Skip to main content

Continental Slope and Submarine Canyons: Benthic Biodiversity and Human Impacts

  • Chapter
  • First Online:
Brazilian Deep-Sea Biodiversity

Abstract

The Brazilian Continental Margin hosts a diverse deep seafloor landscape including vast areas of sedimented slopes, submarine canyons, reef-forming and solitary cold-water corals, methane seeps and pockmarks, seamounts, and guyots. The vast biodiversity associated with deep-sea benthic habitats remain largely undescribed with only a few, mostly descriptive, research programs established in the S and SE margins beginning in the late 1990s. These programs, in particular the REVIZEE – Evaluation of the Sustainable Potential of Living Resources in the Exclusive Economic Zone – focused primarily on inventorying species lists and standing stock biomass of commercially exploited species to generate guidelines for a nationwide resource management strategy for Brazil’s EEZ. The poorly described nature of Brazil’s deep-sea habitats and benthic fauna can be clearly illustrated if we consider that only 4 (2.5%) out of 161 existing submarine canyons had benthic communities sampled and investigated to this date. Another indication of a poorly described deep-sea biodiversity along the Brazilian margin is verified by the limited number of species occurrence records for the SW Atlantic in the Ocean Biogeographic Information System (OBIS) database, representing only 0.06% of the global deep-sea species occurrence records below 500 m. Most deep-sea biodiversity currently described in Brazil comes from sedimented slopes and from upper to mid slope depths in the S-SE margin. Currently, sampling efforts remain largely concentrated on Campos and Santos Basins, and in the context of baseline and environmental impact assessments (EIAs) contracted by the oil and gas industry. Very few studies have dealt with cold-water coral communities, and virtually none has investigated seamount faunas deeper than 150 m. Only very recently, reports have described deep-sea faunas associated with pockmarks, methane seeps, and naturally occurring organic falls (all focus of other chapters in this book). Therefore, the current knowledge on Brazil’s deep-sea fauna comes largely from soft-bottom benthic meio- and macroinfaunal communities. Overall depth-related distributional patterns of benthic assemblages on the slope are in relatively good agreement with patterns found for the N Atlantic, with high species diversity and biomass found on the upper slope as well as near upwelling areas on the SE margin. Also, species richness of combined macro- and megabenthos decreases from the SE towards the S margin, spanning 15° of latitude South (i.e., 21–34°S). The peer-reviewed scientific literature describing Brazil’s Margin deep-sea environments remains scant, with the majority of recent findings and data repositories still inaccessible from the general public, and available only through gray-literature reports from various baseline and EIA assessments. Currently, the human impact footprint on Brazil’s Margin is derived mostly from the oil and gas and deep-water fishing industries, with no systematic studies to date addressing the negative impacts of these activities on the various deep-sea habitats. Future human-related impacts on Brazil’s Margin deep-sea biodiversity will also come from long-term climate change effects (predominantly ocean acidification) in accordance with modeling studies, from the offshore oil and gas industry, and potentially from deep-sea mining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen SE, De Madron XD (2009) A review of the role of submarine canyons in deep-ocean exchange with the shelf. Ocean Sci 5:607–620

    Article  Google Scholar 

  • Almada GVMB, Bernardino AF (2017) Conservation of deep-sea ecosystems within offshore oil fields on the Brazilian margin, SW Atlantic. Biol Conserv 206:92–101

    Article  Google Scholar 

  • Amaral ACZ, Rossi-Wongtschowski CLDB (2004) Biodiversidade bentônica da região sudeste-sul do Brasil - Plataforma Externa e talude superior. Série Documentos REVIZEE: Score Sul, MMA. 216 p

    Google Scholar 

  • Amon D, Ziegler A, Dahlgren TG et al (2016) Insights into the abundance and diversity of abyssal megafauna in a polymetallic-nodule region in the eastern Clarion-Clipperton Zone. Sci Rep 6:30492. https://doi.org/10.1038/srep30492

    Article  CAS  Google Scholar 

  • ANP (2015) Anuário estatístico Brasileiro do petróleo, gás natural e biocombustíveis. Agência Nacional do Petróleo, Gás Natural e Biocombustíveis, Rio de Janeiro (ISSN 1983:5884)

    Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G et al (2012) The magnitude of global marine species diversity. Curr Biol 22(23):2189–2202

    Article  CAS  Google Scholar 

  • Arantes RCM, Castro CB, Pires DO et al (2009) Depth and water mass zonation and species associations of cold-water octocoral and stony coral communities in the southwestern Atlantic. Mar Ecol Prog Ser 397:71–79. https://doi.org/10.3354/meps08230

  • Auster PJ, Malatesta RJ, Langton RW et al (1996) The impacts of mobile fishing gear on seafloor habitats in the Gulf of Maine (Northwest Atlantic): implications for conservation of fish populations. Rev Fish Sci 4(2):185–202

    Article  Google Scholar 

  • Barroso R, Kudenov JD, Halanych KM et al (2018) A new species of xylophylic fireworm (Annelida: Amphinomidae: Cryptonome) from deep-sea wood falls in the SW Atlantic. Deep-Sea Res I 137:66–75

    Article  Google Scholar 

  • Bastos MS (2004) Invertebrados bentônicos capturados pela frota pesqueira arrendada no sudeste e sul do Brasil. Bachelor Thesis, Curso de Oceanografia, Universidade do Vale do Itajaí, Santa Catarina, Brasil, 93 p

    Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA et al (2006) Climate-driven trends in contemporary ocean productivity. Nature 444:05317. https://doi.org/10.1038/nature05317

    Article  CAS  Google Scholar 

  • Bernardes RA, Rossi-Wongtschowski CLDB, Wahrlich R et al (2005a) Prospecção pesqueira de recursos demersais com armadilhas e pargueiras na Zona Econômica Exclusiva da região Sudeste-Sul do Brasil. Série Documentos REVIZEE: Score Sul, 112 p

    Google Scholar 

  • Bernardes RA, Figueiredo JLD, Rodrigues AR et al (2005b) Peixes da zona econômica exclusiva da região Sudeste-Sul do Brasil. Série Documentos REVIZEE: Score Sul, 295 p

    Google Scholar 

  • Bernardino AF, Sumida PYGS (2017) Deep risks from offshore development. Science 358(6361). https://doi.org/10.1126/science.aaq0779

  • Bernardino AF, Berenguer V, Ribeiro-Pereira VP (2016) Bathymetric and regional changes in benthic macrofaunal assemblages on the deep Eastern Brazilian margin, SW Atlantic. Deep Sea Res 1(111):110–120

    Article  Google Scholar 

  • Bernardino AF, Li Y, Smith CR et al (2017) Multiple introns in a deep-sea Annelid (Decemunciger: Ampharetidae) mitochondrial genome. Sci Rep 7:4295. https://doi.org/10.1038/s41598-017-04094-w

    Article  CAS  Google Scholar 

  • Bernardino AF, Gama RN, Mazzuco ACA, Omena EP, Lavrado HP (2019) Submarine canyons support distinct macrofaunal assemblages on the deep SE Brazil margin. Deep-Sea Res I 149:103052. https://doi.org/10.1016/j.dsr.2019.05.012

    Article  CAS  Google Scholar 

  • Bernardino AF, Cordes E, Schlacher T (2020) The natural capital of offshore oil, gas, and methane hydrates in the World Ocean In: Natural Capital and Exploitation of the Deep Ocean. Edited by: Maria Baker, Oxford University Press. © Oxford University Press. https://doi.org/10.1093/:oso/9780198841654.003.0006

  • Bopp L, Aumont O, Cadule P et al (2005) Response of diatoms distribution to global warming and potential implications: a global model study. Geophys Res Lett 32:L19606

    Article  CAS  Google Scholar 

  • Breitburg D, Levin LA, Oschlies A et al (2018) Declining oxygen in the global ocean and coastal waters. Science 359:1–13. https://doi.org/10.1126/science.aam7240

    Article  CAS  Google Scholar 

  • Byrne RH, Mecking S, Feely RA et al (2010) Direct observations of basin-wide acidification of the North Pacific Ocean. Geophys Res Lett 37:L02601. https://doi.org/10.1029/2009GL040999

    Article  CAS  Google Scholar 

  • Campanyà-Llovet N, Snelgrove PVA, De Leo FC (2018) Food quantity and quality in Barkley Canyon (NE Pacific) and its influence on macroinfaunal community structure. Prog Oceanog 169:106–119. https://doi.org/10.1016/j.pocean.2018.04.003

    Article  Google Scholar 

  • Capítoli RR, Benvenuti C (2004) Distribuição batimétrica e variações de diversidade dos macroinvertebrados bentônicos da plataforma continental e talude superior no extremo sul do Brasil. Rev Atlântica 26(1):27–43

    Google Scholar 

  • Capítoli RR, Benvenuti C (2006) Associações de macroinvertebrados bentônicos de fundos inconsolidados na plataforma continental e talude superior no extremo sul do Brasil. Rev Atlântica 28(1):47–59

    Google Scholar 

  • Carney RS (2005) Zonation of deep biota on continental margins. Oceanogr. Mar Biol Annu Rev 43:211–278

    Google Scholar 

  • Carreira RS, Araujo MP, Costa TLF et al (2010) Lipid biomarkers in deep sea sediments from the Campos Basin, SE Brazilian continental margin. Org Geochem 41:879–884

    Article  CAS  Google Scholar 

  • Carreira RS, Cordeiro LGMS, Oliveira DRP, Nudi AH, Farias CO, Scofield AL, Massone CG, Wagener ALR (2017) Origem e distribuição da matéria orgânica sedimentary usando indicadores geoquímicos. In: Falcão APC, Wagener ALR, Carreira RS (eds) Química ambiental: caracterização ambiental regional da Bacia de Campos, Atlântico sudoeste, vol 6. Habitats, pp 179–228

    Google Scholar 

  • Castro Filho BM, Pereira AF, de Caroli A et al (2015) Correntes e massas de água na plataforma continental. In: Martins RP, Grossmann-Matheson GS (eds) Meteorologia e oceanografia, vol 2. Elsevier/Habitats, Rio de Janeiro, pp 189–252

    Google Scholar 

  • Cauwenberghe LV, Vanreusel A, Mees J et al (2013) Microplastic pollution in deep-sea sediments. Environ Pollut 182:495–499

    Article  CAS  Google Scholar 

  • Cavalcanti GH (2013) Ecossistemas de Corais de Águas Profundas da Bacia de Campos. In: Petrobras (ed) Projeto de Caracterização Regional da Bacia de Campos (PCR-BC/Habitats), vol VII, Rio de Janeiro, pp 49–110

    Google Scholar 

  • Cavalcanti GH, Arantes RCM, Falcão APC et al (2017) Ecossistemas de corais de águas profundas da Bacia de Campos. In: Curbelo-Fernandez MP, Braga AC (eds) Comunidades Demersais e Bioconstrutores: caracterização ambiental regional da Bacia de Campos, Atlântico Sudoeste, vol 4. Elsevier. Habitats, Rio de Janeiro, pp 43–85

    Google Scholar 

  • CBD–Convention on Biological Diversity (2008) Report of the Conference of the Parties to the Convention on Biological Diversity on the Work of its Ninth Meeting in Bonn (Germany), 19–30 May 2008. UNEP/CBD/COP/9/29, 20 June 2008. Available online at: http://www.cbd.int/doc/meetings/cop/cop-09/official/cop-09-29-en.doc (14.09.2008)

  • Chauvet P, Metaxas A, Hay A, Matabos M (2018) Annual and seasonal dynamics of deep-sea megafaunal epibenthic communities in Barkley Canyon (British Columbia, Canada): A response to climatology, surface productivity and benthic boundary layer variation. Prog. Oceanogr, pp. 89–105

    Google Scholar 

  • Clark MR, Koslow JA (2007) Impacts of fisheries on seamounts. In: Pitcher TJ (ed) Seamounts: ecology, fisheries and conservation. Blackwell Publishing, Oxford, pp 413–441

    Chapter  Google Scholar 

  • Collie JS, Hall SJ, Kaiser MJ et al (2000) A quantitative analysis of fishing impacts on shelf-sea benthos. J Anim Ecol 69:785–798

    Article  Google Scholar 

  • Cordes EE, Jones DOB, Schlacher TA et al (2016) Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies. Front Mar Sci 4:1–26

    Article  Google Scholar 

  • Costa PAS, Braga AC, Melo MRS et al (2007) Assembléias de teleósteos demersais no talude da costa central brasileira. In: PAS C, Olavo G, Martins AS (eds) Biodiversidade da Fauna Marinha Profunda na Costa Central Brasileira, Série Livros no 24. Museu Nacional, Rio de Janeiro, pp 87–107

    Google Scholar 

  • Costa PAS, Mincarone MM, Braga AC et al (2015) Megafaunal communities along a depth gradient on the tropical Brazilian continental margin. Mar Biol Res 11:1053–1064

    Article  Google Scholar 

  • Crawford WR, Peña MA (2013) Declining oxygen on the British Columbia Continental Shelf. Atmosphere-Ocean 51:88–103

    Article  CAS  Google Scholar 

  • Damuth JE, Kolla VE, Flood RD et al (1983) Distributary channel meandering and bifurcation patterns on Amazon Deep-Sea Fan as revealed by long-range side-scan sonar (GLORIA). Geology 11:94–98

    Article  Google Scholar 

  • de Almeida AG, Kowsmann RO (2014) Geomorfologia do talude continental e do Platô de São Paulo. in: Kowsmann, R.O., ed. Geologia e Geomorfologia. Rio de Janeiro: Elsevier. Habitats, v. 1. p. 33–66

    Google Scholar 

  • De Leo FC (2013) Estrutura e dinâmica da fauna bêntica em regiões da plataforma e talude superior do Atlântico Sudoeste. Dissertação de Mestrado, Instituto Oceanográfico, Universidade de São Paulo, 168 p

    Google Scholar 

  • De Leo FC, Smith CR, Rowden A et al (2010) Submarine canyons: hotspots of benthic biomass and productivity in the deep sea. Proc R Soc Lond B 277:2783–2792

    Google Scholar 

  • De Leo FC, Drazen JC, Vetter EW et al (2012) The effects of submarine canyons and the oxygen minimum zone on deep-sea fish communities off Hawaii. Deep-Sea Res I 64:54–70. https://doi.org/10.1016/j.dsr.2012.01.014

    Article  CAS  Google Scholar 

  • De Leo FC, Vetter EW, Smith CR et al (2014) Spatial scale-dependent habitat heterogeneity influences submarine canyon macrofaunal abundance and diversity off the Main and Northwest Hawaiian Islands. Deep Sea Res II 104:267–290. https://doi.org/10.1016/j.dsr2.2013.06.015

    Article  CAS  Google Scholar 

  • De Leo FC, Gauthier M, Nephin J et al (2017) Bottom trawling and oxygen minimum zone influences on continental slope benthic community structure off Vancouver Island (NE Pacific). Deep-Sea Res II 137:404–419

    Article  CAS  Google Scholar 

  • De Leo FC, Ogata B, Sastri A et al (2018) High-frequency observations from a deep-sea cabled observatory reveal seasonal overwintering of Neocalanus spp. in Barkley Canyon, NE Pacific: insights into particulate organic carbon flux. Prog Oceanog 169:130–117. https://doi.org/10.1016/j.pocean.2018.06.001

    Article  Google Scholar 

  • Doney S, Fabry V, Feely R et al (2009) Ocean acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • FAO (2009) International guidelines for the management of Deep-sea fisheries in the High Seas. FAO, Rome

    Google Scholar 

  • Fernandez-Arcaya U, Ramirez-Llodra E, Aguzzi J et al (2017) Ecological role of submarine canyons and need for canyon conservation: a review. Front Mar Sci. https://doi.org/10.3389/fmars.2017.00005

  • Figueiredo JR et al (2011) Geomorfologia da plataforma continental da bacia sergipe-Alagoas. XIII ABEQUA congress - The South American Quaternary Congresso da Associação Brasileira de Estudos do Quaternário, 4 p

    Google Scholar 

  • Flood R, Manley PL, Kowsmann RO (1991) Seismic facies and Late Quaternary growth of Amazon Submarine Fan. In: Weimer P, Link MH (eds) Seismic facies and sedimentary processes of modern and ancient submarine fans. Springer, New York, pp 415–433

    Google Scholar 

  • Fonsêca-Genevois V, Silva MC, Lira VF et al (2017) Meiofauna do talude continental e cânions da Bacia de Campos, com ênfase em Nematoda. In: Falcão APC, Lavrado HP (eds) Ambiente Bentônico: caracterização ambiental regional da Bacia de Campos, Atlântico Sudoeste. Rio de Janeiro: Elsevier. Habitats, vol 3, pp 183–226

    Google Scholar 

  • Garcia R, Koho KA, De Stigter HC et al (2007) Distribution of meiobenthos in the Nazaré canyon and adjacent slope (western Iberian Margin) in relation to sedimentary composition. Mar Ecol Prog Ser 340:207–220

    Article  Google Scholar 

  • Gehlen M et al (2014) Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk. Biogeosciences 11:6955–6967

    Article  Google Scholar 

  • Genin A (2004) Bio-physical coupling in the formation of zooplankton and fish aggregations over abrupt topographies. J Mar Syst 50:3–20

    Article  Google Scholar 

  • Gilly WF, Beman JM, Litvin SY et al (2013) Oceanographic and biological effects of shoaling of the oxygen minimum zone. Annu Rev Mar Sci 5:393–420

    Article  Google Scholar 

  • Grassle JF, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341

    Article  Google Scholar 

  • Grassle JF, Sanders HL, Smith WK (1979) Faunal changes with depth in the deep-sea benthos. Ambio Special Report No. 6, pp. 47–50

    Google Scholar 

  • Gray JS (1994) Is deep-sea species diversity really so high: species diversity of the Norwegian continental shelf. Mar Ecol Prog Ser 112:205–209

    Article  Google Scholar 

  • Greene CH, Wiebe PH, Burkczynski J et al (1988) Acoustical detection of high-density krill demersal layers in the submarine canyon off Georges Bank. Science 241:359–361

    Article  CAS  Google Scholar 

  • Halpern BS et al (2008) A global map of human impact on marine ecosystems. Science 319:948–952. https://doi.org/10.1126/science.1149345

    Article  CAS  Google Scholar 

  • Harris PT, Whiteway T (2011) Global distribution of large submarine canyons: geomorphic differences between active and passive continental margins. Mar Geol 285:69–86

    Article  Google Scholar 

  • Harris PT, Macmillan-Lawler M, Rupp J et al (2014) Geomorphology of the oceans. Mar Geol 352:4–24

    Article  Google Scholar 

  • Hessler RR, Sanders HL (1967) Faunal diversity in the deep sea. Deep Sea Res Oceanogr Abstr 14:65–78

    Article  Google Scholar 

  • Hickey BM (1997) The response of a steep-sided narrow canyon to strong wind forcing. J Phys Oceanogr 27:697–726

    Article  Google Scholar 

  • Ingels J (2010) Structural and functional biodiversity of metazoan meiobenthic communities in submarine canyon and slope sediments. Evidence from field studies and experiments. PhD dissertation, University of Ghent, Faculty of Sciences, Ghent

    Google Scholar 

  • Ingels J, Kiriakoulakis K, Wolff GA et al (2009) Nematode diversity and its relation to quantity and quality of sedimentary organic matter in the Nazaré Canyon, Western Iberian Margin. Deep-Sea Res I 56(9):1521–1539

    Article  CAS  Google Scholar 

  • Ingels J, Thecsunov AV, Vanreusel A (2011) Meiofauna in the Gollum Channel and the Wittart Canyon, Celtic Margin – how local environmental conditions shape nematode structure and function. Plos One 6(5):1–15

    Article  CAS  Google Scholar 

  • Jennings S, Pinnegar JK, Polunin NVC, Warr KJ (2001) Impact of trawling disturbance on the trophic structure of benthic invertebrate communities. Mar Ecol Prog Ser 213:127–142

    Article  Google Scholar 

  • Jones DOB, Yool A, Wei C-L et al (2014) Global reductions in seafloor biomass in response to climate change. Glob Chang Biol 20(6):1861–1872

    Article  Google Scholar 

  • Jones DOB, Kaiser S, Sweetman AK et al (2017) Biological responses to disturbance from simulated deep-sea polymetallic nodule mining. Plos One:e0171750. https://doi.org/10.1371/journal.pone.0171750

  • Keeling RF, Körtzinger A, Gruber N (2010) Ocean deoxygenation in a warming world. Annu Rev Mar Sci 2:199–229

    Article  Google Scholar 

  • Kitahara MV (2007) Species richness and distribution of azooxanthellate Scleractinia in Brazil. Bull Mar Sci 81(3):497–518

    Google Scholar 

  • Kitahara MV, Cordeiro RT, Barbosa R et al (this volume) Chapter 4: Brazilian deep-sea corals. In: Sumida PYG, Bernardino AF, De Leo FC (eds) Brazilian Deep-Sea biodiversity. Springer Nature, Cham

    Google Scholar 

  • Lavrado HP, Bernardino AF, Omena EP (2017a) Distribuição da comunidade megabêntica ao longo da plataforma e talude continental da bacia de campos. In: Curbelo-Fernandez MP, Braga AC (eds) Comunidades Demersais e Bioconstrutores: caracterização ambiental regional da Bacia de Campos, Atlântico Sudoeste, vol 4. Elsevier. Habitats, Rio de Janeiro, pp 139–166

    Chapter  Google Scholar 

  • Lavrado HP, Omena EP, Bernardino AF (2017b) Macrofauna bentônica do talude continental e cânions da bacia de campos. In: APC F, Lavrado HP (eds) Ambiente Bentônico: caracterização ambiental regional da Bacia de Campos, Atlântico Sudoeste, vol 3. Elsevier. Habitats, Rio de Janeiro, pp 259–306

    Chapter  Google Scholar 

  • Leduc D, Nodder SD, Rowden AA et al (2020) Structure of infaunal communities in New Zealand submarine canyons is linked to origins of sediment organic matter. Limnol Oceanogr. in press

    Google Scholar 

  • Ledwell JR, Montgomery ET, Polzin KL et al (2000) Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403:179–182. https://doi.org/10.1038/35003164

    Article  CAS  Google Scholar 

  • Levin LA, Gooday AJ (2003) The Deep Atlantic Ocean. In: Tyler PA (ed) Ecosystems of the World, pp 111–178

    Google Scholar 

  • Levin LA, Sibuet M (2012) Understanding continental margin biodiversity: a new imperative. Annu Rev Mar Sci 4:79–112

    Article  Google Scholar 

  • Levin LA, Etter RJ, Rex MA, et al (2001) Environmental influences on regional deepsea species diversity. Annu. Rev. Ecol. Syst 32:51–93

    Google Scholar 

  • Levin LA, Mengerink K, Gjerde KM et al (2016) Defining “serious harm” to the marine environment in the context of deep-seabed mining. Marine Policy 74:245–259

    Article  Google Scholar 

  • Levin LA, Bett BJ, Gates AR et al (2019) Global observing needs in the deep ocean. Front Mar Sci 6(241):1–32. https://doi.org/10.3389/fmars.2019.00241

    Article  Google Scholar 

  • Machado LCR, Kowsmann RO, Almeida W Jr et al (2004) Geometria da porção proximal do sistema deposicional turbidítico moderno da Formação Carapebus, Bacia de Campos; modelo para heterogeneidades de reservatório. Bolm Geo Petrobrás 12(2):287–315

    Google Scholar 

  • Macquart-Moulin C, Patriti G (1996) Accumulation of migratory micronekton crustaceans over the upper slope and submarine canyons of the northwestern Mediterranean. Deep-Sea Res I 43(5):579–601

    Article  Google Scholar 

  • Margules CR, Pressey RL (2000) Systematic conservation planning. Nature 405:243–253

    Article  CAS  Google Scholar 

  • Mariano J, La Rovere E (2007) Oil and gas exploration and production activities in Brazil: the consideration of environmental issues in the bidding rounds promoted by the National Petroleum Agency. Energ Policy 35:2899–2911

    Article  Google Scholar 

  • Martín J, Puig P, Masqué P et al (2014) Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon. Plos One 9(8):e104536. https://doi.org/10.1371/journal.pone.0104536

    Article  CAS  Google Scholar 

  • Matos FL, Ross S, Huvenne V et al (2018) Canyons pride and prejudice: exploring the submarine canyon research landscape, a history of geographic and thematic bias. Prog Oceanogr. https://doi.org/10.1016/j.pocean.2018.04.010

  • McClain CR, Barry JP (2010) Habitat heterogeneity, disturbance, and productivity work in concert to regulate biodiversity in deep submarine canyons. Ecology 91:964–997

    Article  Google Scholar 

  • McClain CR, Schlacher TA (2015) On some hypotheses of animal life at great depths on the seafloor. Mar Ecol 36:849–872

    Article  Google Scholar 

  • Meinshausen M et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Chang 109:213–241

    Article  CAS  Google Scholar 

  • Mengerink KJ, Van Dover CL, Ardron J et al (2014) A call for deep-ocean stewardship. Science 344:696–698. https://doi.org/10.1126/science.1251458

    Article  CAS  Google Scholar 

  • Menot L, Sibuet M, Carney RS et al (2010) New perceptions of continental margin biodiversity. In life in the World’s Oceans: diversity, distribution, and abundance. In: McIntyre AD (ed) Census of marine life. Wiley-Blackwell, Oxford, pp 79–102

    Google Scholar 

  • Moors-Murphy HB (2014) Submarine canyons as important habitat for cetaceans, with special reference to the Gully: a review. Deep-Sea Res II 104:6–19

    Article  Google Scholar 

  • Mora C, Wei C-L, Rollo A et al (2013) Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biol 11:e1001682

    Article  CAS  Google Scholar 

  • Morán XAG, Lopez-Urrutia A, Calvo-Diaz A et al (2015) More, smaller bacteria in response to ocean’s warming? Proc R Soc Lond B 282:20150371. https://doi.org/10.1098/rspb.2015.0371

    Article  CAS  Google Scholar 

  • Netto SA, Gallucci F, Fonseca G (2005) Meiofaunal communities of continental slope and deep-sea sites off SE Brazil. Deep-Sea Res I 52(2):845–859

    Article  Google Scholar 

  • Netto SA, Gallucci F, Fonseca G (2009) Deep-sea meiofauna response to synthetic-based drilling mud discharge off SE Brazil. Deep-Sea Res II 56(1–2):41–49. https://doi.org/10.1016/j.dsr2.2008.08.018

    Article  CAS  Google Scholar 

  • Nittrouer CA, Demaster DJ (1986) Sedimentary processes on the Amazon continental shelf: past, present, and future research. Cont Shelf Res 6:5–30

    Article  CAS  Google Scholar 

  • O’Hara TD, Consalvey M, Lavrado HP et al (2010) Environmental predictors and turnover of biota along a seamount chain. Mar Ecol 31:84–94

    Article  Google Scholar 

  • Oebius HU, Becker HJ, Rolinski S et al (2001) Parametrization and evaluation of marine environmental impacts produced by deep-sea manganese nodule mining. Deep-Sea Res II 48:3453–3467. https://doi.org/10.1016/S0967-0645(01)00052-2

    Article  CAS  Google Scholar 

  • Oliveira A, Santos AI, Rodrigues A et al (2007) Sedimentary particle distribution and dynamics on the Nazaré canyon system and adjacent shelf (Portugal). Mar Geol 246:144–164

    Article  Google Scholar 

  • Pachauri RK, Allen MR, Barros VR et al (2014) Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Pachauri R, Meyer L (eds) IPCC, Geneva, 432 p. ISBN: 978-92-9169-143-2

    Google Scholar 

  • Palanques A, Martín J, Puig P et al (2006) Evidence of sediment gravity flows induced by trawling in the Palamós (Fonera) submarine canyon (Northwestern Mediterranean). Deep-Sea Res I 53:201–214. https://doi.org/10.1016/j.dsr.2005.10.003

    Article  Google Scholar 

  • Paradis S, Puig P, Masqué P et al (2017) Bottom trawling along submarine canyons impacts deep sedimentary regimes. Sci Rep 7:43332. https://doi.org/10.1038/srep43332

    Article  Google Scholar 

  • Paterson GLJ, Glover AG, Cunha MR et al (2011) Disturbance, productivity and diversity: a worm’s eye view. Deep-Sea Res II 58:2448–2460

    Article  Google Scholar 

  • Paull CK, Greene HG, Ussler W III et al (2002) Pesticides as tracers of sediment transport through Monterey Canyon. Geo-Mar Lett 22:121–126

    Article  CAS  Google Scholar 

  • Perez JAA, Pezzuto PR, Wahrlich R et al (2009) Deep-water fisheries in Brazil: history, status and perspectives. Latin Am J Aquat Res 37(3):513–541

    Article  Google Scholar 

  • Perez JAA, Wahrlich R (2005) A bycatch assessment of the gillnet monkfish Lophius gastrophysus fishery off southern Brazil. Fish. Res 72:81–95

    Google Scholar 

  • Perez JAA, Abreu JGN, Lima AOS et al (this volume) Chapter 8: Living and non-living resources in Brazilian deep waters. In: Sumida PYG, Bernardino AF, De Leo FC (eds) Brazilian Deep-Sea biodiversity. Springer Nature, Cham

    Google Scholar 

  • Pezzuto PR, Perez JAA, Wahrlich R (2006) Deep-sea shrimps (Decapoda: Aristeidae): new targets of the deep-water trawling fishery in Brazil. Braz J Oceanogr 54(2/3):123–134

    Article  Google Scholar 

  • Pierdomenico M, Russo T, Ambroso S et al (2018) Effects of trawling activity on the bamboo-coral Isidella elongata and the sea-pen Funiculina quadrangularis along the Gioia Canyon (Southern Tyrrhenian Sea). Prog Oceanogr 169:214–226. https://doi.org/10.1016/j.pocean.2018.02.019

    Article  Google Scholar 

  • Pires DO (2007) The azooxanthellate coral fauna of Brazil. Bull Mar Sci 81(S1):265–272

    Google Scholar 

  • Pirmez C, Imran J (2003) Reconstruction of turbidity currents in Amazon Channel. Mar Pet Geol 20:823–849

    Article  Google Scholar 

  • Pivel MAG, Freitas CMDS, Comba JLD (2009) Modeling the discharge of cuttings and drilling fluids in a deep-water environment. Deep-Sea Res II 48(1–2):12–21

    Article  CAS  Google Scholar 

  • Pozebon D, Santos JHZ, Peralba MCR et al (2009) Metals, arsenic and hydrocarbons monitoring in marine sediment during drilling activities using NAFs. Deep-Sea Res II 56(1-2):22–31

    Article  CAS  Google Scholar 

  • Puig P, Canals M, Company JB et al (2012) Ploughing the deep sea floor. Nature 489:286–289. https://doi.org/10.1038/nature11410

    Article  CAS  Google Scholar 

  • Puig P, Palanques A, Martín J (2014) Contemporary sediment-transport processes in submarine canyons. Annu Rev Mar Sci 6:53–77

    Article  Google Scholar 

  • Purkey SG, Johnson GC (2010) Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: contributions to global heat and sea level rise budgets. J Clim 23:6336–6351

    Article  Google Scholar 

  • Ramirez-Llodra E, Brandt A, Danovaro R et al (2010) Deep, di-verse and definitely different: unique attributes of the world’s largest ecosystem. Bio- geosciences 7:2851–2899

    Google Scholar 

  • Ramirez-Llodra E, Tyler PA, Baker MC et al (2011) Man and the last great wilderness: human impact on the deep sea. PLoS One 6:e22588. https://doi.org/10.1371/journal.pone.0022588

    Article  CAS  Google Scholar 

  • Ramos A, Ramil F, Sanz JL et al (2017) A first insight into the megabenthos of Mauritanian Canyons. In: Ramos A, Ramil F, Sanz JL (eds) Deep-Sea ecosystems off Mauritania. Springer Nature, Dordrecht, 683 p

    Chapter  Google Scholar 

  • Rex MA (1981) Community structure in the deep-sea benthos. Annu Rev Ecol Syst 12:331–353

    Google Scholar 

  • Rex MA (1983) Geographic patterns of species diversity in the deep-sea benthos. In: Rowe G (ed) The sea. Wiley, New York, pp 453–472

    Google Scholar 

  • Rex MA, Etter RJ (2005) Deep Sea biodiversity. Harvard University Press, 354 p

    Google Scholar 

  • Rex MA, McClain CR, Johnson NA et al (2005) A source-sink hypothesis for abyssal biodiversity. Am Nat 165:163–178

    Google Scholar 

  • Ribeiro RF (2016) Geomorfologia do Cânion do São Francisco e do talude adjacente, com base em dados de batimetria de multifeixe. Bachelor Honours thesis, Universidade Federal da Bahia, Instituto de Geociências, 44 p

    Google Scholar 

  • Roff JC, Taylor ME, Laughren J (2003) Geophysical approaches to the classification, delineation and monitoring of marine habitats and their communities. Aquat Conserv Mar Freshwat Ecosyst 13:77–90

    Article  Google Scholar 

  • Ryan JP, Chave FP, Bellingham JG (2005) Physical-biological coupling in Monterey Bay, California: topographic influences on phytoplankton ecology. Mar Ecol Prog Ser 287:23–32

    Article  Google Scholar 

  • Santos MFL, Lana PC, Silva J et al (2009) Effects of non-aqueous fluids cuttings discharge from exploratory drilling activities on the deep-sea macrobenthic communities. Deep-Sea Res II 56(1–2):32–40

    Article  CAS  Google Scholar 

  • Schlacher TA, Schlacher-Hoenlinger MA, Williams A et al (2007) Richness and distribution of sponge megabenthos in continental margin canyons off southeastern Australia. Mar Ecol Prog Ser 340:73–88

    Article  Google Scholar 

  • Schlacher TA, Baco AR, Rowden AA et al (2013) Seamount benthos in a cobalt-rich crust region of the Central Pacific: conservation challenges for future seabed mining. Divers Distrib 20(5):1–12. https://doi.org/10.1111/ddi.12142

    Article  Google Scholar 

  • Schlining K, von Thun S, Kuhnz L et al (2013) Debris in the deep: using a 22-year video annotation database to survey marine litter in Monterey Canyon, central California, USA. Deep-Sea Res I 79:96–105

    Article  Google Scholar 

  • Schreiner S, de Souza MBFM, Migliorelli JPR (2008) Digital model of the seabed geomorphology of Campos Basin. Bolm Geo Petrobras 16(1):157–160

    Google Scholar 

  • Schreiner S, de Souza MBFM, Migliorelli JPR (2009) Digital model of the seabed geomorphology of southern-Central Espírito Santo Basin and northern Campos Basin. Bolm Geo Petrobras 17(2):365–369

    Google Scholar 

  • Silva BO (2007) Evolução, geometria e preenchimento do complexo de canions de Brejo Grande, Bacia de Sergipe-Alagoas. Master Thesis, Universidade Federal do Rio Grande do Rio Grande do Sul, Instituto de Geociências, 88 p

    Google Scholar 

  • Silveira ICA, Napolitano DC, Farias IU (this volume) Chapter 2: Water masses and oceanic circulation of the Brazilian continental margin and adjacent abyssal plain. In: Sumida PYG, Bernardino AF, De Leo FC (eds) Brazilian Deep-Sea biodiversity. Springer Nature, Cham

    Google Scholar 

  • Skolotnev SG, Peyve AA, Turko NN (2010) New data on the structure of the Vitoria-Trindade seamount chain (western Brazil basin, South Atlantic). Doklady Earth Sci 431:435–440

    Article  CAS  Google Scholar 

  • Smith CR, De Leo FC, Bernardino AF et al (2008) Abyssal food limitation, ecosystem structure and climate change. Trends Ecol Evol 23:518–528. https://doi.org/10.1016/j.tree.2008.05.002

  • Smith CR, De Leo FC, Bernardino AF et al (2008a) Abyssal food limitation, ecosystem structure and climate change. TREE 23(9):518–528

    Google Scholar 

  • Smith CR, Gaines S, Friedlander A et al (2008b). Preservation reference areas for nodule mining in the Clarion-Clipperton Zone: rationale and recommendations to the international Seabed Authority. Workshop report: “design of marine protected areas for seamounts and the abyssal nodule province in Pacific high seas”, Oct 23–26, 2007, University of Hawaii at Manoa, 12 p

    Google Scholar 

  • Smith KL, Ruhl HA, Kahru M et al (2013) Deep ocean communities impacted by changing climate over 24 y in the abyssal Northeast Pacific Ocean. Proc Natl Acad Sci U S A 110:19838–19841

    Article  CAS  Google Scholar 

  • Soetaert K, Heip C (1995) Nematode assemblages of deep-sea and shelf break sites in the North Atlantic and Mediterranean Sea. Mar Ecol Prog Ser 125:171–183

    Article  Google Scholar 

  • Stramma L, Schmidt S, Levin LA et al (2010) Ocean oxygen minima expansions and their biological impacts. Deep-Sea Res I 210:587–595

    Article  CAS  Google Scholar 

  • Sumida PYG, Pires-Vanin AMS (1997) Benthic associations of the shelfbreak and upper slope off Ubatuba-SP, south-eastern Brazil. Est Coast Shelf Sci 44:779–784

    Article  Google Scholar 

  • Sumida PYG, De Leo FC, Bernardino AF (this volume) Chapter 1: An introduction to the Brazilian deep-sea biodiversity. In: Sumida PYG, Bernardino AF, De Leo FC (eds) Brazilian Deep-Sea biodiversity. Springer Nature, Cham

    Google Scholar 

  • Sweetman AK, Thurber AR, Smith CR et al (2017) Major impacts of climate change on deep-sea benthic ecosystems. Elem Sci Anthropol 5:4. https://doi.org/10.1525/elementa.203

    Article  Google Scholar 

  • Talley LD, Feely RA, Sloyan BM et al (2016) Changes in ocean heat, carbon content, and ventilation: a review of the first decade of GO-SHIP global repeat hydrography. Annu Rev Mar Sci 8:185–215

    Article  CAS  Google Scholar 

  • Thiel H, Schriever G, Ahnert A et al (2001) The large-scale environmental impact experiment DISCOL—reflection and foresight. Deep-Sea Res II 48(17–18):3869–3882

    Article  Google Scholar 

  • Thomsen L, Aguzzi J, Costa C et al. (2017) The Oceanic Biological Pump: Rapid carbon transfer to depth at Continental Margins during Winter. Sci Rep 7, 10763. https://doi.org/10.1038/s41598-017-11075-6

  • Thurber AR, Sweetman AK, Narayanaswamy BE et al (2014) Ecosystem function and services provided by the deep sea. Biogeosciences 11:3941–3963

    Article  Google Scholar 

  • Thurnherr AM (2004) The physical environment of polymetallic sulphides deposits, the potential impact of exploration and mining on this environment, and data required to establish environmental baselines in exploration areas. International Seabed Authority Guidelines for Sulphides Deposits and Cobalt-Crust Mining (Workshop Report)

    Google Scholar 

  • Tietjen JH (1984) Distribution and species diversity of deep-sea nematodes in the Venezuela Basin. Deep-Sea Res I 31(2):119–132

    Article  Google Scholar 

  • Van Dover CL (2011) Tighten regulations on deep-sea mining. Nature 470:31–33

    Article  CAS  Google Scholar 

  • Vanreusel A, Vincx M, Van Gansbeke D et al (1992) Structural analysis of the meiobenthos communities of the shelf break area in two stations of the Gulf of Biscay (N.E. Atlantic). Belgian J Zool 122(2):185–202

    Google Scholar 

  • Vetter EW, Dayton PK (1998) Macrofaunal communities within and adjacent to a detritus-rich submarine canyon. Deep-Sea Res II 45:25–54

    Article  Google Scholar 

  • Vetter EW, Smith CR, De Leo FC (2010) Hawaiian hotspots: Enhanced megafaunal abundance and diversity in submarine canyons on the oceanic islands of Hawaii Mar Ecol 31:183–199. https://doi.org/10.1111/j.1439-0485.2009.00351.x

  • Viana AR, Faugeres JC, Kowsmann RO et al (1998) Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. Sediment Geol 115:133–157

    Article  Google Scholar 

  • Webb TJ, Berghe EV, O’Dor R (2010) Biodiversity’s big wet secret: the global distribution of marine biological records revels chronic under-exploration of the deep pelagic ocean. PLoS One 5:e10223. https://doi.org/10.1371/journal.pone.0010223

    Article  CAS  Google Scholar 

  • Wedding LM, Friedlander AM, Kittinger JN et al (2013) From principles to practice: a spatial approach to systematic conservation planning in the deep sea. Proc R Soc Lond B 280:20131684. https://doi.org/10.1098/rspb.2013.1684

    Article  CAS  Google Scholar 

  • Zhao Z, Alford M, Lien RC et al (2012) Internal tides and mixing in a submarine canyon with time-varying stratification. J Phys Oceanogr 42:2121–2142

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank multiple funding sources, student contributions, and scientific collaborations supporting the synthetic effort presented in this chapter. F.C. De Leo was supported through a grant by Canada Foundation for Innovation (CFI) to Ocean Networks Canada and University of Victoria. A.F.B. and P.Y.G.S. were supported by research grants from CNPq, CAPES, FAPES, and Biota FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Cabrera De Leo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Leo, F.C., Bernardino, A.F., Sumida, P.Y.G. (2020). Continental Slope and Submarine Canyons: Benthic Biodiversity and Human Impacts. In: Sumida, P.Y.G., Bernardino, A.F., De Léo, F.C. (eds) Brazilian Deep-Sea Biodiversity. Brazilian Marine Biodiversity . Springer, Cham. https://doi.org/10.1007/978-3-030-53222-2_3

Download citation

Publish with us

Policies and ethics