopoda) dwelling in non-buoyant kelps, Eisenia bicyclis and E. arborea, in Japan. PLoS One, 13(6), e0198451.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zabel, R. A., & Morrell, J. J. (1992). Wood microbiology: Decay and its prevention. San Diego: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pournou, A. (2020). Wood Deterioration by Marine Borers. In: Biodeterioration of Wooden Cultural Heritage. Springer, Cham. https://doi.org/10.1007/978-3-030-46504-9_5

Download citation

Publish with us

Policies and ethics