Skip to main content

Brazilian Deep-Sea Corals

  • Chapter
  • First Online:
Brazilian Deep-Sea Biodiversity

Abstract

The Brazilian Continental Margin (BM) hosts one of the most poorly known deep-water fauna in the world, especially those referred to as habitat forming such as scleractinians and octocorallians (Cnidaria: Anthozoa). In waters deeper than 150 m, these anthozoans are the framework builders for coral reefs and coral gardens. Together, these habitats host the highest diversity of metazoans on the external shelf and slope. Although only a few surveys have been dedicated to the study of these organisms in the BM, it is known that Desmophyllum pertusum (former Lophelia pertusa), Solenosmilia variabilis, and Madrepora oculata form extensive reefs especially on the southern and southeastern regions. In the same way, Octocorallia representatives, such as those of the families Priminoidae, Clavulariidae, Plexauridae, Alcyoniidae, Isididae, Coralliidae, and Paragorgidae, also have great ecological importance at the BM and are particularly abundant at the northern and northeastern continental shelves and slope. In order to set a baseline for future research, the present chapter provides a historical review of the studies of these anthozoans from the BM, including a list of all records and their geographical and depth distributions. Based on part of these records, the BM distributional modeling of these organisms is predicted using habitat suitability models, which suggest that carbonate saturation state, temperature, dissolved oxygen, and particulate organic carbon are the main factors structuring habitat suitability along the BM. In addition, a comprehensive review of the studies focusing on reproduction of the main species occurring at the BM, a key process for the maintenance and renewal of coral populations and, therefore, design of marine protected areas, as well as the human-based impacts imposed to the habitats structured by these species, are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahnert A, Borowski C (2000) Environmental risk assessment of anthropogenic activity in the deep sea. J Aquat Ecosyst Stress Recover 7:299

    Article  CAS  Google Scholar 

  • Alderslade P, Mcfadden CS (2007) Pinnule-less polyps: a new genus and species of Indo-Pacific Clavulariidae and validation of the soft coral genus Acrossota and the family Acrossotidae (Coelenterata: Octocorallia). Zootaxa 1400:27–44

    Article  Google Scholar 

  • Almada GVMB, Bernardino AF (2017) Conservation of deep-sea ecosystem within offshore oil fields on the Brazilian margin, SW Atlantic. Biol Conserv 206:92–101

    Article  Google Scholar 

  • Althaus F, Williams A, Schlacher TA et al (2009) Impacts of bottom trawling on deep-coral ecosystems of seamounts are long-lasting. Mar Ecol Prog Ser 397:279–294

    Article  Google Scholar 

  • Alvarez LW, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous–Tertiary extinction. Science 208:1095–1108

    Article  CAS  Google Scholar 

  • Amaral ACZ, Rossi-Wongtschowski CLDB (eds) (2004) Biodiversidade bentônica da região Sudeste-Sul do Brasil, plataforma externa e talude superior. Instituto Oceanográfico–USP, São Paulo, 216 pp

    Google Scholar 

  • Arantes RCM, Loiola LL (2014) New records of Primnoidae (Cnidaria: Octocorallia) in Brazilian deep waters. Deep-Sea Res II 99:103–112

    Article  Google Scholar 

  • Arantes RCM, Medeiros MS (2006) Primeiro registro de Anthothela grandiflora (Sars, 1856) (Cnidaria, Octocorallia, Anthothelidae) no Brasil. Arq Mus Nac 64(1):11–17

    Google Scholar 

  • Arantes RCM, Castro CB, Pires DO et al (2009) Depth and water mass zonation and species associations of cold-water octocoral and stony coral communities in the Southwestern Atlantic. Mar Ecol Prog Ser 379:71–79

    Article  Google Scholar 

  • Auster PJ (2005) Are deep-water corals important habitats for fishes? In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Bakke T, Klungsøyr J, Sanni S (2013) Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar Environ Res 92:154–169

    Article  CAS  Google Scholar 

  • Barbosa RV, Davies AJ, Sumida PYG (2020) Habitat suitability and environmental niche comparison of cold-water coral species along the Brazilian continental margin. Deep-Sea Res 55:103147

    Article  Google Scholar 

  • Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Coral Reefs (ed) Ecosystems of the world, vol 25. Elsevier, Amsterdam, pp 109–131

    Google Scholar 

  • Bayer FM (1959) Octocorals from Surinam and the adjacent coasts of South America. Stud Fauna Suriname Others Guyanas 6:1–43

    Google Scholar 

  • Bayer FM (1973) Colonial Organization in Octocorals. In: Boardman RS, Cheetham AW, Oliver WA Jr (eds) Animal Colonies. Dowden, Hutchinson & Ross, Inc., Stroudsburg, pp 69–93

    Google Scholar 

  • Bayer F, Muzik KM (1976) A new solitary octocoral, Taiaroa tauhou gen. et sp. nov. (Coelenterata: Octocorallia). J R Soc N Z 6:499–515

    Article  Google Scholar 

  • Bayer F, Grasshoff M, Verseveldt J (1983) Illustrated trilingual glossary of morphological and anatomical terms applied to Octocorallia. E. J. Brill/Dr. W. Backhuys, Leiden, p 75

    Google Scholar 

  • Bayer FM, Cairns SD, Cordeiro RTS et al (2015) New records of the genus Callogorgia (Anthozoa: Octocorallia) in the western Atlantic, including the description of a new species. J Mar Biol Assoc UK 95(5):905–911

    Article  Google Scholar 

  • Bernardino AF, Sumida PYG (2017) Deep risks from offshore development. Science 358(6361):312

    CAS  Google Scholar 

  • Bridge D, Cunningham CW, Schierwater B et al (1992) Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. Evolution 89:8750–8753

    CAS  Google Scholar 

  • Bridge D, Cunningham CW, de Salle R et al (1995) Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. Mol Biol Evol 12:679–689

    CAS  Google Scholar 

  • Brooke S, Järnegren J (2013) Reproductive periodicity of the scleractinian coral Lophelia pertusa from the Trondheim Fjord, Norway. Mar Biol 160:139–153

    Article  Google Scholar 

  • Brooke S, Ross SW, Bane JM et al (2013) Temperature tolerance of the deep-sea coral Lophelia pertusa from the southeastern United States. Deep-Sea Res II 92:240–248

    Article  Google Scholar 

  • Brugler MR, France SC (2007) The complete mitochondrial genome of the black coral Chrysopathes formosa (Cnidaria:Anthozoa: Antipatharia) supports classification of antipatharians within the subclass Hexacorallia. Mol Phylogenet Evol 42:776–788

    Article  CAS  Google Scholar 

  • Burgess SN, Babcock RC (2005) Reproductive ecology of three reef-forming, deep-sea corals in the New Zealand region. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems, Erlangen Earth conference series. Springer, Berlin/Heidelberg

    Google Scholar 

  • Cairns SD (1977a) A review of the recent species of Balanophyllia in the western Atlantic, with description of four new species. Proc Biol Soc Wash 90(1):132–148

    Google Scholar 

  • Cairns SD (1977b) A revision of the recent species of Stephanocyathus (Anthozoa: Scleractinia) in the western Atlantic, with descriptions of two new species. Bull Mar Sci 27(4):729–739

    Google Scholar 

  • Cairns SD (1978) New genus and species of ahermatypic coral (Scleractinia) from the western Atlantic. Proc Biol Soc Wash 91(1):216–221

    Google Scholar 

  • Cairns SD (1979) The deep-water Scleractinia of the Caribbean and adjacent waters. Stud Fauna Curaçao Other Caribbean Islands 57(180):341

    Google Scholar 

  • Cairns SD (1982) Antarctic and Subantarctic Scleractinia. Ant Res Ser 34(1):74

    Google Scholar 

  • Cairns SD (2000) A revision of the shallow-water azooxanthellate Scleractinia of the western Atlantic. Stud Nat Hist Caribbean Region 75:1–215

    Google Scholar 

  • Cairns SD (2001) Studies on western Atlantic Octocorallia (Gorgonacea: Ellisellidae). Part 1: the genus Chrysogorgia Duchassaing & Michelotti, 1864. Proc Biol Soc Wash 114(3):746–787

    Google Scholar 

  • Cairns SD (2006) Studies on western Atlantic Octocorallia (Gorgonacea: Ellisellidae). Part 6: The genera Primnoella Gray, 1858; Thouarella Gray, 1870; Dasystenella Versluys, 1906. Proc Biol Soc Wash 119(2):161–194

    Article  Google Scholar 

  • Cairns SD (2007a) Deep-sea corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull Mar Sci 81:311–322

    Google Scholar 

  • Cairns SD (2007b) Studies on western Atlantic Octocorallia (Gorgonacea: Ellisellidae). Part 7: the genera Riisea Duchassaing & Michelotti, 1860 and Nicella Gray, 1870. Proc Biol Soc Wash 120(1):1–38

    Article  Google Scholar 

  • Cairns SD (2016) New abyssal Primnoidae (Anthozoa: Octocorallia) from the Clarion-Clipperton Fracture Zone, equatorial northeastern Pacific. Mar Biodivers 46:141–150

    Article  Google Scholar 

  • Cairns SD, Bayer FM (2009) Octocorallia (Cnidaria) of the Gulf of Mexico. In: Felder DL, Camp DK (eds) Gulf of Mexico – origins, waters, and biota, Biodiversity, vol 1. A&M Press, College Station, pp 321–331

    Google Scholar 

  • Cairns SD, Cordeiro RTS (2017) A new genus and species of golden coral (Anthozoa, Octocorallia, Chrysogorgiidae) from the Northwest Atlantic. Zookeys 668:1–10

    Article  Google Scholar 

  • Cairns SD, Hoeksema BW, van der Land J (1999) Appendix: list of extant stony corals. Atoll Res Bull 459:13–46

    Article  Google Scholar 

  • Castro CB, Medeiros MS (2001) Brazilian Pennatulacea. Proc Biol Soc Wash 10:140–159

    Google Scholar 

  • Castro CB, Thiago CM, Medeiros MS (2003) First recordo f the family Coralliidae (Cnidaria: Anthozoa: Octocorallia) from the western South Atlantic, with a description of Corallium medea Bayer, 1964. Zootaxa 323. https://doi.org/10.11646/zootaxa.323.1.1

  • Castro CB, Pires DO, Medeiros MS et al (2006) Capítulo 4. Filo Cnidaria. Corais. In: Lavrado HP, Ignacio BL (eds) Biodiversidade bentônica da região central da Zona Econômica Exclusiva brasileira. (Série Livros n. 18), Museu Nacional, Rio de Janeiro, pp 147–192

    Google Scholar 

  • Castro CB, Medeiros MS, Loiola LL (2010) Octocorallia (Cnidaria: Anthozoa) from Brazilian reefs. J Nat Hist 44. https://doi.org/10.1080/00222930903441160

  • Cavalcanti GH, Arantes RCM, da Costa Falcão AP et al (2017) Ecossistemas de corais de águas profundas da Bacia de Campos. In: Comunidades Demersais e Bioconstrutores – Caracterização Ambiental Regional da Bacia de Campos, Atlântico Sudoeste. Elsevier

    Google Scholar 

  • Chen CA, Wallace CC, Wolstenholme J (2002) Analysis of the mitochondrial 12S rDNA gene supports a two-clade hypothesis of the evolutionary history of scleractinian corals. Mol Phylogenet Evol 23:137–149

    Article  CAS  Google Scholar 

  • Clark MR, Rowden AA (2009) Effect of Deepwater trawling on the macro-invertebrate assemblages of seamounts on the Chatham Rise, New Zealand. Deep-Sea Res I 56:1540–1554

    Article  Google Scholar 

  • Clark MR, Althaus F, Schlacher TA et al (2016) The impacts of deep-sea fisheries on benthic communities: a review. ICES J Mar Sci Adv Acc 73:i51–i69

    Article  Google Scholar 

  • Cordeiro RTS, Kitahara MV, Amaral FD (2012) New records and range extensions of azooxanthellate scleractinians (Cnidaria: Anthozoa) from Brazil. Mar Biodiv Rec 5:e35

    Article  Google Scholar 

  • Cordeiro RTS, Castro CB, Pérez CD (2015a) Deep-water octocorals (Cnidaria: Octocorallia) from Brazil: family Chrysogorgiidae Verrill, 1883. Zootaxa 4058(1):81–100

    Article  Google Scholar 

  • Cordeiro RTS, Neves BM, Rosa-Filho JS et al (2015b) Mesophotic coral ecosystems occur offshore and north of the Amazon River. Bull Mar Sci 91(4):491–510

    Article  Google Scholar 

  • Cordeiro RTS, Cairns SD, Pérez CD (2017) A revision of the genus Radicipes Stearns, 1883 (Anthozoa: Octocorallia: Chrysogorgiidae). Zootaxa 4319(1):1–26

    Article  Google Scholar 

  • Cordes EE, Jones DO, Schlacher TA et al (2016) Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies. Front Environ Sci 4:58

    Article  Google Scholar 

  • Codeiro, RTS, Neves, BM, Kitahara, MV et al (2020) First assessment on Southwestern Atlantic equatorial deep-sea coral communities. Deep-Sea Res I 163. https://doi.org/10.1016/j.dsr.2020.103344

    Google Scholar 

  • Costello MJ, McCrea M, Freiwald A et al (2005) Role of cold-water Lophelia pertusa coral reefs as fish habitat in the NE Atlantic. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Berlin/Heidelberg

    Google Scholar 

  • D’Onghia G, Giove A, Maiorano P et al (2012) Exploring relationships between demersal resources and environmental factors in the Ionian Sea (Central Mediterranean). J Mar Biotechnol 2012:1–12

    Google Scholar 

  • Davies PS (1984) The role of zooxanthellae in the nutritional energy requirements of Pocillapora eydouxi. Coral Reefs 2:181–186

    Google Scholar 

  • Davies AJ, Guinotte JM (2011) Global habitat suitability for framework-forming cold-water corals. PLoS One 6:e18483. https://doi.org/10.1371/journal.pone.0018483

    Article  CAS  Google Scholar 

  • Davies AJ, Wisshak M, Orr JC et al (2008) Predicting suitable habitat for the cold-water coral Lophelia pertusa (Scleractinia). Deep-Sea Res I 55:1048–1062

    Article  Google Scholar 

  • de Pourtalès LF (1874) Zoological results of the Hassler expedition. Deep-sea corals. In: Illustrated Catalogue of the Museum of Comparative Zoology, vol 8. Cambridge University Press, Cambridge, MA, pp 33–49

    Google Scholar 

  • Deichmann E (1936) The Alcyonaria of the Western part of the Atlantic Ocean. Mem Mus Comp Zool 53:253–308

    Google Scholar 

  • D’Elia CF, Wiebe WJ (1990) Biogeochemical nutrient cycles in coral reef ecosystems. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam

    Google Scholar 

  • Dimond J, Carrington E (2008) Symbiosis regulation in a facultatively symbiotic temperate coral: zooxanthellae division and expulsion. Coral Reefs 27:601–604

    Article  Google Scholar 

  • Dodds LA, Roberts JM, Taylor AC et al (2007) Metabolic tolerance of the cold-water coral Lophelia pertusa (Scleractinia) to temperature and dissolved oxygen change. J Exp Mar Biol Ecol 349(2):205–214

    Article  CAS  Google Scholar 

  • Dower JF, Perry RI (2001) High abundance of larval rockfish over Cobb Seamount, an isolated seamount in the Northeast Pacific. Fish Oceanogr 10:268–374

    Article  Google Scholar 

  • Drew EA (1972) The biology and physiology of alga-invertebrate symbioses. II. The density of symbiotic algal cells in a number of hermatypic hard corals and alcyonarians from various depths. J Exp Mar Biol Ecol 9:71–75

    Article  Google Scholar 

  • Eckelbarger KJ, Tyler PA, Langton RW (1998) Gonadal morphology and gametogenesis in the sea pen Pennatula aculeata (Anthozoa: Pennatulacea) from the Gulf of Maine. Mar Biol 132:677–690

    Article  Google Scholar 

  • Erwin DH (2006) Extinction. How life on earth nearly ended 250 million years ago. Princeton University Press, Princeton, Oxford, ix + 296 pp

    Google Scholar 

  • Etnoyer PJ, Wickes LN, Silva M et al (2016) Decline in condition of gorgonian octocorals on mesophotic reefs in the northern Gulf of Mexico: before and after the Deepwater Horizon oil spill. Coral Reefs 35:77–90

    Google Scholar 

  • Fernandes ACS, Young PS (1986) Corais coletados durante a “Operação GEOMAR X” em junho de 1978 (Coelenterata, Anthozoa, Scleractinia). Publ Avul Mus Nac 66:2331

    Google Scholar 

  • Foley NS, van Rensburg TM, Armstrong CW (2010) The ecological and economic value of cold-water coral ecosystems. Ocean Coast Manag 53:313–326

    Article  Google Scholar 

  • Fosså JH, Mortensen PB, Furevik DM (2002) The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts. Hydrobiology 471:1–12

    Article  Google Scholar 

  • Frankowiak K, Wang XT, Sigman DM et al (2016) Photosymbiosis and the expansion of shallow-water corals. Sci Adv 2:e1601122

    Article  CAS  Google Scholar 

  • Freiwald A, Fosså JH, Grehan A et al (2004) Cold water coral reefs: out of sight – no longer out of mind. UNEP-WCMC, Cambridge, p 84

    Google Scholar 

  • Fuller, SD, Murillo Perez, FJ, Wareham et al (2008) Vulnerable Marine Ecosystems dominated by deep-water corals and sponges in the NAFO Convention Area 5524, 1–24

    Google Scholar 

  • Gardiner JS (1913) The corals of the Scottish national Antarctic expedition. Trans R Soc Edinb 49(3):687–689

    Article  Google Scholar 

  • Gass SE, Willison JHM (2005) An assessment of the distribution of deep-sea corals in Atlantic Canada by using both scientific and local forms of knowledge. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer-Verlag, Berlin/Heidelberg

    Google Scholar 

  • Gianni M (2004) High seas bottom trawl fisheries and their impacts on the biodiversity of vulnerable deep-sea ecosystems: options for international action. IUCN, Gland

    Google Scholar 

  • Grasshoff M (1980) Neubeschreibung der Oktokoralle Paragorgia johnsoni Gray 1862. Senckenberg Biol 60:427–435

    Google Scholar 

  • Guinotte JM, Orr J, Cairns SD et al (2006) Will human induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals? Front Ecol Environ 4:141–146

    Article  Google Scholar 

  • Hallam A (1989) The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Phil Trans R Soc Lond B 325:437–455

    Article  Google Scholar 

  • Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, Oxford/New York/Tokyo. viii + 320 pp

    Google Scholar 

  • Hall-Spencer J, Allain V, Fosså JH (2002) Trawling damage to Northeast Atlantic ancient coral reefs. Proc R Soc Lond B 269:507–511

    Article  Google Scholar 

  • Hall-Spencer JM, Thorndyke M, Dupont S (2015) Impact of ocean acidification on marine organisms—unifying principles and new paradigms. Water 7:5592–5598

    Article  CAS  Google Scholar 

  • Han J, Kubota S, Uchida HO et al (2010) Tiny Sea Anemone from the lower Cambrian of China. PLoS One 5(10):e13276

    Article  CAS  Google Scholar 

  • Harrison PL, Babcock RC, Bull GD et al (1984) Mass spawning in tropical reef corals. Science 223(4641):1186–1189

    Article  CAS  Google Scholar 

  • Hosebø A, Nottestad L, Fosså JH et al (2002) Distribution and abundance of fish in deep-sea coral habitats. Hydrobiologia 471:91–99

    Article  Google Scholar 

  • Jablonski D (1986) Causes and consequences of mass extinctions: a comparative approach. In: Elliott DK (ed) Dynamics of extinction. Wiley, New York, pp 183–229

    Google Scholar 

  • Jones TJ, Russell JK, Lim CJ et al (2017) Pumice attrition in an air-jet. Powder Technol 308:298–305

    Article  CAS  Google Scholar 

  • Kawaguti S, Nakagama T (1973) Population densities of zooxanthellae in the reef corals. Biol J Okayama Univ 16:67–71

    Google Scholar 

  • Kayal E, Lavrov DV (2008) The mitochondrial genome of Hydra oligactis (Cnidaria, Hydrozoa) sheds new light on animal mtDNA evolution and cnidarian phylogeny. Gene 410:177–186

    Article  CAS  Google Scholar 

  • Keller NB (1976) The deep-sea madreporarian corals of the genus Fungiacyathus from the Kuril-Kamchatka, Aleutian trenches and other regions of world ocean. Trudy Instituta Okeanologii 99:31–44. [in Russian]

    Google Scholar 

  • Kiessling W, Simpson C (2010) On the potential for ocean acidification to be a general cause of ancient reef crises. Glob Chang Biol 17(1):56–67

    Article  Google Scholar 

  • Kitahara MV (2007) Species richness and distribution of azooxanthellate Scleractinia in Brazil. Bull Mar Sci 81(3):497–518

    Google Scholar 

  • Kitahara MV (2009) The deep-sea demersal fisheries and the azooxanthellate corals from southern Brazil. Biota Neotrop 9:1–10

    Article  Google Scholar 

  • Kitahara MV, Cairns SD (2005) Monohedotrochus capitolii, a new genus and species of solitary azooxanthellate coral (Scleractinia, Caryophylliidae) from southern Brazil. Zool Mededel 79(3):117–123

    Google Scholar 

  • Koslow JA, Gowlett-Holmes K, Lowry JK et al (2001) Seamount benthic macrofauna off southern Tasmania: community structure and impacts of trawling. Mar Ecol Prog Ser 213:111–125

    Article  Google Scholar 

  • Krieger KJ, Wing BL (2002) Megafauna associations with Deepwater corals (Primnoa spp.) in the Gulf of Alaska. Hydrobiologia 471:82–90

    Article  Google Scholar 

  • Kükenthal W (1919) Gorgonaria. Wissenschaftliche Ergebnisse der deutschen Tiefsee-Expedition auf den Dampfer “Valdivia”, 1898–1899 13(2):1–946

    Google Scholar 

  • Laborel J (1970) Les peuplements de madréporaires des côtes tropicales du Brésil. Annales de L’Université D’Abidjan, Serie E – II Fascicule 3:261

    Google Scholar 

  • Larsson AI, van Oevelen D, Purser A et al (2013) Tolerance to long-term exposure of suspended benthic sediments and drill cuttings in the cold-water coral Lophelia pertusa. Mar Pollut Bull 70:176–188

    Article  CAS  Google Scholar 

  • Le Goff-Vitry MC, Rogers AD, Baglow D (2004) A deep-sea slant on the molecular phylogeny of the Scleractinia. Mol Phylogenet Evol 30:167–177

    Article  CAS  Google Scholar 

  • Leite CF, Tommasi LR (1976) Distribuição de Cladocora debilis Meth, 1849 (Faviidae, Anthozoa, Cnidaria) ao sul de cabo Frio (23°S). Bolm Inst Oceanog São Paulo 25:101–112

    Article  Google Scholar 

  • Lindström G (1877) Contributions to the actinology of the Atlantic Ocean. Kongliga svenska Vetenskaps-Akademiens Handlingar 14(6):1–26

    Google Scholar 

  • Loiola LL (2007) Black Corals (Cnidaria: Antipatharia) from Brazil: an overview. Conservation and Adaptive Management of Seamount and Deep-Sea Corals Ecosystems. Bull Mar Sci 81(Supplement 1):253–264

    Google Scholar 

  • Lunden JJ, McNicholl CG, Sears CR et al (2014) Acute survivorship of the deep-sea coral Lophelia pertusa from the Gulf of Mexico under acidification, warming, and deoxygenation. Front Mar Sci 1:74

    Article  Google Scholar 

  • Marcelino VR, Verbruggen H (2016) Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Sci Rep 6:31508

    Article  CAS  Google Scholar 

  • Marques AC, Castro CB (1995) Muricea (Cnidaria, Octocorallia) from Brazil, with description of a new species. Bull Mar Sci 56(1):161–172

    Google Scholar 

  • McFadden CS (2007) Subclass Octocorallia. In: Daly M, Brugler MR, Cartwright P et al The phylum Cnidaria: a review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa 1668:127–182

    Article  Google Scholar 

  • McFadden CS, Sánchez JA, France SC (2010) Molecular phylogenetic insights into the evolution of Octocorallia: a review. Integr Comp Biol 50(3):389–410

    Article  CAS  Google Scholar 

  • McLaren DJ, Goodfellow WD (1990) Geological and biological consequences of giant impacts. Annu Rev Earth Planet Sci 18:123–171

    Article  Google Scholar 

  • Medeiros MS, Castro CB (1999) Paramuriceidae e Plexauridae (Cnidaria, Octocorallia) do Brasil: Batimetria e Distribuição Geográfica. Bolm Mus Nac Zool 398:1–20

    Google Scholar 

  • Miyazaki Y, Reimer JD (2015) A new genus and species of octocoral with aragonite calcium-carbonate skeleton (Octocorallia, Helioporacea) from Okinawa, Japan. ZooKeys 511:1–23

    Article  Google Scholar 

  • Moore KM, Alderslade P, Miller KJ (2017) A taxonomic revision of Anthothela (Octocorallia: Scleraxonia: Anthothelidae) and related genera, with the addition of new taxa, using morphological and molecular data. Zootaxa 4304(1):1–212

    Article  Google Scholar 

  • Moseley HN (1881) Report on certain hydroid, alcyonarian, and madreporarian corals procured during the voyage H. M. S. Challenger, in the years 1873-1876. Rep Scient Res Voy H.M.S. Challenger during the years 1873-79. Zool 2:248

    Google Scholar 

  • Moura RL, Amado-Filho GM, Moraes FC et al (2016) An extensive reef system at the Amazon River mouth. Sci Adv 2(4):e1501252

    Article  CAS  Google Scholar 

  • Ofwegen LP (2007) Annotated checklist of new Caledonian soft corals. In: Payri CE, Richer de Forges B (eds) Compendium of marine species of New Caledonia, Doc. Sci. Tech. 117, 2nd edn. IRD, Nouméa, pp 139–144

    Google Scholar 

  • Orejas C, Gori A, Gili JM (2008) Growth rates of live Lophelia pertusa and Madrepora oculata from the Mediterranean Sea maintained in aquaria. Coral Reefs 27:255

    Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic Ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  Google Scholar 

  • Pallas PS (1766) Miscellanea zoologica, quibus novae imprimis atque obscurae animalium species discribunter et observationibus iconibus illustrantur. Netherlands, Hagae Comitum, 224 p

    Google Scholar 

  • Pante E, France SC (2010) Pseudochrysogorgia bellona n. gen., n. sp.: a new genus and species of chrysogorgiid octocoral (Coelenterata, Anthozoa) from the Coral Sea. Zoosystema 32(4):595–612

    Article  Google Scholar 

  • Pante E, Watling L (2011) Chrysogorgia from the New England and Corner Seamounts: Atlantic-Pacific connections. J Mar Biol Assoc UK 92(5):911–927

    Article  Google Scholar 

  • Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363

    Article  CAS  Google Scholar 

  • Perez JAA, Wahrlich R (2005) A bycatch assessment of the gillnet monkfish Lophius gastrophysus off southern Brazil. Fish Res 72(1):81–95

    Article  Google Scholar 

  • Pérez CD, Neves BM, Oliveira DH (2011) New records of octocorals (Cnidaria: Anthozoa) from the Brazilian coast. Aquat Biol 13:203–214

    Article  Google Scholar 

  • Pérez CD, Neves BM, Cordeiro RTS et al (2016) Diversity and distribution of Octocorallia. In: Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future. The world of Medusa and her sisters. Springer, Cham, pp 109–123

    Chapter  Google Scholar 

  • Perez JAA, Abreu JGN, Lima AOS et al (this volume) Chapter 8: Living and non-living resources in Brazilian deep waters. In: Sumida PYG, Bernardino AF, De Leo FC (eds) Brazilian Deep-Sea biodiversity. Springer Nature, Cham

    Google Scholar 

  • Peterson A (2006) Uses and requirements of ecological niche models and related distributional models. Biodivers Inform 3:59–72

    Article  Google Scholar 

  • Pezzuto PR, Perez JAA, Wahhrlich R (2006) O ordenamento das pescarias de caranguejos-de-profundidade (Chaceon spp.) (Decapoda: Geryonidae) no sul do Brasil. Bol Inst Pesca 32(2):229–247

    Google Scholar 

  • Pires DO (1997) Cnidae of Scleractinia. Proc Biol Soc Wash 110:167–185

    Google Scholar 

  • Pires DO (2007) The azooxanthellate coral fauna of Brazil. In: George RY, Cairns SD (eds) Conservation and adaptive management of seamount and deep-sea coral ecosystems. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, pp 265–272

    Google Scholar 

  • Pires DO, Castro CB (2010) Cnidaria. In: Lavrado HP, Brasil ACS (eds) Biodiversidade da região ocânica profunda da Bacia de Campos: Megafauna e Ictiofauna Demersal. SAG Serv, Rio de Janeiro, pp 59–112

    Google Scholar 

  • Pires DO, Castro CB, Ratto CC (1999) Reef coral reproduction in the Abrolhos Reef Complex, Brazil: the endemic genus Mussismilia. Mar Biol 135(3):463–471

    Article  Google Scholar 

  • Pires DO, Castro C, Medeiros MS (2004) Cnidaria. In: Atlas de invertebrados marinhos da região central da Zona Econômica Exclusiva brasileira, parte 1/editores Helena Passeri Lavrado, Mariana de Sá Viana. Rio de Janeiro: Museu Nacional. 258 p. (Série Livros; 25). ISBN 978-85-7427-020-3 1

    Google Scholar 

  • Pires DO, Castro CB, Medeiros MS (2007) Filo Cnidaria. Corais (Anthozoa: Octocorallia e Hexacorallia). In: Lavrado HP, Viana MS (eds) Atlas dos invertebrados marinhos da região central da Zona Econômica Exclusiva brasileira. Museu Nacional/UFRJ, Rio de Janeiro, pp 61–94

    Google Scholar 

  • Pires DO, Castro CB, Silva JC (2009) Reproductive biology of the deep-sea pennatulacean Anthoptilum murrayi (Cnidaria, Octocorallia). Mar Ecol Prog Ser 397:103–112

    Article  Google Scholar 

  • Pires DO, Silva JC, Bastos ND (2014) Reproduction of deep-sea reef-building corals from the Southwestern Atlantic. Deep-Sea Res II 99:51–63

    Article  Google Scholar 

  • Pires DO, Castro CB, Segal B et al (2016) Reprodução de corais de águas rasas do Brasil. In: Zilberberg C, Abrantes D, Marques J et al (eds) Conhecendo os recifes brasileiros. Rede de Pesquisa Coral Vivo. Museu Nacional, Rio de Janeiro, pp 111–128

    Google Scholar 

  • Pivel MAG, Freitas CMDS, Comba JLD (2009) Modeling the discharge of cuttings and drilling fluids in a deep-water environment. Deep-Sea Res II 56:12–21

    Article  CAS  Google Scholar 

  • Reed JK (2002) Deep-water Oculina coral reefs of Florida: biology, impacts, and management. Hydrobiologia 471:43–44

    Article  Google Scholar 

  • Risk MJ, Heikoop JM, Snow MG et al (2002) Lifespans and growth patterns of two deep-sea corals: Primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia 471:125

    Article  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB et al (2006) Radiocarbon based ages and growth rates: Hawaiian deep-sea corals. Mar Ecol Prog Ser 327:1–14

    Article  CAS  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB et al (2009) Extreme longevity in proteinaceous deep-sea corals. Proc Natl Acad Sci 6:5204–5208

    Article  Google Scholar 

  • Roberts JM, Harvey SM, Lamont PA et al (2000) Seabed photography, environmental assessment and evidence for deep-water trawling on the continental margin west of the Hebrides. Hydrobiologia 441:173–183

    Article  Google Scholar 

  • Roberts JM, Long D, Wilson JB et al (2003) The cold-water coral Lophelia pertusa (Scleractinia) and enigmatic seabed mounds along the Northeast Atlantic margin: are they related? Mar Pollut Bull 46:7–20

    Article  CAS  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A et al (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge. xvi + 334 p

    Book  Google Scholar 

  • Rogers AD (1999) The biology of Lophelia pertusa (Linnaeus, 1758) and other deep- water reef-forming corals and impacts from human activities. Hydrobiologia 84:315–406

    Google Scholar 

  • Rogers A (2004) The biology, ecology and vulnerability of deep-water coral reefs. International Union for Conservation of Nature & Natural Resources, Cambridge, p 12

    Google Scholar 

  • Rogers AD, Clark MR, Hall-Spencer JM et al (2008) The science behind the guidelines: a scientific guide to the FAO Draft International Guidelines (December 2007) for the management of deep-sea fisheries in the High Seas and examples of how the guidelines may be practically implemented. In: IUCN, Switzerland

    Google Scholar 

  • Roos SW, Quattrini A (2007) The fish fauna associated with deep coral banks off the Southeastern United States. Deep-Sea Res I 54(6):975–1007

    Article  Google Scholar 

  • Sánchez JA (2004) Evolution and dynamics of branching colonial form in marine modular cnidarians: gorgonian octocorals. Hydrobiologia 530(531):283–290

    Google Scholar 

  • Schuchert P (1993) Phylogenetic analysis of the Cnidaria. Zeitschrift fuer zoologische Systematik und Evolutionsforschung 31:161–173

    Article  Google Scholar 

  • Silva JVC (2013) Biologia reprodutiva de Errina sp. (Cnidaria, Hydrozoa) da Bacia de Campos, Rio de Janeiro, Brasil. Master Dissertation. Programa de Pós-Graduação em Zoologia, Museu Nacional/UFRJ, Rio de Janeiro

    Google Scholar 

  • Smith PJ (2001) Managing biodiversity: invertebrate by-catch in seamount fisheries in the New Zealand exclusive economic zone (a case study). United Nations environment programme: workshop on managing global fisheries for biodiversity. Victoria, World Fisheries Trust, p 29

    Google Scholar 

  • Soberón J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:1115–1123

    Article  Google Scholar 

  • Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10

    Article  Google Scholar 

  • Squires DF (1959) Deep-sea corals collected by the Lamont geological observatory. 1, Atlantic corals. Am Mus Novit 165:1–42

    Google Scholar 

  • Stampar SN, Maronna MM, Kitahara MV et al (2014) Fast-evolving mitochondrial DNA in Ceriantharia: a reflection of Hexacorallia Paraphyly? PLoS One 9(1):e86612

    Article  CAS  Google Scholar 

  • Stanley GD (2006) Photosymbiosis and the evolution of modern coral reefs. Science 312:857–858

    Article  CAS  Google Scholar 

  • Stanley GD Jr (1988) The history of early Mesozoic reef communities: a three-step process. PALAIOS 3:170–183

    Article  Google Scholar 

  • Stanley GD Jr (2001) Introduction to reef ecosystems and their evolution. In: Stanley GD Jr (ed) The history and sedimentology of ancient reef systems. Kluwer Academic Publishing/Plenum, New York, pp 1–39

    Chapter  Google Scholar 

  • Stanley G, Swart P (1995) Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology 21(2):179–199

    Article  Google Scholar 

  • Sumida PYG, Pires-Vanin AMS (1997) Benthic associations of the shelfbreak and upper slope off Ubatuba-SP, South-Eastern Brazil. Estuar Coast Shelf Sci 44:779–784

    Article  Google Scholar 

  • Sumida PYG, Yoshinaga MY, Madureira LA et al (2004) Seabed pockmarks associated with Deepwater corals off SE Brazilian continental slope, Santos basin. Mar Geol 207:159–167

    Article  Google Scholar 

  • Tittensor DP, Baco AR, Brewin PE et al (2009) Predicting global habitat suitability for stony corals on seamounts. J Biogeogr 36:1111–1128

    Article  Google Scholar 

  • Tixier-Durivault A (1970) Campagne de La Calypso au large des cotes atlantiques de l’Amérique du Sud (1961–1962). L’Institute Oceanographique de Monaco 47:145–169

    Google Scholar 

  • Tommasi LR (1970) Notas sobre os fundos detríticos do circalitoral inferior da plataforma continental brasileira ao sul de cabo Frio (RJ). Bolm Inst Oceanog São Paulo 18(1):55–62

    Article  Google Scholar 

  • Ulfsnes A, Haugland JK, Weltzien R (2013) Monitoring of drill activities in areas with presence of cold water corals. Det Norske Veritas (DNV) Report, pp 2012–1691

    Google Scholar 

  • Vaughan TW (1906) Reports on the scientific results of the expedition to the eastern tropical Pacific, in Charge of Alexander Agassiz, by the U.S. Fish Commission Steamer Albatross from October, 1904, to March, 1905. Part 6: Madreporaria. Bull Mus Comp Zool Harvard 50(3):61–72

    Google Scholar 

  • Vaughan TW, Wells JW (1943) Revision of the suborders, families and genera of the Scleractinia. Spec Pap Geol Soc Am 44:1–363

    Google Scholar 

  • Veron JEN (2011) Scleractinia, evolution and taxonomy. In: Hopley D (ed) Encyclopedia of modern coral reefs. Springer, Dordrecht, pp 947–957

    Chapter  Google Scholar 

  • Viada ST, Cairns SD (2007) A new species of Nicella (Anthozoa: Octocorallia) from the western Atlantic. Proc Biol Soc Wash 120(2):228–232

    Article  Google Scholar 

  • Viana AR, Faugères JC, Kowsmann RO et al (1998) Hydrology, morphology and sedimentology of the Campos continental margin, offshore Brazil. Sedim Geol 115:133–157

    Article  Google Scholar 

  • Waller RG, Tyler PA (2005) The reproductive biology of two-deep-water reef- building scleractinians from the NE Atlantic Ocean. Coral Reefs 24:514–522

    Article  Google Scholar 

  • Watling L (2014) Trawling exerts big impacts on small beasts. Proc Natl Acad Sci U S A 111(24):8704–8705

    Article  CAS  Google Scholar 

  • Watling L, Rowley S, Guinotte J (2013) The world’s largest known gorgonian. Zootaxa 3630(1):198–199

    Article  Google Scholar 

  • Wells JW (1973) New and old corals from Jamaica. Bull Mar Sci 23(1):16–55

    Google Scholar 

  • West JM (1998) The dual role of sclerites in a gorgonian coral: conflicting functions of support and defense. Evol Ecol 12:803–821

    Article  Google Scholar 

  • Wheeler AJ, Beck T, Thiede J et al (2005) Deep-water coral mounds on the Porcupine Bank, Irish Margin: preliminary results from the Polarstern ARK-XIX/3a ROV cruise. In: Freiwald A, Roberts JM (eds) Cold-water corals and ecosystems. Springer, Heidelberg

    Google Scholar 

  • Williams GC (2011) The global diversity of sea pens (Cnidaria: Octocorallia: Pennatulacea). PLoS One 6(7):e22747

    Article  CAS  Google Scholar 

  • Williams A, Schlacher TA, Rowden AA et al (2010) Seamount megabenthic assemblages fail to recover from trawling impacts. Mar Ecol 31:183–199

    Article  Google Scholar 

  • Wright EP, Studer T (1889) Report on the Alcyonaria collected by H.M.S. Challenger during the years 1873–1876. Volume 31: Report of the scientific results of the Voyage of H.M.S. Challenger. Her Majesty’s Stationery Office, London, p 70

    Google Scholar 

  • Yasuhara M, Cronin TM, de Menocal PB et al (2008) Abrupt climate change and collapse of deep-sea ecosystems. Proc Natl Acad Sci U S A 105(5):1556–1560

    Article  CAS  Google Scholar 

  • Yesson C, Taylor ML, Tittensor DP et al (2012) Global habitat suitability of cold-water octocorals. J Biogeogr 39:1278–1292

    Article  Google Scholar 

  • Zibrowius H (1988) Lês coraux Stylasteridae et Scleractinia. In: Guille A, Ramos JM (eds) Lês rapports dês campagnes à la mer MD 55/Brésil à bord du “Marion Dufresne” 6 mai–2 juin 1987. Terres Australes et Antarctiques Françaises, pp 132–136

    Google Scholar 

Download references

Acknowledgments

Figures 4 and 5 reprinted from Deep-Sea Research Part II, vol. 99, Pires, D.O., Silva, J.C., Bastos, N.D. 2014, Reproduction of deep-sea reef-building corals from the Southwestern Atlantic, Pages No. 51-63, Copyright (2014), with permission from Elsevier. We also thank Biota Neotropica and the Marine Ecology Progress Series for allowing us to use some published images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Visentini Kitahara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kitahara, M.V., Cordeiro, R.T.S., Barbosa, R.V., Pires, D.d., Sumida, P.Y.G. (2020). Brazilian Deep-Sea Corals. In: Sumida, P.Y.G., Bernardino, A.F., De Léo, F.C. (eds) Brazilian Deep-Sea Biodiversity. Brazilian Marine Biodiversity . Springer, Cham. https://doi.org/10.1007/978-3-030-53222-2_4

Download citation

Publish with us

Policies and ethics