Skip to main content

Bronchoalveolar Lavage: Microbial Evaluation

Bacteriology, Virology, Parasitology, Mycology, and Airway Microbiome

  • Chapter
  • First Online:
Diagnostic and Interventional Bronchoscopy in Children

Part of the book series: Respiratory Medicine ((RM))

  • 719 Accesses

Abstract

Lower respiratory tract infections (LRTIs) are one of the most common forms of infection in children. Bronchoscopy has become an invaluable tool for the diagnosis and treatment of children with complicated or recalcitrant infections. It allows for both visualization of airway and mucosal surfaces and local sampling that can facilitate identification of pathogens and histopathological changes that are indicative of an infectious process. The results of bronchoscopy can help simplify an antimicrobial regimen, limiting unnecessary antibiotic use and all of the attendant risks such as organ toxicities, allergic reactions, and the fostering of antibiotic resistance. Bronchoscopic evaluation with sampling by either bronchoalveolar lavage (BAL) or biopsy may be considered in critically ill patients, high-risk patients (i.e., cystic fibrosis and immunocompromised), any child with high clinical suspicion for mycobacterial or fungal disease, and children who have failed to respond, worsened, or relapsed after empiric therapy. Although the diagnostic yield varies highly across patient populations, BAL with culture has become the gold standard for microbiological diagnosis of bacterial, mycobacterial, and fungal pneumonia, with specificity approaching 100% in some studies. Meanwhile, the use of molecular diagnostic techniques, such as polymerase chain reaction (PCR) and nucleic acid amplification tests, enables detection of rare and difficult-to-culture organisms, such as viruses, atypical bacteria, and fungi. Despite major advancements in these identification/detection techniques, limitations persist in the ability to differentiate between colonization and infection. This chapter summarizes the pros and cons of available diagnostic techniques for various infectious causes of LRTI in children.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chellapandian D, Lehrnbecher T, Phillips B, Fisher BT, Zaoutis TE, Steinbach WJ, et al. Bronchoalveolar lavage and lung biopsy in patients with cancer and hematopoietic stem-cell transplantation recipients: a systematic review and meta-analysis. J Clin Oncol. 2015;33(5):501–9.

    Article  PubMed  Google Scholar 

  2. Efrati O, Sadeh-Gornik U, Modan-Moses D, Barak A, Szeinberg A, Vardi A, et al. Flexible bronchoscopy and bronchoalveolar lavage in pediatric patients with lung disease. Pediatr Crit Care Med. 2009;10(1):80–4.

    Article  PubMed  Google Scholar 

  3. Marchetti O, Lamoth F, Mikulska M, Viscoli C, Verweij P, Bretagne S, et al. ECIL recommendations for the use of biological markers for the diagnosis of invasive fungal diseases in leukemic patients and hematopoietic SCT recipients. Bone Marrow Transplant. 2012;47(6):846–54.

    Article  PubMed  CAS  Google Scholar 

  4. Lehrnbecher T, Robinson P, Fisher B, Alexander S, Ammann RA, Beauchemin M, et al. Guideline for the management of fever and neutropenia in children with cancer and hematopoietic stem-cell transplantation recipients: 2017 update. J Clin Oncol. 2017;35(18):2082–94.

    Article  PubMed  CAS  Google Scholar 

  5. Batra S, Li B, Underhill N, Maloney R, Katz BZ, Hijiya N. Clinical utility of bronchoalveolar lavage and respiratory tract biopsies in diagnosis and management of suspected invasive respiratory fungal infections in children. Pediatr Blood Cancer. 2015;62(9):1579–86.

    Article  PubMed  Google Scholar 

  6. Qualter E, Satwani P, Ricci A, Jin Z, Geyer MB, Alobeid B, et al. A comparison of bronchoalveolar lavage versus lung biopsy in pediatric recipients after stem cell transplantation. Biol Blood Marrow Transplant. 2014;20(8):1229–37.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kottmann RM, Kelly J, Lyda E, Gurell M, Stalica J, Ormsby W, et al. Bronchoscopy with bronchoalveolar lavage: determinants of yield and impact on management in immunosuppressed patients. Thorax. 2011;66(9):823.

    Article  PubMed  Google Scholar 

  8. Nadimpalli S, Foca M, Satwani P, Sulis ML, Constantinescu A, Saiman L. Diagnostic yield of bronchoalveolar lavage in immunocompromised children with malignant and non-malignant disorders. Pediatr Pulmonol. 2017;52(6):820–6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Peikert T, Rana S, Edell ES. Safety, diagnostic yield, and therapeutic implications of flexible bronchoscopy in patients with febrile neutropenia and pulmonary infiltrates. Mayo Clin Proc. 2005;80(11):1414–20.

    Article  PubMed  Google Scholar 

  10. Pagano L, Pagliari G, Basso A, Marra R, Sica S, Frigieri L, et al. The role of bronchoalveolar lavage in the microbiological diagnosis of pneumonia in patients with haematological malignancies. Ann Med. 1997;29(6):535–40.

    Article  PubMed  CAS  Google Scholar 

  11. Stokes DC, Shenep JL, Parham D, Bozeman PM, Marienchek W, Mackert PW. Role of flexible bronchoscopy in the diagnosis of pulmonary infiltrates in pediatric patients with cancer. J Pediatr. 1989;115(4):561–7.

    Article  PubMed  CAS  Google Scholar 

  12. Park JR, Fogarty S, Brogan TV. Clinical utility of bronchoalveolar lavage in pediatric cancer patients. Med Pediatr Oncol. 2002;39(3):175–80.

    Article  PubMed  Google Scholar 

  13. Rao U, Piccin A, Malone A, O’Hanlon K, Breatnach F, O’Meara A, et al. Utility of bronchoalveolar lavage in the diagnosis of pulmonary infection in children with haematological malignancies. Ir J Med Sci. 2013;182(2):177–83.

    Article  PubMed  CAS  Google Scholar 

  14. Carrillo-Marquez MA, Hulten KG, Hammerman W, Lamberth L, Mason EO, Kaplan SL. Staphylococcus aureus pneumonia in children in the era of community-acquired methicillin-resistance at Texas Children’s Hospital. Pediatr Infect Dis J. 2011;30(7):545–50.

    Article  PubMed  Google Scholar 

  15. Frush JM, Zhu Y, Edwards KM, Grijalva CG, Thomsen IP, Self WH, et al. Prevalence of Staphylococcus aureus and Use of Antistaphylococcal Therapy in Children Hospitalized with Pneumonia. J Hosp Med. 2018;13(12):848–52.

    Article  PubMed  Google Scholar 

  16. Jain S, Williams DJ, Arnold SR, Ampofo K, Bramley AM, Reed C, et al. Community-acquired pneumonia requiring hospitalization among U.S. children. N Engl J Med. 2015;372(9):835–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. De Schutter I, De Wachter E, Crokaert F, Verhaegen J, Soetens O, Pierard D, et al. Microbiology of bronchoalveolar lavage fluid in children with acute nonresponding or recurrent community-acquired pneumonia: identification of nontypeable Haemophilus influenzae as a major pathogen. Clin Infect Dis. 2011;52(12):1437–44.

    Article  PubMed  Google Scholar 

  18. Shah SS, Dugan MH, Bell LM, Grundmeier RW, Florin TA, Hines EM, et al. Blood cultures in the emergency department evaluation of childhood pneumonia. Pediatr Infect Dis J. 2011;30(6):475–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Neuman MI, Hall M, Lipsett SC, Hersh AL, Williams DJ, Gerber JS, et al. Utility of Blood Culture Among Children Hospitalized With Community-Acquired Pneumonia. Pediatrics. 2017;140(3):e20171013.

    Article  PubMed  Google Scholar 

  20. Hickey RW, Bowman MJ, Smith GA. Utility of blood cultures in pediatric patients found to have pneumonia in the emergency department. Ann Emerg Med. 1996;27(6):721–5.

    Article  PubMed  CAS  Google Scholar 

  21. Bonadio WA. Bacteremia in febrile children with lobar pneumonia and leukocytosis. Pediatr Emerg Care. 1988;4(4):241–2.

    Article  PubMed  CAS  Google Scholar 

  22. Myers AL, Hall M, Williams DJ, Auger K, Tieder JS, Statile A, et al. Prevalence of bacteremia in hospitalized pediatric patients with community-acquired pneumonia. Pediatr Infect Dis J. 2013;32(7):736–40.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Byington CL, Spencer LY, Johnson TA, Pavia AT, Allen D, Mason EO, et al. An epidemiological investigation of a sustained high rate of pediatric parapneumonic empyema: risk factors and microbiological associations. Clin Infect Dis. 2002;34(4):434–40.

    Article  PubMed  Google Scholar 

  24. Waterer GW, Wunderink RG. The influence of the severity of community-acquired pneumonia on the usefulness of blood cultures. Respir Med. 2001;95(1):78–82.

    Article  PubMed  CAS  Google Scholar 

  25. Picard E, Joseph L, Goldberg S, Mimouni FB, Deeb M, Kleid D, et al. Predictive factors of morbidity in childhood parapneumonic effusion-associated pneumonia: a retrospective study. Pediatr Infect Dis J. 2010;29(9):840–3.

    Article  PubMed  Google Scholar 

  26. Freij BJ, Kusmiesz H, Nelson JD, McCracken GH Jr. Parapneumonic effusions and empyema in hospitalized children: a retrospective review of 227 cases. Pediatr Infect Dis. 1984;3(6):578–91.

    Article  PubMed  CAS  Google Scholar 

  27. Hoff SJ, Neblett WW, Edwards KM, Heller RM, Pietsch JB, Holcomb GW Jr, et al. Parapneumonic empyema in children: decortication hastens recovery in patients with severe pleural infections. Pediatr Infect Dis J. 1991;10(3):194–9.

    Article  PubMed  CAS  Google Scholar 

  28. Loens K, Van Heirstraeten L, Malhotra-Kumar S, Goossens H, Ieven M. Optimal sampling sites and methods for detection of pathogens possibly causing community-acquired lower respiratory tract infections. J Clin Microbiol. 2009;47(1):21–31.

    Article  PubMed  CAS  Google Scholar 

  29. Heiskanen-Kosma T, Korppi M, Jokinen C, Kurki S, Heiskanen L, Juvonen H, et al. Etiology of childhood pneumonia: serologic results of a prospective, population-based study. Pediatr Infect Dis J. 1998;17(11):986–91.

    Article  PubMed  CAS  Google Scholar 

  30. McCracken GH Jr. Etiology and treatment of pneumonia. Pediatr Infect Dis J. 2000;19(4):373–7.

    Article  PubMed  Google Scholar 

  31. Tsolia MN, Psarras S, Bossios A, Audi H, Paldanius M, Gourgiotis D, et al. Etiology of community-acquired pneumonia in hospitalized school-age children: evidence for high prevalence of viral infections. Clin Infect Dis. 2004;39(5):681–6.

    Article  PubMed  CAS  Google Scholar 

  32. Xu D, Li S, Chen Z, Du L. Detection of Mycoplasma pneumoniae in different respiratory specimens. Eur J Pediatr. 2011;170(7):851–8.

    Article  PubMed  CAS  Google Scholar 

  33. Parides GC, Bloom JW, Ampel NM, Ray CG. Mycoplasma and ureaplasma in bronchoalveolar lavage fluids from immunocompromised hosts. Diagn Microbiol Infect Dis. 1988;9(1):55–7.

    Article  PubMed  CAS  Google Scholar 

  34. Phin N, Parry-Ford F, Harrison T, Stagg HR, Zhang N, Kumar K, et al. Epidemiology and clinical management of Legionnaires’ disease. Lancet Infect Dis. 2014;14(10):1011–21.

    Article  PubMed  Google Scholar 

  35. Pierre DM, Baron J, Yu VL, Stout JE. Diagnostic testing for Legionnaires’ disease. Ann Clin Microbiol Antimicrob. 2017;16(1):59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev. 2015;28(1):95–133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Venkatachalam V, Hendley JO, Willson DF. The diagnostic dilemma of ventilator-associated pneumonia in critically ill children. Pediatr Crit Care Med. 2011;12(3):286–96.

    Article  PubMed  Google Scholar 

  38. Srinivasan R, Asselin J, Gildengorin G, Wiener-Kronish J, Flori HR. A prospective study of ventilator-associated pneumonia in children. Pediatrics. 2009;123(4):1108–15.

    Article  PubMed  Google Scholar 

  39. Charles MP, Kali A, Easow JM, Joseph NM, Ravishankar M, Srinivasan S, et al. Ventilator-associated pneumonia. Australas Med J. 2014;7(8):334–44.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Robert R, Grollier G, Frat JP, Godet C, Adoun M, Fauchere JL, et al. Colonization of lower respiratory tract with anaerobic bacteria in mechanically ventilated patients. Intensive Care Med. 2003;29(7):1062–8.

    Article  PubMed  Google Scholar 

  41. Klompas M. Does this patient have ventilator-associated pneumonia? JAMA. 2007;297(14):1583–93.

    Article  PubMed  CAS  Google Scholar 

  42. Gauvin F, Dassa C, Chaibou M, Proulx F, Farrell CA, Lacroix J. Ventilator-associated pneumonia in intubated children: comparison of different diagnostic methods. Pediatr Crit Care Med. 2003;4(4):437–43.

    Article  PubMed  Google Scholar 

  43. Chastre J, Fagon JY, Bornet-Lecso M, Calvat S, Dombret MC, al Khani R, et al. Evaluation of bronchoscopic techniques for the diagnosis of nosocomial pneumonia. Am J Respir Crit Care Med. 1995;152(1):231–40.

    Article  PubMed  CAS  Google Scholar 

  44. Fabregas N, Ewig S, Torres A, El-Ebiary M, Ramirez J, de La Bellacasa JP, et al. Clinical diagnosis of ventilator associated pneumonia revisited: comparative validation using immediate post-mortem lung biopsies. Thorax. 1999;54(10):867–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Torres A, Fabregas N, Ewig S, de la Bellacasa JP, Bauer TT, Ramirez J. Sampling methods for ventilator-associated pneumonia: validation using different histologic and microbiological references. Crit Care Med. 2000;28(8):2799–804.

    Article  PubMed  CAS  Google Scholar 

  46. Fagon JY, Chastre J, Wolff M, Gervais C, Parer-Aubas S, Stephan F, et al. Invasive and noninvasive strategies for management of suspected ventilator-associated pneumonia. A randomized trial. Ann Intern Med. 2000;132(8):621–30.

    Article  PubMed  CAS  Google Scholar 

  47. Shorr AF, Sherner JH, Jackson WL, Kollef MH. Invasive approaches to the diagnosis of ventilator-associated pneumonia: a meta-analysis. Crit Care Med. 2005;33(1):46–53.

    Article  PubMed  Google Scholar 

  48. Canadian Critical Care Trials G. A randomized trial of diagnostic techniques for ventilator-associated pneumonia. N Engl J Med. 2006;355(25):2619–30.

    Article  Google Scholar 

  49. Wood AY, Davit AJ 2nd, Ciraulo DL, Arp NW, Richart CM, Maxwell RA, et al. A prospective assessment of diagnostic efficacy of blind protective bronchial brushings compared to bronchoscope-assisted lavage, bronchoscope-directed brushings, and blind endotracheal aspirates in ventilator-associated pneumonia. J Trauma. 2003;55(5):825–34.

    Article  PubMed  Google Scholar 

  50. Labenne M, Poyart C, Rambaud C, Goldfarb B, Pron B, Jouvet P, et al. Blind protected specimen brush and bronchoalveolar lavage in ventilated children. Crit Care Med. 1999;27(11):2537–43.

    Article  PubMed  CAS  Google Scholar 

  51. Gauvin F, Lacroix J, Guertin MC, Proulx F, Farrell CA, Moghrabi A, et al. Reproducibility of blind protected bronchoalveolar lavage in mechanically ventilated children. Am J Respir Crit Care Med. 2002;165(12):1618–23.

    Article  PubMed  Google Scholar 

  52. Zucker A, Pollack M, Katz R. Blind use of the double-lumen plugged catheter for diagnosis of respiratory tract infections in critically ill children. Crit Care Med. 1984;12(10):867–70.

    Article  PubMed  CAS  Google Scholar 

  53. Sachdev A, Chugh K, Raghunathan V, Gupta D, Wattal C, Menon GR. Diagnosis of bacterial ventilator-associated pneumonia in children: reproducibility of blind bronchial sampling. Pediatr Crit Care Med. 2013;14(1):e1–7.

    Article  PubMed  Google Scholar 

  54. Muscedere J, Dodek P, Keenan S, Fowler R, Cook D, Heyland D, et al. Comprehensive evidence-based clinical practice guidelines for ventilator-associated pneumonia: diagnosis and treatment. J Crit Care. 2008;23(1):138–47.

    Article  PubMed  Google Scholar 

  55. Sachdev A, Chugh K, Sethi M, Gupta D, Wattal C, Menon G. Diagnosis of ventilator-associated pneumonia in children in resource-limited setting: a comparative study of bronchoscopic and nonbronchoscopic methods. Pediatr Crit Care Med. 2010;11(2):258–66.

    Article  PubMed  Google Scholar 

  56. Morrow BM, Argent AC, Jeena PM, Green RJ. Guideline for the diagnosis, prevention and treatment of paediatric ventilator-associated pneumonia. S Afr Med J. 2009;99(4 Pt 2):255–67.

    PubMed  CAS  Google Scholar 

  57. Rizik S, Hakim F, Bentur L, Arad-Cohen N, Kassis I. Bronchoscopy and bronchoalveolar lavage in the diagnosis and management of pulmonary infections in immunocompromised children. J Pediatr Hematol Oncol. 2018;40(7):532–5.

    Article  PubMed  Google Scholar 

  58. Zachariah P, Ryan C, Nadimpalli S, Coscia G, Kolb M, Smith H, et al. Culture-independent analysis of pediatric bronchoalveolar lavage specimens. Ann Am Thorac Soc. 2018;15(9):1047–56.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Muhlebach MS, Hatch JE, Einarsson GG, McGrath SJ, Gilipin DF, Lavelle G, et al. Anaerobic bacteria cultured from cystic fibrosis airways correlate to milder disease: a multisite study. Eur Respir J. 2018;52(1):1800242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sherrard LJ, Bell SC, Tunney MM. The role of anaerobic bacteria in the cystic fibrosis airway. Curr Opin Pulm Med. 2016;22(6):637–43.

    Article  PubMed  CAS  Google Scholar 

  61. Tunney MM, Field TR, Moriarty TF, Patrick S, Doering G, Muhlebach MS, et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med. 2008;177(9):995–1001.

    Article  PubMed  Google Scholar 

  62. Foundation CF. Patient registry annual report. Bethesda, Maryland; 2017.

    Google Scholar 

  63. Chung JC, Becq J, Fraser L, Schulz-Trieglaff O, Bond NJ, Foweraker J, et al. Genomic variation among contemporary Pseudomonas aeruginosa isolates from chronically infected cystic fibrosis patients. J Bacteriol. 2012;194(18):4857–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Foweraker JE, Laughton CR, Brown DF, Bilton D. Phenotypic variability of Pseudomonas aeruginosa in sputa from patients with acute infective exacerbation of cystic fibrosis and its impact on the validity of antimicrobial susceptibility testing. J Antimicrob Chemother. 2005;55(6):921–7.

    Article  PubMed  CAS  Google Scholar 

  65. Winstanley C, O’Brien S, Brockhurst MA. Pseudomonas aeruginosa evolutionary adaptation and diversification in cystic fibrosis chronic lung infections. Trends Microbiol. 2016;24(5):327–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jorth P, Staudinger BJ, Wu X, Hisert KB, Hayden H, Garudathri J, et al. Regional isolation drives bacterial diversification within cystic fibrosis lungs. Cell Host Microbe. 2015;18(3):307–19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Goddard AF, Staudinger BJ, Dowd SE, Joshi-Datar A, Wolcott RD, Aitken ML, et al. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci U S A. 2012;109(34):13769–74.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Willner D, Haynes MR, Furlan M, Hanson N, Kirby B, Lim YW, et al. Case studies of the spatial heterogeneity of DNA viruses in the cystic fibrosis lung. Am J Respir Cell Mol Biol. 2012;46(2):127–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Willner D, Haynes MR, Furlan M, Schmieder R, Lim YW, Rainey PB, et al. Spatial distribution of microbial communities in the cystic fibrosis lung. ISME J. 2012;6(2):471–4.

    Article  PubMed  CAS  Google Scholar 

  70. Eyns H, Pierard D, De Wachter E, Eeckhout L, Vaes P, Malfroot A. Respiratory bacterial culture sampling in expectorating and non-expectorating patients with cystic fibrosis. Front Pediatr. 2018;6:403.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ramsey BW, Wentz KR, Smith AL, Richardson M, Williams-Warren J, Hedges DL, et al. Predictive value of oropharyngeal cultures for identifying lower airway bacteria in cystic fibrosis patients. Am Rev Respir Dis. 1991;144(2):331–7.

    Article  PubMed  CAS  Google Scholar 

  72. Armstrong DS, Grimwood K, Carlin JB, Carzino R, Olinsky A, Phelan PD. Bronchoalveolar lavage or oropharyngeal cultures to identify lower respiratory pathogens in infants with cystic fibrosis. Pediatr Pulmonol. 1996;21(5):267–75.

    Article  PubMed  CAS  Google Scholar 

  73. Burns JL, Gibson RL, McNamara S, Yim D, Emerson J, Rosenfeld M, et al. Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis. 2001;183(3):444–52.

    Article  PubMed  CAS  Google Scholar 

  74. Equi AC, Pike SE, Davies J, Bush A. Use of cough swabs in a cystic fibrosis clinic. Arch Dis Child. 2001;85(5):438–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rosenfeld M, Emerson J, Accurso F, Armstrong D, Castile R, Grimwood K, et al. Diagnostic accuracy of oropharyngeal cultures in infants and young children with cystic fibrosis. Pediatr Pulmonol. 1999;28(5):321–8.

    Article  PubMed  CAS  Google Scholar 

  76. Jung A, Kleinau I, Schonian G, Bauernfeind A, Chen C, Griese M, et al. Sequential genotyping of Pseudomonas aeruginosa from upper and lower airways of cystic fibrosis patients. Eur Respir J. 2002;20(6):1457–63.

    Article  PubMed  CAS  Google Scholar 

  77. Doumit M, Belessis Y, Stelzer-Braid S, Mallitt KA, Rawlinson W, Jaffe A. Diagnostic accuracy and distress associated with oropharyngeal suction in cystic fibrosis. J Cyst Fibros. 2016;15(4):473–8.

    Article  PubMed  Google Scholar 

  78. Aaron SD, Kottachchi D, Ferris WJ, Vandemheen KL, St Denis ML, Plouffe A, et al. Sputum versus bronchoscopy for diagnosis of Pseudomonas aeruginosa biofilms in cystic fibrosis. Eur Respir J. 2004;24(4):631–7.

    Article  PubMed  CAS  Google Scholar 

  79. Jain K, Wainwright C, Smyth AR. Bronchoscopy-guided antimicrobial therapy for cystic fibrosis. Cochrane Database Syst Rev. 2018;9:CD009530.

    PubMed  Google Scholar 

  80. Laguna TA, Wagner BD, Williams CB, Stevens MJ, Robertson CE, Welchlin CW, et al. Airway microbiota in bronchoalveolar lavage fluid from clinically well infants with cystic fibrosis. PLoS One. 2016;11(12):e0167649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Hogan DA, Willger SD, Dolben EL, Hampton TH, Stanton BA, Morrison HG, et al. Analysis of lung microbiota in bronchoalveolar lavage, protected brush and sputum samples from subjects with mild-to-moderate cystic fibrosis lung disease. PLoS One. 2016;11(3):e0149998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Hoppe JE, Towler E, Wagner BD, Accurso FJ, Sagel SD, Zemanick ET. Sputum induction improves detection of pathogens in children with cystic fibrosis. Pediatr Pulmonol. 2015;50(7):638–46.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Suri R, Marshall LJ, Wallis C, Metcalfe C, Shute JK, Bush A. Safety and use of sputum induction in children with cystic fibrosis. Pediatr Pulmonol. 2003;35(4):309–13.

    Article  PubMed  Google Scholar 

  84. Al-Saleh S, Dell SD, Grasemann H, Yau YC, Waters V, Martin S, et al. Sputum induction in routine clinical care of children with cystic fibrosis. J Pediatr. 2010;157(6):1006–11 e1.

    Article  PubMed  Google Scholar 

  85. Ho SA, Ball R, Morrison LJ, Brownlee KG, Conway SP. Clinical value of obtaining sputum and cough swab samples following inhaled hypertonic saline in children with cystic fibrosis. Pediatr Pulmonol. 2004;38(1):82–7.

    Article  PubMed  CAS  Google Scholar 

  86. Mussaffi H, Fireman EM, Mei-Zahav M, Prais D, Blau H. Induced sputum in the very young: a new key to infection and inflammation. Chest. 2008;133(1):176–82.

    Article  PubMed  CAS  Google Scholar 

  87. Henig NR, Tonelli MR, Pier MV, Burns JL, Aitken ML. Sputum induction as a research tool for sampling the airways of subjects with cystic fibrosis. Thorax. 2001;56(4):306–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Angrill J, Agusti C, de Celis R, Rano A, Gonzalez J, Sole T, et al. Bacterial colonisation in patients with bronchiectasis: microbiological pattern and risk factors. Thorax. 2002;57(1):15–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Ronchetti K, Tame JD, Paisey C, Thia LP, Doull I, Howe R, et al. The CF-Sputum Induction Trial (CF-SpIT) to assess lower airway bacterial sampling in young children with cystic fibrosis: a prospective internally controlled interventional trial. Lancet Respir Med. 2018;6(6):461–71.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Blau H, Linnane B, Carzino R, Tannenbaum EL, Skoric B, Robinson PJ, et al. Induced sputum compared to bronchoalveolar lavage in young, non-expectorating cystic fibrosis children. J Cyst Fibros. 2014;13(1):106–10.

    Article  PubMed  Google Scholar 

  91. O’Horo JC, Thompson D, Safdar N. Is the gram stain useful in the microbiologic diagnosis of VAP? A meta-analysis. Clin Infect Dis. 2012;55(4):551–61.

    Article  PubMed  CAS  Google Scholar 

  92. Meduri GU, Baselski V. The role of bronchoalveolar lavage in diagnosing nonopportunistic bacterial pneumonia. Chest. 1991;100(1):179–90.

    Article  PubMed  CAS  Google Scholar 

  93. de Blic J, Midulla F, Barbato A, Clement A, Dab I, Eber E, et al. Bronchoalveolar lavage in children. ERS Task Force on bronchoalveolar lavage in children. European Respiratory Society. Eur Respir J. 2000;15(1):217–31.

    PubMed  Google Scholar 

  94. Jourdain B, Joly-Guillou ML, Dombret MC, Calvat S, Trouillet JL, Gibert C, et al. Usefulness of quantitative cultures of BAL fluid for diagnosing nosocomial pneumonia in ventilated patients. Chest. 1997;111(2):411–8.

    Article  PubMed  CAS  Google Scholar 

  95. Kirkpatrick MB, Bass JB Jr. Quantitative bacterial cultures of bronchoalveolar lavage fluids and protected brush catheter specimens from normal subjects. Am Rev Respir Dis. 1989;139(2):546–8.

    Article  PubMed  CAS  Google Scholar 

  96. Cantral DE, Tape TG, Reed EC, Spurzem JR, Rennard SI, Thompson AB. Quantitative culture of bronchoalveolar lavage fluid for the diagnosis of bacterial pneumonia. Am J Med. 1993;95(6):601–7.

    Article  PubMed  CAS  Google Scholar 

  97. Rasmussen TR, Korsgaard J, Moller JK, Sommer T, Kilian M. Quantitative culture of bronchoalveolar lavage fluid in community-acquired lower respiratory tract infections. Respir Med. 2001;95(11):885–90.

    Article  PubMed  CAS  Google Scholar 

  98. Thorpe JE, Baughman RP, Frame PT, Wesseler TA, Staneck JL. Bronchoalveolar lavage for diagnosing acute bacterial pneumonia. J Infect Dis. 1987;155(5):855–61.

    Article  PubMed  CAS  Google Scholar 

  99. Prats E, Dorca J, Pujol M, Garcia L, Barreiro B, Verdaguer R, et al. Effects of antibiotics on protected specimen brush sampling in ventilator-associated pneumonia. Eur Respir J. 2002;19(5):944–51.

    Article  PubMed  CAS  Google Scholar 

  100. Torres A, el-Ebiary M, Padro L, Gonzalez J, de la Bellacasa JP, Ramirez J, et al. Validation of different techniques for the diagnosis of ventilator-associated pneumonia. Comparison with immediate postmortem pulmonary biopsy. Am J Respir Crit Care Med. 1994;149(2 Pt 1):324–31.

    Article  PubMed  CAS  Google Scholar 

  101. Kim ES, Kim EC, Lee SM, Yang SC, Yoo CG, Kim YW, et al. Bacterial yield from quantitative cultures of bronchoalveolar lavage fluid in patients with pneumonia on antimicrobial therapy. Korean J Intern Med. 2012;27(2):156–62.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Torres A, Lee N, Cilloniz C, Vila J, Van der Eerden M. Laboratory diagnosis of pneumonia in the molecular age. Eur Respir J. 2016;48(6):1764–78.

    Article  PubMed  CAS  Google Scholar 

  103. Falguera M, Lopez A, Nogues A, Porcel JM, Rubio-Caballero M. Evaluation of the polymerase chain reaction method for detection of Streptococcus pneumoniae DNA in pleural fluid samples. Chest. 2002;122(6):2212–6.

    Article  PubMed  CAS  Google Scholar 

  104. Lahti E, Mertsola J, Kontiokari T, Eerola E, Ruuskanen O, Jalava J. Pneumolysin polymerase chain reaction for diagnosis of pneumococcal pneumonia and empyema in children. Eur J Clin Microbiol Infect Dis. 2006;25(12):783–9.

    Article  PubMed  CAS  Google Scholar 

  105. Krenke K, Sadowy E, Podsiadly E, Hryniewicz W, Demkow U, Kulus M. Etiology of parapneumonic effusion and pleural empyema in children. The role of conventional and molecular microbiological tests. Respir Med. 2016;116:28–33.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Le Monnier A, Carbonnelle E, Zahar JR, Le Bourgeois M, Abachin E, Quesne G, et al. Microbiological diagnosis of empyema in children: comparative evaluations by culture, polymerase chain reaction, and pneumococcal antigen detection in pleural fluids. Clin Infect Dis. 2006;42(8):1135–40.

    Article  PubMed  Google Scholar 

  107. Abdeldaim GM, Stralin K, Olcen P, Blomberg J, Herrmann B. Toward a quantitative DNA-based definition of pneumococcal pneumonia: a comparison of Streptococcus pneumoniae target genes, with special reference to the Spn9802 fragment. Diagn Microbiol Infect Dis. 2008;60(2):143–50.

    Article  PubMed  CAS  Google Scholar 

  108. Johansson N, Kalin M, Giske CG, Hedlund J. Quantitative detection of Streptococcus pneumoniae from sputum samples with real-time quantitative polymerase chain reaction for etiologic diagnosis of community-acquired pneumonia. Diagn Microbiol Infect Dis. 2008;60(3):255–61.

    Article  PubMed  CAS  Google Scholar 

  109. Menezes-Martins LF, Menezes-Martins JJ, Michaelsen VS, Aguiar BB, Ermel T, Machado DC. Diagnosis of parapneumonic pleural effusion by polymerase chain reaction in children. J Pediatr Surg. 2005;40(7):1106–10.

    Article  PubMed  Google Scholar 

  110. Abdeldaim GM, Stralin K, Olcen P, Blomberg J, Molling P, Herrmann B. Quantitative fucK gene polymerase chain reaction on sputum and nasopharyngeal secretions to detect Haemophilus influenzae pneumonia. Diagn Microbiol Infect Dis. 2013;76(2):141–6.

    Article  PubMed  CAS  Google Scholar 

  111. Abdeldaim GM, Herrmann B. PCR detection of Haemophilus influenzae from respiratory specimens. Methods Mol Biol. 2013;943:115–23.

    Article  PubMed  CAS  Google Scholar 

  112. Johansson N, Kalin M, Tiveljung-Lindell A, Giske CG, Hedlund J. Etiology of community-acquired pneumonia: increased microbiological yield with new diagnostic methods. Clin Infect Dis. 2010;50(2):202–9.

    Article  PubMed  Google Scholar 

  113. Stralin K, Korsgaard J, Olcen P. Evaluation of a multiplex PCR for bacterial pathogens applied to bronchoalveolar lavage. Eur Respir J. 2006;28(3):568–75.

    Article  PubMed  CAS  Google Scholar 

  114. Xirogianni A, Tsolia M, Voyiatzi A, Sioumala M, Makri A, Argyropoulou A, et al. Diagnosis of upper and lower respiratory tract bacterial infections with the use of multiplex PCR assays. Diagnostics (Basel). 2013;3(2):222–31.

    Article  CAS  Google Scholar 

  115. Sansot M, Fradin E, Chenouard R, Kempf M, Kouatchet A, Lasocki S, et al. Performance of the extended use of the FilmArray((R)) BCID panel kit for bronchoalveolar lavage analysis. Mol Biol Rep. 2019;46(3):2685–92.

    Article  PubMed  CAS  Google Scholar 

  116. Murdoch DR, Anderson TP, Beynon KA, Chua A, Fleming AM, Laing RT, et al. Evaluation of a PCR assay for detection of Streptococcus pneumoniae in respiratory and nonrespiratory samples from adults with community-acquired pneumonia. J Clin Microbiol. 2003;41(1):63–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Stralin K, Tornqvist E, Kaltoft MS, Olcen P, Holmberg H. Etiologic diagnosis of adult bacterial pneumonia by culture and PCR applied to respiratory tract samples. J Clin Microbiol. 2006;44(2):643–5.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Stralin K, Herrmann B, Abdeldaim G, Olcen P, Holmberg H, Molling P. Comparison of sputum and nasopharyngeal aspirate samples and of the PCR gene targets lytA and Spn9802 for quantitative PCR for rapid detection of pneumococcal pneumonia. J Clin Microbiol. 2014;52(1):83–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Carvalho Mda G, Tondella ML, McCaustland K, Weidlich L, McGee L, Mayer LW, et al. Evaluation and improvement of real-time PCR assays targeting lytA, ply, and psaA genes for detection of pneumococcal DNA. J Clin Microbiol. 2007;45(8):2460–6.

    Article  PubMed  CAS  Google Scholar 

  120. Abdeldaim G, Herrmann B, Molling P, Holmberg H, Blomberg J, Olcen P, et al. Usefulness of real-time PCR for lytA, ply, and Spn9802 on plasma samples for the diagnosis of pneumococcal pneumonia. Clin Microbiol Infect. 2010;16(8):1135–41.

    Article  PubMed  CAS  Google Scholar 

  121. Albrich WC, Madhi SA, Adrian PV, Telles JN, Paranhos-Baccala G, Klugman KP. Genomic load from sputum samples and nasopharyngeal swabs for diagnosis of pneumococcal pneumonia in HIV-infected adults. J Clin Microbiol. 2014;52(12):4224–9.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Albrich WC, Madhi SA, Adrian PV, van Niekerk N, Mareletsi T, Cutland C, et al. Use of a rapid test of pneumococcal colonization density to diagnose pneumococcal pneumonia. Clin Infect Dis. 2012;54(5):601–9.

    Article  PubMed  CAS  Google Scholar 

  123. Lorente ML, Falguera M, Nogues A, Gonzalez AR, Merino MT, Caballero MR. Diagnosis of pneumococcal pneumonia by polymerase chain reaction (PCR) in whole blood: a prospective clinical study. Thorax. 2000;55(2):133–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Sheppard CL, Harrison TG, Kearns AM, Guiver M, Creek M, Evans R, et al. Diagnosis of invasive pneumococcal infection by PCR amplification of Streptococcus pneumoniae genomic fragments in blood: a multi-centre comparative study. Commun Dis Public Health. 2003;6(3):221–7.

    PubMed  CAS  Google Scholar 

  125. Yang S, Lin S, Khalil A, Gaydos C, Nuemberger E, Juan G, et al. Quantitative PCR assay using sputum samples for rapid diagnosis of pneumococcal pneumonia in adult emergency department patients. J Clin Microbiol. 2005;43(7):3221–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Peters RP, de Boer RF, Schuurman T, Gierveld S, Kooistra-Smid M, van Agtmael MA, et al. Streptococcus pneumoniae DNA load in blood as a marker of infection in patients with community-acquired pneumonia. J Clin Microbiol. 2009;47(10):3308–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Smith MD, Sheppard CL, Hogan A, Harrison TG, Dance DA, Derrington P, et al. Diagnosis of Streptococcus pneumoniae infections in adults with bacteremia and community-acquired pneumonia: clinical comparison of pneumococcal PCR and urinary antigen detection. J Clin Microbiol. 2009;47(4):1046–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Gollomp K, Rankin SC, White C, Mattei P, Harris MC, Kilpatrick LE, et al. Broad-range bacterial polymerase chain reaction in the microbiologic diagnosis of complicated pneumonia. J Hosp Med. 2012;7(1):8–13.

    Article  PubMed  Google Scholar 

  129. Adjemian J, Olivier KN, Seitz AE, Falkinham JO, Holland SM, Prevots DR. Spatial clusters of nontuberculous mycobacterial lung disease in the United States. Am J Respir Crit Care Med. 2012;186(6):553–8.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Prevots DR, Shaw PA, Strickland D, Jackson LA, Raebel MA, Blosky MA, et al. Nontuberculous mycobacterial lung disease prevalence at four integrated health care delivery systems. Am J Respir Crit Care Med. 2010;182(7):970–6.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Brode SK, Daley CL, Marras TK. The epidemiologic relationship between tuberculosis and non-tuberculous mycobacterial disease: a systematic review. Int J Tuberc Lung Dis. 2014;18(11):1370–7.

    Article  PubMed  CAS  Google Scholar 

  132. Adjemian J, Olivier KN, Seitz AE, Holland SM, Prevots DR. Prevalence of nontuberculous mycobacterial lung disease in U.S. Medicare beneficiaries. Am J Respir Crit Care Med. 2012;185(8):881–6.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Henkle E, Hedberg K, Schafer S, Novosad S, Winthrop KL. Population-based incidence of pulmonary nontuberculous mycobacterial disease in Oregon 2007 to 2012. Ann Am Thorac Soc. 2015;12(5):642–7.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Runyon EH. Anonymous mycobacteria in pulmonary disease. Med Clin North Am. 1959;43(1):273–90.

    Article  PubMed  CAS  Google Scholar 

  135. WHO. Global tuberculosis report. Geneva: World Health Organization; 2017.

    Google Scholar 

  136. Keshavjee S, Farmer PE. Tuberculosis, drug resistance, and the history of modern medicine. N Engl J Med. 2012;367(10):931–6.

    Article  PubMed  CAS  Google Scholar 

  137. Ellner J. Tuberculosis. In: Goldman L, Schafer AI, editors. Goldman’s cecil medicine. 24th ed. New York: Elsevier; 2012. p. 1939–48.

    Chapter  Google Scholar 

  138. American Academy of Pediatrics. Tuberculosis. In: Kimberlin D, Brady M, Jackson MA, Long S, editors. Red book. Elk Grove Village: American Academy of Pediatrics; 2018. p. 829–53.

    Google Scholar 

  139. Goussard P, Gie R. The role of bronchoscopy in the diagnosis and management of pediatric pulmonary tuberculosis. Expert Rev Respir Med. 2014;8(1):101–9.

    Article  PubMed  CAS  Google Scholar 

  140. Martiniano SL, Nick JA, Daley CL. Nontuberculous mycobacterial infections in cystic fibrosis. Clin Chest Med. 2016;37(1):83–96.

    Article  PubMed  Google Scholar 

  141. Faro A. Pulmonary disease in cystic fibrosis. In: Bush A, Wilmott R, Chernick V, Boat T, Ratjen F, Deterding R, editors. Kendig & Chernick’s disorders of the respiratory tract in children. Philadelphia, PA: Elsevier; 2012. p. 770–80.

    Chapter  Google Scholar 

  142. Ashbolt NJ. Environmental (Saprozoic) pathogens of engineered water systems: understanding their ecology for risk assessment and management. Pathogens. 2015;4(2):390–405.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Parkins MD, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros. 2015;14(3):293–304.

    Article  PubMed  CAS  Google Scholar 

  144. Ramsay KA, Stockwell RE, Bell SC, Kidd TJ. Infection in cystic fibrosis: impact of the environment and climate. Expert Rev Respir Med. 2016;10(5):505–19.

    Article  PubMed  CAS  Google Scholar 

  145. Whittaker LA, Teneback C. Atypical mycobacterial and fungal infections in cystic fibrosis. Semin Respir Crit Care Med. 2009;30(5):539–46.

    Article  PubMed  Google Scholar 

  146. Holland SM. The nontuberculous mycobacteria. In: Goldman L, Schafer AI, editors. Goldman’s cecil medicine. New York: Elsevier; 2012. p. 1948–50.

    Chapter  Google Scholar 

  147. Adjemian J, Olivier KN, Prevots DR. Nontuberculous mycobacteria among patients with cystic fibrosis in the United States: screening practices and environmental risk. Am J Respir Crit Care Med. 2014;190(5):581–6.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Adjemian J, Daniel-Wayman S, Ricotta E, Prevots DR. Epidemiology of nontuberculous mycobacteriosis. Semin Respir Crit Care Med. 2018;39(3):325–35.

    Article  PubMed  Google Scholar 

  149. Donohue MJ, Wymer L. Increasing prevalence rate of nontuberculous mycobacteria infections in five states, 2008-2013. Ann Am Thorac Soc. 2016;13(12):2143–50.

    Article  PubMed  Google Scholar 

  150. Hoefsloot W, van Ingen J, Andrejak C, Angeby K, Bauriaud R, Bemer P, et al. The geographic diversity of nontuberculous mycobacteria isolated from pulmonary samples: an NTM-NET collaborative study. Eur Respir J. 2013;42(6):1604–13.

    Article  PubMed  Google Scholar 

  151. Griffith DE, Aksamit T, Brown-Elliott BA, Catanzaro A, Daley C, Gordin F, et al. An official ATS/IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med. 2007;175(4):367–416.

    Article  PubMed  CAS  Google Scholar 

  152. Koh WJ. Nontuberculous mycobacteria-overview. Microbiol Spectr. 2017;5(1) https://doi.org/10.1128/microbiolspec.TNMI7-0024-2016.

  153. Adjemian J, Alison MB, Kenneth NO, Prevots DR. Nontuberculous mycobacterial disease among cystic fibrosis patients in the United States: Environmental Risk and NTM Screening Practices. C17 CYSTIC FIBROSIS LUNG INFECTIONS. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2014. p. A3955-A.

    Google Scholar 

  154. Bar-On O, Mussaffi H, Mei-Zahav M, Prais D, Steuer G, Stafler P, et al. Increasing nontuberculous mycobacteria infection in cystic fibrosis. J Cyst Fibros. 2015;14(1):53–62.

    Article  PubMed  Google Scholar 

  155. Martiniano SL, Davidson RM, Nick JA. Nontuberculous mycobacteria in cystic fibrosis: updates and the path forward. Pediatr Pulmonol. 2017;52(S48):S29–36.

    Article  PubMed  Google Scholar 

  156. Binder AM, Adjemian J, Olivier KN, Prevots DR. Epidemiology of nontuberculous mycobacterial infections and associated chronic macrolide use among persons with cystic fibrosis. Am J Respir Crit Care Med. 2013;188(7):807–12.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Olivier KN, Weber DJ, Wallace RJ, Faiz AR, Lee JH, Zhang Y, et al. Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. Am J Respir Crit Care Med. 2003;167(6):828–34.

    Article  PubMed  Google Scholar 

  158. Smith MJ, Efthimiou J, Hodson ME, Batten JC. Mycobacterial isolations in young adults with cystic fibrosis. Thorax. 1984;39(5):369–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Raidt L, Idelevich EA, Dübbers A, Küster P, Drevinek P, Peters G, et al. Increased prevalence and resistance of important pathogens recovered from respiratory specimens of cystic fibrosis patients during a decade. Pediatr Infect Dis J. 2015;34(7):700–5.

    Article  PubMed  Google Scholar 

  160. Saiman L, Siegel JD, LiPuma JJ, Brown RF, Bryson EA, Chambers MJ, et al. Infection prevention and control guideline for cystic fibrosis: 2013 update. Infect Control Hosp Epidemiol. 2014;35(Suppl 1):S1–S67.

    Article  PubMed  Google Scholar 

  161. Olivier KN, Weber DJ, Lee JH, Handler A, Tudor G, Molina PL, et al. Nontuberculous mycobacteria. II: nested-cohort study of impact on cystic fibrosis lung disease. Am J Respir Crit Care Med. 2003;167(6):835–40.

    Article  PubMed  Google Scholar 

  162. Catherinot E, Roux AL, Vibet MA, Bellis G, Lemonnier L, Le Roux E, et al. Inhaled therapies, azithromycin and Mycobacterium abscessus in cystic fibrosis patients. Eur Respir J. 2013;41(5):1101–6.

    Article  PubMed  CAS  Google Scholar 

  163. Catherinot E, Roux AL, Vibet MA, Bellis G, Ravilly S, Lemonnier L, et al. Mycobacterium avium and Mycobacterium abscessus complex target distinct cystic fibrosis patient subpopulations. J Cyst Fibros. 2013;12(1):74–80.

    Article  PubMed  Google Scholar 

  164. Coolen N, Morand P, Martin C, Hubert D, Kanaan R, Chapron J, et al. Reduced risk of nontuberculous mycobacteria in cystic fibrosis adults receiving long-term azithromycin. J Cyst Fibros. 2015;14(5):594–9.

    Article  PubMed  CAS  Google Scholar 

  165. Leung JM, Olivier KN. Nontuberculous mycobacteria in patients with cystic fibrosis. Semin Respir Crit Care Med. 2013;34(1):124–34.

    Article  PubMed  Google Scholar 

  166. Verregghen M, Heijerman HG, Reijers M, van Ingen J, van der Ent CK. Risk factors for Mycobacterium abscessus infection in cystic fibrosis patients; a case-control study. J Cyst Fibros. 2012;11(4):340–3.

    Article  PubMed  Google Scholar 

  167. Viviani L, Harrison MJ, Zolin A, Haworth CS, Floto RA. Epidemiology of nontuberculous mycobacteria (NTM) amongst individuals with cystic fibrosis (CF). J Cyst Fibros. 2016;15(5):619–23.

    Article  PubMed  Google Scholar 

  168. Girón RM, Máiz L, Barrio I, Martínez MT, Salcedo A, Prados C. Nontuberculous mycobacterial infection in patients with cystic fibrosis: a multicenter prevalence study. Arch Bronconeumol. 2008;44(12):679–84.

    Article  PubMed  Google Scholar 

  169. Levy I, Grisaru-Soen G, Lerner-Geva L, Kerem E, Blau H, Bentur L, et al. Multicenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients, Israel. Emerg Infect Dis. 2008;14(3):378–84.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Radhakrishnan DK, Yau Y, Corey M, Richardson S, Chedore P, Jamieson F, et al. Non-tuberculous mycobacteria in children with cystic fibrosis: isolation, prevalence, and predictors. Pediatr Pulmonol. 2009;44(11):1100–6.

    Article  PubMed  Google Scholar 

  171. Jennifer A, Alison MB, Kenneth NO, Prevots DR. Nontuberculous mycobacterial disease among cystic fibrosis patients in the United States: Environmental Risk and NTM Screening Practices. C17 Cystic Fibrosis Lung Infections. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2014. p. A3955-A.

    Google Scholar 

  172. Jennifer A, Kenneth NO, Prevots DR. Predictors of prolonged nontuberculous mycobacterial infections in patients with cystic fibrosis. C105 Nontuberculous Mycobacteria Epidemiology. American Thoracic Society International Conference Abstracts: American Thoracic Society; 2015. p. A5255-A.

    Google Scholar 

  173. Mussaffi H, Rivlin J, Shalit I, Ephros M, Blau H. Nontuberculous mycobacteria in cystic fibrosis associated with allergic bronchopulmonary aspergillosis and steroid therapy. Eur Respir J. 2005;25(2):324–8.

    Article  PubMed  CAS  Google Scholar 

  174. Sermet-Gaudelus I, Le Bourgeois M, Pierre-Audigier C, Offredo C, Guillemot D, Halley S, et al. Mycobacterium abscessus and children with cystic fibrosis. Emerg Infect Dis. 2003;9(12):1587–91.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Bouso JM, Burns JJ, Amin R, Livingston FR, Elidemir O. Household proximity to water and nontuberculous mycobacteria in children with cystic fibrosis. Pediatr Pulmonol. 2017;52(3):324–30.

    Article  PubMed  Google Scholar 

  176. Bryant JM, Grogono DM, Greaves D, Foweraker J, Roddick I, Inns T, et al. Whole-genome sequencing to identify transmission of Mycobacterium abscessus between patients with cystic fibrosis: a retrospective cohort study. Lancet. 2013;381(9877):1551–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Harris KA, Underwood A, Kenna DT, Brooks A, Kavaliunaite E, Kapatai G, et al. Whole-genome sequencing and epidemiological analysis do not provide evidence for cross-transmission of mycobacterium abscessus in a cohort of pediatric cystic fibrosis patients. Clin Infect Dis. 2015;60(7):1007–16.

    PubMed  CAS  Google Scholar 

  178. Prevots DR, Adjemian J, Fernandez AG, Knowles MR, Olivier KN. Environmental risks for nontuberculous mycobacteria. Individual exposures and climatic factors in the cystic fibrosis population. Ann Am Thorac Soc. 2014;11(7):1032–8.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Bryant JM, Grogono DM, Rodriguez-Rincon D, Everall I, Brown KP, Moreno P, et al. Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium. Science (New York). 2016;354(6313):751–7.

    Article  CAS  Google Scholar 

  180. Esther CR, Henry MM, Molina PL, Leigh MW. Nontuberculous mycobacterial infection in young children with cystic fibrosis. Pediatr Pulmonol. 2005;40(1):39–44.

    Article  PubMed  Google Scholar 

  181. Esther CR, Esserman DA, Gilligan P, Kerr A, Noone PG. Chronic Mycobacterium abscessus infection and lung function decline in cystic fibrosis. J Cyst Fibros. 2010;9(2):117–23.

    Article  PubMed  Google Scholar 

  182. Park IK, Olivier KN. Nontuberculous mycobacteria in cystic fibrosis and non-cystic fibrosis bronchiectasis. Semin Respir Crit Care Med. 2015;36(2):217–24.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis: executive summary. Thorax. 2016;71(1):88–90.

    Article  PubMed  Google Scholar 

  184. Scott JP, Ji Y, Kannan M, Wylam ME. Inhaled granulocyte-macrophage colony-stimulating factor for Mycobacterium abscessus in cystic fibrosis. Eur Respir J. 2018;51(4):1702127.

    Article  PubMed  CAS  Google Scholar 

  185. Floto RA, Olivier KN, Saiman L, Daley CL, Herrmann JL, Nick JA, et al. US Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016;71(Suppl 1):i1–22.

    Article  PubMed  Google Scholar 

  186. American Academy of Pediatrics. Nontuberculous mycobacteria. In: Kimberlin D, Brady M, Jackson MA, Long S, editors. Red book. Elk Grove Village: American Academy of Pediatrics; 2018. p. 854–61.

    Google Scholar 

  187. Brown-Elliott BA, Nash KA, Wallace RJ Jr. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev. 2012;25(3):545–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Cowman SA, Loebinger MR. Diagnosis of nontuberculous mycobacteria lung disease. Semin Respir Crit Care Med. 2018;39(3):343–50.

    Article  PubMed  Google Scholar 

  189. Ichiyama S, Iinuma Y, Yamori S, Hasegawa Y, Shimokata K, Nakashima N. Mycobacterium growth indicator tube testing in conjunction with the AccuProbe or the AMPLICOR-PCR assay for detecting and identifying mycobacteria from sputum samples. J Clin Microbiol. 1997;35(8):2022–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Blakemore R, Story E, Helb D, Kop J, Banada P, Owens MR, et al. Evaluation of the analytical performance of the Xpert MTB/RIF assay. J Clin Microbiol. 2010;48(7):2495–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Lee H, Park HJ, Cho SN, Bai GH, Kim SJ. Species identification of mycobacteria by PCR-restriction fragment length polymorphism of the rpoB gene. J Clin Microbiol. 2000;38(8):2966–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Bannalikar AS, Verma R. Detection of Mycobacterium avium & M. tuberculosis from human sputum cultures by PCR-RFLP analysis of hsp65 gene & pncA PCR. Indian J Med Res. 2006;123(2):165–72.

    PubMed  CAS  Google Scholar 

  193. Devallois A, Goh KS, Rastogi N. Rapid identification of mycobacteria to species level by PCR-restriction fragment length polymorphism analysis of the hsp65 gene and proposition of an algorithm to differentiate 34 mycobacterial species. J Clin Microbiol. 1997;35(11):2969–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Devallois A, Picardeau M, Paramasivan CN, Vincent V, Rastogi N. Molecular characterization of Mycobacterium avium complex isolates giving discordant results in AccuProbe tests by PCR-restriction enzyme analysis, 16S rRNA gene sequencing, and DT1-DT6 PCR. J Clin Microbiol. 1997;35(11):2767–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Dobner P, Feldmann K, Rifai M, Loscher T, Rinder H. Rapid identification of mycobacterial species by PCR amplification of hypervariable 16S rRNA gene promoter region. J Clin Microbiol. 1996;34(4):866–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Patel JB, Leonard DG, Pan X, Musser JM, Berman RE, Nachamkin I. Sequence-based identification of Mycobacterium species using the MicroSeq 500 16S rDNA bacterial identification system. J Clin Microbiol. 2000;38(1):246–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Roth A, Reischl U, Streubel A, Naumann L, Kroppenstedt RM, Habicht M, et al. Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S-23S rRNA gene spacer and restriction endonucleases. J Clin Microbiol. 2000;38(3):1094–104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  198. Suffys PN, da Silva Rocha A, de Oliveira M, Campos CE, Barreto AM, Portaels F, et al. Rapid identification of Mycobacteria to the species level using INNO-LiPA Mycobacteria, a reverse hybridization assay. J Clin Microbiol. 2001;39(12):4477–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Aravindhan V, Sulochana S, Narayanan S, Paramasivam CN, Narayanan PR. Identification & differentiation of Mycobacterium avium & M. intracellulare by PCR- RFLP assay using the groES gene. Indian J Med Res. 2007;126(6):575–9.

    PubMed  CAS  Google Scholar 

  200. Alcaide F, Amlerova J, Bou G, Ceyssens PJ, Coll P, Corcoran D, et al. How to: identify non-tuberculous Mycobacterium species using MALDI-TOF mass spectrometry. Clin Microbiol Infect. 2018;24(6):599–603.

    Article  PubMed  CAS  Google Scholar 

  201. Ceyssens PJ, Soetaert K, Timke M, Van den Bossche A, Sparbier K, De Cremer K, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry for combined species identification and drug sensitivity testing in mycobacteria. J Clin Microbiol. 2017;55(2):624–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Kodana M, Tarumoto N, Kawamura T, Saito T, Ohno H, Maesaki S, et al. Utility of the MALDI-TOF MS method to identify nontuberculous mycobacteria. J Infect Chemother. 2016;22(1):32–5.

    Article  PubMed  CAS  Google Scholar 

  203. Buckwalter SP, Olson SL, Connelly BJ, Lucas BC, Rodning AA, Walchak RC, et al. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of mycobacterium species, Nocardia species, and other aerobic Actinomycetes. J Clin Microbiol. 2016;54(2):376–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Tudo G, Monte MR, Vergara A, Lopez A, Hurtado JC, Ferrer-Navarro M, et al. Implementation of MALDI-TOF MS technology for the identification of clinical isolates of Mycobacterium spp. in mycobacterial diagnosis. Eur J Clin Microbiol Infect Dis. 2015;34(8):1527–32.

    Article  PubMed  CAS  Google Scholar 

  205. Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the diagnosis of pulmonary and extrapulmonary TB in adults and children: policy update. WHO Guidelines Approved by the Guidelines Review Committee. Geneva; 2013.

    Google Scholar 

  206. Yin QQ, Jiao WW, Han R, Jiao AX, Sun L, Tian JL, et al. Rapid diagnosis of childhood pulmonary tuberculosis by Xpert MTB/RIF assay using bronchoalveolar lavage fluid. Biomed Res Int. 2014;2014:310194.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Mathew P, Kuo YH, Vazirani B, Eng RH, Weinstein MP. Are three sputum acid-fast bacillus smears necessary for discontinuing tuberculosis isolation? J Clin Microbiol. 2002;40(9):3482–4.

    PubMed  PubMed Central  Google Scholar 

  208. Nolan VG, Arnold SR, Bramley AM, Ampofo K, Williams DJ, Grijalva CG, et al. Etiology and impact of coinfections in children hospitalized with community-acquired pneumonia. J Infect Dis. 2018;218(2):179–88.

    Article  PubMed  Google Scholar 

  209. Costa C, Elia M, Astegiano S, Sidoti F, Terlizzi ME, Solidoro P, et al. Quantitative detection of Epstein-Barr virus in bronchoalveolar lavage from transplant and nontransplant patients. Transplantation. 2008;86(10):1389–94.

    Article  PubMed  Google Scholar 

  210. Costa C, Delsedime L, Solidoro P, Curtoni A, Bergallo M, Libertucci D, et al. Herpesviruses detection by quantitative real-time polymerase chain reaction in bronchoalveolar lavage and transbronchial biopsy in lung transplant: viral infections and histopathological correlation. Transplant Proc. 2010;42(4):1270–4.

    Article  PubMed  CAS  Google Scholar 

  211. Dioverti MV, Razonable RR. Cytomegalovirus. Microbiol Spectr. 2016;4(4) https://doi.org/10.1128/microbiolspec.DMIH2-0022-2015.

  212. Liu P, Xu M, He L, Su L, Wang A, Fu P, et al. Epidemiology of respiratory pathogens in children with lower respiratory tract infections in Shanghai, China, from 2013 to 2015. Jpn J Infect Dis. 2018;71(1):39–44.

    Article  PubMed  Google Scholar 

  213. Esther CR Jr, Lin FC, Kerr A, Miller MB, Gilligan PH. Respiratory viruses are associated with common respiratory pathogens in cystic fibrosis. Pediatr Pulmonol. 2014;49(9):926–31.

    Article  PubMed  Google Scholar 

  214. Michelow IC, Olsen K, Lozano J, Rollins NK, Duffy LB, Ziegler T, et al. Epidemiology and clinical characteristics of community-acquired pneumonia in hospitalized children. Pediatrics. 2004;113(4):701–7.

    Article  PubMed  Google Scholar 

  215. Ruuskanen O, Lahti E, Jennings LC, Murdoch DR. Viral pneumonia. Lancet. 2011;377(9773):1264–75.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Reeves RM, Hardelid P, Gilbert R, Warburton F, Ellis J, Pebody RG. Estimating the burden of respiratory syncytial virus (RSV) on respiratory hospital admissions in children less than five years of age in England, 2007-2012. Influenza Other Respi Viruses. 2017;11(2):122–9.

    Article  Google Scholar 

  217. Ogimi C, Waghmare AA, Kuypers JM, Xie H, Yeung CC, Leisenring WM, et al. Clinical significance of human coronavirus in bronchoalveolar lavage samples from hematopoietic cell transplant recipients and patients with hematologic malignancies. Clin Infect Dis. 2017;64(11):1532–9.

    Article  PubMed  CAS  Google Scholar 

  218. Chatzis O, Darbre S, Pasquier J, Meylan P, Manuel O, Aubert JD, et al. Burden of severe RSV disease among immunocompromised children and adults: a 10 year retrospective study. BMC Infect Dis. 2018;18(1):111.

    Article  PubMed  PubMed Central  Google Scholar 

  219. Scheltema NM, Gentile A, Lucion F, Nokes DJ, Munywoki PK, Madhi SA, et al. Global respiratory syncytial virus-associated mortality in young children (RSV GOLD): a retrospective case series. Lancet Glob Health. 2017;5(10):e984–e91.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Azadeh N, Sakata KK, Saeed A, Mullon JJ, Grys TE, Limper AH, et al. Comparison of respiratory pathogen detection in upper versus lower respiratory tract samples using the BioFire FilmArray respiratory panel in the immunocompromised host. Can Respir J. 2018;2018:2685723.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Lachant DJ, Croft DP, McGrane Minton H, Prasad P, Kottmann RM. Nasopharyngeal viral PCR in immunosuppressed patients and its association with virus detection in bronchoalveolar lavage by PCR. Respirology. 2017;22(6):1205–11.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Wurzel DF, Marchant JM, Clark JE, Mackay IM, Wang CY, Sloots TP, et al. Respiratory virus detection in nasopharyngeal aspirate versus bronchoalveolar lavage is dependent on virus type in children with chronic respiratory symptoms. J Clin Virol. 2013;58(4):683–8.

    Article  PubMed  PubMed Central  Google Scholar 

  223. Restrepo-Gualteros SM, Jaramillo-Barberi LE, Gonzalez-Santos M, Rodriguez-Martinez CE, Perez GF, Gutierrez MJ, et al. Characterization of cytomegalovirus lung infection in non-HIV infected children. Viruses. 2014;6(5):2038–51.

    Article  PubMed  PubMed Central  Google Scholar 

  224. Goussard P, Kling S, Gie RP, Nel ED, Heyns L, Rossouw GJ, et al. CMV pneumonia in HIV-infected ventilated infants. Pediatr Pulmonol. 2010;45(7):650–5.

    Article  PubMed  CAS  Google Scholar 

  225. Zampoli M, Morrow B, Hsiao NY, Whitelaw A, Zar HJ. Prevalence and outcome of cytomegalovirus-associated pneumonia in relation to human immunodeficiency virus infection. Pediatr Infect Dis J. 2011;30(5):413–7.

    Article  PubMed  Google Scholar 

  226. Gooskens J, Templeton KE, Claas EC, van Bussel MJ, Smit VT, Kroes AC. Quantitative detection of herpes simplex virus DNA in the lower respiratory tract. J Med Virol. 2007;79(5):597–604.

    Article  PubMed  CAS  Google Scholar 

  227. Wu JL, Ma HY, Lu CY, Chen JM, Lee PI, Jou ST, et al. Risk factors and outcomes of cytomegalovirus viremia in pediatric hematopoietic stem cell transplantation patients. J Microbiol Immunol Infect. 2017;50(3):307–13.

    Article  PubMed  Google Scholar 

  228. Rowe RG, Guo D, Lee M, Margossian S, London WB, Lehmann L. Cytomegalovirus infection in pediatric hematopoietic stem cell transplantation: risk factors for primary infection and cases of recurrent and late infection at a single center. Biol Blood Marrow Transplant. 2016;22(7):1275–83.

    Article  PubMed  PubMed Central  Google Scholar 

  229. Chemaly RF, Yen-Lieberman B, Castilla EA, Reilly A, Arrigain S, Farver C, et al. Correlation between viral loads of cytomegalovirus in blood and bronchoalveolar lavage specimens from lung transplant recipients determined by histology and immunohistochemistry. J Clin Microbiol. 2004;42(5):2168–72.

    Article  PubMed  PubMed Central  Google Scholar 

  230. Tan SK, Burgener EB, Waggoner JJ, Gajurel K, Gonzalez S, Chen SF, et al. Molecular and culture-based bronchoalveolar lavage fluid testing for the diagnosis of cytomegalovirus pneumonitis. Open Forum Infect Dis. 2016;3(1):ofv212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  231. Boeckh M, Stevens-Ayers T, Travi G, Huang ML, Cheng GS, Xie H, et al. Cytomegalovirus (CMV) DNA quantitation in bronchoalveolar lavage fluid from hematopoietic stem cell transplant recipients with CMV pneumonia. J Infect Dis. 2017;215(10):1514–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  232. Lodding IP, Schultz HH, Jensen JU, Kirkby N, Perch M, Andersen C, et al. Cytomegalovirus viral load in bronchoalveolar lavage to diagnose lung transplant associated CMV pneumonia. Transplantation. 2018;102(2):326–32.

    Article  PubMed  Google Scholar 

  233. Chemaly RF, Yen-Lieberman B, Chapman J, Reilly A, Bekele BN, Gordon SM, et al. Clinical utility of cytomegalovirus viral load in bronchoalveolar lavage in lung transplant recipients. Am J Transplant. 2005;5(3):544–8.

    Article  PubMed  Google Scholar 

  234. Govender K, Jeena P, Parboosing R. Clinical utility of bronchoalveolar lavage cytomegalovirus viral loads in the diagnosis of cytomegalovirus pneumonitis in infants. J Med Virol. 2017;89(6):1080–7.

    Article  PubMed  CAS  Google Scholar 

  235. Beam E, Germer JJ, Lahr B, Yao JDC, Limper AH, Binnicker MJ, et al. Cytomegalovirus (CMV) DNA quantification in bronchoalveolar lavage fluid of immunocompromised patients with CMV pneumonia. Clin Transplant. 2018;32(1) https://doi.org/10.1111/ctr.13149.

  236. Cunha BA, Eisenstein LE, Dillard T, Krol V. Herpes simplex virus (HSV) pneumonia in a heart transplant: diagnosis and therapy. Heart Lung. 2007;36(1):72–8.

    Article  PubMed  Google Scholar 

  237. Frangoul H, Wills M, Crossno C, Engel M, Domm J. Acyclovir-resistant herpes simplex virus pneumonia post-unrelated stem cell transplantation: a word of caution. Pediatr Transplant. 2007;11(8):942–4.

    Article  PubMed  CAS  Google Scholar 

  238. Gasparetto EL, Escuissato DL, Inoue C, Marchiori E, Müller NL. Herpes simplex virus type 2 pneumonia after bone marrow transplantation: high-resolution CT findings in 3 patients. J Thorac Imaging. 2005;20(2):71–3.

    Article  PubMed  Google Scholar 

  239. Linssen CF, Jacobs JA, Stelma FF, van Mook WN, Terporten P, Vink C, et al. Herpes simplex virus load in bronchoalveolar lavage fluid is related to poor outcome in critically ill patients. Intensive Care Med. 2008;34(12):2202–9.

    Article  PubMed  Google Scholar 

  240. Saugel B, Jakobus J, Huber W, Hoffmann D, Holzapfel K, Protzer U, et al. Herpes simplex virus in bronchoalveolar lavage fluid of medical intensive care unit patients: association with lung injury and outcome. J Crit Care. 2016;32:138–44.

    Article  PubMed  Google Scholar 

  241. Assink-de Jong E, Groeneveld AB, Pettersson AM, Koek A, Vandenbroucke-Grauls CM, Beishuizen A, et al. Clinical correlates of herpes simplex virus type 1 loads in the lower respiratory tract of critically ill patients. J Clin Virol. 2013;58(1):79–83.

    Article  PubMed  Google Scholar 

  242. Kotzbauer D, Frank G, Dong W, Shore S. Clinical and laboratory characteristics of disseminated herpes simplex virus infection in neonates. Hosp Pediatr. 2014;4(3):167–71.

    Article  PubMed  Google Scholar 

  243. Capretti MG, Marsico C, Lazzarotto T, Gabrielli L, Bagni A, De Angelis M, et al. Herpes Simplex Virus 1 infection: misleading findings in an infant with disseminated disease. New Microbiol. 2013;36(3):307–13.

    PubMed  Google Scholar 

  244. Inokuchi R, Nakamura K, Sato H, Shinohara K, Aoki Y, Doi K, et al. Bronchial ulceration as a prognostic indicator for varicella pneumonia: case report and systematic literature review. J Clin Virol. 2013;56(4):360–4.

    Article  PubMed  Google Scholar 

  245. Chiner E, Ballester I, Betlloch I, Blanquer J, Aguar MC, Blanquer R, et al. Varicella-zoster virus pneumonia in an adult population: has mortality decreased? Scand J Infect Dis. 2010;42(3):215–21.

    Article  PubMed  CAS  Google Scholar 

  246. Richaud C, Ngo MT, Agbessi CA, Boru B, Elkharrat D, Chinet T. Bronchial involvement in an immunocompetent adult with varicella pneumonia. Rev Mal Respir. 2008;25(1):59–62.

    Article  PubMed  CAS  Google Scholar 

  247. Libert N, Bigaillon C, Chargari C, Bensalah M, Muller V, Merat S, et al. Epstein-Barr virus reactivation in critically ill immunocompetent patients. Biomed J. 2015;38(1):70–6.

    Article  PubMed  Google Scholar 

  248. Banks CA, Meier JD, Stallworth CR, White DR. Recurrent posttransplant lymphoproliferative disorder involving the larynx and trachea: case report and review of the literature. Ann Otol Rhinol Laryngol. 2012;121(5):291–5.

    Article  PubMed  Google Scholar 

  249. O’Neill AF, Adil EA, Irace AL, Neff L, Davis IJ, Perez-Atayde AR, et al. Post-transplant lymphoproliferative disorder of the pediatric airway: Presentation and management. Int J Pediatr Otorhinolaryngol. 2016;86:218–23.

    Article  PubMed  Google Scholar 

  250. Feuillet S, Meignin V, Briere J, Brice P, Rocha V, Socie G, et al. Endobronchial Epstein-Barr Virus associated post-transplant lymphoproliferative disorder in hematopoietic stem cell transplantation. Clin Med Case Rep. 2009;2:11–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  251. Fortes HR, von Ranke FM, Escuissato DL, Araujo Neto CA, Zanetti G, Hochhegger B, et al. Recurrent respiratory papillomatosis: a state-of-the-art review. Respir Med. 2017;126:116–21.

    Article  PubMed  Google Scholar 

  252. Pritt BS, Aubry MC. Histopathology of viral infections of the lung. Semin Diagn Pathol. 2017;34(6):510–7.

    Article  PubMed  PubMed Central  Google Scholar 

  253. Smyth RL, Higenbottam TW, Scott JP, Wreghitt TG, Stewart S, Clelland CA, et al. Herpes simplex virus infection in heart-lung transplant recipients. Transplantation. 1990;49(4):735–9.

    Article  PubMed  CAS  Google Scholar 

  254. Costa C, Libertucci D, Solidoro P, Sinesi F, Bergallo M, Margio S, et al. Rapid shell vial culture for the detection of respiratory viruses from bronchoalveolar lavage in immunocompromised patients. Panminerva Med. 2007;49(1):1–6.

    PubMed  CAS  Google Scholar 

  255. Marcos MA, Esperatti M, Torres A. Viral pneumonia. Curr Opin Infect Dis. 2009;22(2):143–7.

    Article  PubMed  Google Scholar 

  256. Prendergast C, Papenburg J. Rapid antigen-based testing for respiratory syncytial virus: moving diagnostics from bench to bedside? Future Microbiol. 2013;8(4):435–44.

    Article  PubMed  CAS  Google Scholar 

  257. Chartrand C, Tremblay N, Renaud C, Papenburg J. Diagnostic accuracy of rapid antigen detection tests for respiratory syncytial virus infection: systematic review and meta-analysis. J Clin Microbiol. 2015;53(12):3738–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  258. Chartrand C, Leeflang MM, Minion J, Brewer T, Pai M. Accuracy of rapid influenza diagnostic tests: a meta-analysis. Ann Intern Med. 2012;156(7):500–11.

    Article  PubMed  Google Scholar 

  259. Bennett JE. Introduction to Mycoses. In: Bennett J, Dolin R, Blaser M, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Elsevier; 2016.

    Google Scholar 

  260. De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46(12):1813–21.

    Article  PubMed  Google Scholar 

  261. Anantasit N, Nuntacharruksa N, Incharoen P, Preutthipan A. Clinical and pathological correlation in pediatric invasive pulmonary Aspergillosis. Front Pediatr. 2018;6:31.

    Article  PubMed  PubMed Central  Google Scholar 

  262. Maturu VN, Agarwal R. Prevalence of Aspergillus sensitization and allergic bronchopulmonary aspergillosis in cystic fibrosis: systematic review and meta-analysis. Clin Exp Allergy. 2015;45(12):1765–78.

    Article  PubMed  CAS  Google Scholar 

  263. Agarwal R, Aggarwal AN, Gupta D, Jindal SK. Aspergillus hypersensitivity and allergic bronchopulmonary aspergillosis in patients with bronchial asthma: systematic review and meta-analysis. Int J Tuberc Lung Dis. 2009;13(8):936–44.

    PubMed  CAS  Google Scholar 

  264. Agarwal R, Chakrabarti A, Shah A, Gupta D, Meis JF, Guleria R, et al. Allergic bronchopulmonary aspergillosis: review of literature and proposal of new diagnostic and classification criteria. Clin Exp Allergy. 2013;43(8):850–73.

    Article  PubMed  CAS  Google Scholar 

  265. Neofytos D, Fishman JA, Horn D, Anaissie E, Chang CH, Olyaei A, et al. Epidemiology and outcome of invasive fungal infections in solid organ transplant recipients. Transpl Infect Dis. 2010;12(3):220–9.

    Article  PubMed  CAS  Google Scholar 

  266. Neofytos D, Horn D, Anaissie E, Steinbach W, Olyaei A, Fishman J, et al. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry. Clin Infect Dis. 2009;48(3):265–73.

    Article  PubMed  CAS  Google Scholar 

  267. Krenke R, Grabczak EM. Tracheobronchial manifestations of Aspergillus infections. Scientific World Journal. 2011;11:2310–29.

    Article  PubMed  PubMed Central  Google Scholar 

  268. Moura S, Cerqueira L, Almeida A. Invasive pulmonary aspergillosis: current diagnostic methodologies and a new molecular approach. Eur J Clin Microbiol Infect Dis. 2018;37(8):1393–403.

    Article  PubMed  CAS  Google Scholar 

  269. Walzer P, Smulian A, Miller R. Pneumocystis species. In: Bennett J, Dolin R, Blaser M, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Elsevier; 2016.

    Google Scholar 

  270. Inagaki K, Blackshear C, Hobbs CV. Pneumocystis infection in children: national trends and characteristics in the United States, 1997-2012. Pediatr Infect Dis J. 2019;38(3):241–7.

    Article  PubMed  Google Scholar 

  271. Vera C, Aguilar YA, Velez LA, Rueda ZV. High transient colonization by Pneumocystis jirovecii between mothers and newborn. Eur J Pediatr. 2017;176(12):1619–27.

    Article  PubMed  Google Scholar 

  272. Oladele RO, Otu AA, Richardson MD, Denning DW. Diagnosis and management of Pneumocystis pneumonia in resource-poor settings. J Health Care Poor Underserved. 2018;29(1):107–58.

    Article  PubMed  Google Scholar 

  273. Toma P, Bertaina A, Castagnola E, Colafati GS, D’Andrea ML, Finocchi A, et al. Fungal infections of the lung in children. Pediatr Radiol. 2016;46(13):1856–65.

    Article  PubMed  Google Scholar 

  274. Fillaux J, Malvy S, Alvarez M, Fabre R, Cassaing S, Marchou B, et al. Accuracy of a routine real-time PCR assay for the diagnosis of Pneumocystis jirovecii pneumonia. J Microbiol Methods. 2008;75(2):258–61.

    Article  PubMed  CAS  Google Scholar 

  275. Lease ED, Alexander BD. Fungal diagnostics in pneumonia. Semin Respir Crit Care Med. 2011;32(6):663–72.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Summah H, Zhu YG, Falagas ME, Vouloumanou EK, Qu JM. Use of real-time polymerase chain reaction for the diagnosis of Pneumocystis pneumonia in immunocompromised patients: a meta-analysis. Chin Med J (Engl). 2013;126(10):1965–73.

    Google Scholar 

  277. Fan LC, Lu HW, Cheng KB, Li HP, Xu JF. Evaluation of PCR in bronchoalveolar lavage fluid for diagnosis of Pneumocystis jirovecii pneumonia: a bivariate meta-analysis and systematic review. PLoS One. 2013;8(9):e73099.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  278. Karageorgopoulos DE, Qu JM, Korbila IP, Zhu YG, Vasileiou VA, Falagas ME. Accuracy of beta-D-glucan for the diagnosis of Pneumocystis jirovecii pneumonia: a meta-analysis. Clin Microbiol Infect. 2013;19(1):39–49.

    Article  PubMed  CAS  Google Scholar 

  279. Katragkou A, Fisher BT, Groll AH, Roilides E, Walsh TJ. Diagnostic imaging and invasive fungal diseases in children. J Pediatric Infect Dis Soc. 2017;6(suppl_1):S22–31.

    Article  PubMed  Google Scholar 

  280. Durairaj L, Mohamad Z, Launspach JL, Ashare A, Choi JY, Rajagopal S, et al. Patterns and density of early tracheal colonization in intensive care unit patients. J Crit Care. 2009;24(1):114–21.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Meersseman W, Lagrou K, Spriet I, Maertens J, Verbeken E, Peetermans WE, et al. Significance of the isolation of Candida species from airway samples in critically ill patients: a prospective, autopsy study. Intensive Care Med. 2009;35(9):1526–31.

    Article  PubMed  CAS  Google Scholar 

  282. Terraneo S, Ferrer M, Martin-Loeches I, Esperatti M, Di Pasquale M, Giunta V, et al. Impact of Candida spp. isolation in the respiratory tract in patients with intensive care unit-acquired pneumonia. Clin Microbiol Infect. 2016;22(1):94.e1–8.

    Article  CAS  Google Scholar 

  283. AbdulWahab A, Salah H, Chandra P, Taj-Aldeen SJ. Persistence of Candida dubliniensis and lung function in patients with cystic fibrosis. BMC Res Notes. 2017;10(1):326.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Shirley RM, Baddley JW. Cryptococcal lung disease. Curr Opin Pulm Med. 2009;15(3):254–60.

    Article  PubMed  Google Scholar 

  285. Fyfe M, MacDougall L, Romney M, Starr M, Pearce M, Mak S, et al. Cryptococcus gattii infections on Vancouver Island, British Columbia, Canada: emergence of a tropical fungus in a temperate environment. Can Commun Dis Rep. 2008;34(6):1–12.

    PubMed  CAS  Google Scholar 

  286. Shaheen AA, Somayaji R, Myers R, Mody CH. Epidemiology and trends of cryptococcosis in the United States from 2000 to 2007: A population-based study. Int J STD AIDS. 2018;29(5):453–60.

    Article  PubMed  Google Scholar 

  287. Liu L, Guo L, Liu Y, Chen T, Li S, Yang Y, et al. Clinical characteristics and prognosis of pediatric cryptococcosis in Beijing Children’s Hospital, 2002-2014. Eur J Pediatr. 2017;176(9):1235–44.

    Article  PubMed  Google Scholar 

  288. Lamoth F, Alexander BD. Nonmolecular methods for the diagnosis of respiratory fungal infections. Clin Lab Med. 2014;34(2):315–36.

    Article  PubMed  Google Scholar 

  289. Lass-Florl C. Current challenges in the diagnosis of fungal infections. Methods Mol Biol (Clifton, NJ). 2017;1508:3–15.

    Article  CAS  Google Scholar 

  290. Pappas PG, Perfect JR, Cloud GA, Larsen RA, Pankey GA, Lancaster DJ, et al. Cryptococcosis in human immunodeficiency virus-negative patients in the era of effective azole therapy. Clin Infect Dis. 2001;33(5):690–9.

    Article  PubMed  CAS  Google Scholar 

  291. Xie X, Xu B, Yu C, Chen M, Yao D, Xu X, et al. Clinical analysis of pulmonary cryptococcosis in non-HIV patients in south China. Int J Clin Exp Med. 2015;8(3):3114–9.

    PubMed  PubMed Central  Google Scholar 

  292. Kralovic SM, Rhodes JC. Utility of routine testing of bronchoalveolar lavage fluid for cryptococcal antigen. J Clin Microbiol. 1998;36(10):3088–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  293. Baughman RP, Rhodes JC, Dohn MN, Henderson H, Frame PT. Detection of cryptococcal antigen in bronchoalveolar lavage fluid: a prospective study of diagnostic utility. Am Rev Respir Dis. 1992;145(5):1226–9.

    Article  PubMed  CAS  Google Scholar 

  294. Senghor Y, Guitard J, Angoulvant A, Hennequin C. Cryptococcal antigen detection in broncho-alveolar lavage fluid. Med Mycol. 2018;56(6):774–7.

    Article  PubMed  CAS  Google Scholar 

  295. Kontoyiannis DP, Lewis RE. Agents of mucormycosis and entomophthoramycosis. In: Bennett J, Dolin R, Blaser M, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Elsevier; 2015.

    Google Scholar 

  296. Walsh TJ, Gamaletsou MN, McGinnis MR, Hayden RT, Kontoyiannis DP. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis). Clin Infect Dis. 2012;54(Suppl 1):S55–60.

    Article  PubMed  Google Scholar 

  297. McBride JA, Gauthier GM, Klein BS. Clinical manifestations and treatment of blastomycosis. Clin Chest Med. 2017;38(3):435–49.

    Article  PubMed  PubMed Central  Google Scholar 

  298. Goughenour KD, Rappleye CA. Antifungal therapeutics for dimorphic fungal pathogens. Virulence. 2017;8(2):211–21.

    Article  PubMed  CAS  Google Scholar 

  299. Baddley JW, Winthrop KL, Patkar NM, Delzell E, Beukelman T, Xie F, et al. Geographic distribution of endemic fungal infections among older persons, United States. Emerg Infect Dis. 2011;17(9):1664–9.

    Article  PubMed  PubMed Central  Google Scholar 

  300. Martinez R. New trends in paracoccidioidomycosis epidemiology. J Fungi (Basel). 2017;3(1):1.

    Article  Google Scholar 

  301. Hage CA, Knox KS, Wheat LJ. Endemic mycoses: overlooked causes of community acquired pneumonia. Respir Med. 2012;106(6):769–76.

    Article  PubMed  Google Scholar 

  302. McKinsey DS, McKinsey JP. Pulmonary histoplasmosis. Semin Respir Crit Care Med. 2011;32(6):735–44.

    Article  PubMed  Google Scholar 

  303. Denning DW, Chakrabarti A. Pulmonary and sinus fungal diseases in non-immunocompromised patients. Lancet Infect Dis. 2017;17(11):e357–e66.

    Article  PubMed  Google Scholar 

  304. Wheat LJ. Approach to the diagnosis of the endemic mycoses. Clin Chest Med. 2009;30(2):379–89. viii.

    Article  PubMed  Google Scholar 

  305. Hage CA, Azar MM, Bahr N, Loyd J, Wheat LJ. Histoplasmosis: up-to-date evidence-based approach to diagnosis and management. Semin Respir Crit Care Med. 2015;36(5):729–45.

    Article  PubMed  Google Scholar 

  306. Hage CA, Wheat LJ. Diagnosis of pulmonary histoplasmosis using antigen detection in the bronchoalveolar lavage. Expert Rev Respir Med. 2010;4(4):427–9.

    Article  PubMed  CAS  Google Scholar 

  307. Hage CA, Ribes JA, Wengenack NL, Baddour LM, Assi M, McKinsey DS, et al. A multicenter evaluation of tests for diagnosis of histoplasmosis. Clin Infect Dis. 2011;53(5):448–54.

    Article  PubMed  Google Scholar 

  308. Tarrand JJ, Lichterfeld M, Warraich I, Luna M, Han XY, May GS, et al. Diagnosis of invasive septate mold infections. A correlation of microbiological culture and histologic or cytologic examination. Am J Clin Pathol. 2003;119(6):854–8.

    Article  PubMed  Google Scholar 

  309. Lehrnbecher T, Robinson PD, Fisher BT, Castagnola E, Groll AH, Steinbach WJ, et al. Galactomannan, beta-D-glucan, and polymerase chain reaction-based assays for the diagnosis of invasive fungal disease in pediatric cancer and hematopoietic stem cell transplantation: a systematic review and meta-analysis. Clin Infect Dis. 2016;63(10):1340–8.

    Article  PubMed  CAS  Google Scholar 

  310. Loeffler J, Hafner J, Mengoli C, Wirth C, Heussel CP, Loffler C, et al. Prospective biomarker screening for diagnosis of invasive aspergillosis in high-risk pediatric patients. J Clin Microbiol. 2017;55(1):101–9.

    Article  PubMed  CAS  Google Scholar 

  311. Avni T, Levy I, Sprecher H, Yahav D, Leibovici L, Paul M. Diagnostic accuracy of PCR alone compared to galactomannan in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis: a systematic review. J Clin Microbiol. 2012;50(11):3652–8.

    Article  PubMed  PubMed Central  Google Scholar 

  312. Trubiano JA, Dennison AM, Morrissey CO, Chua KY, Halliday CL, Chen SC, et al. Clinical utility of panfungal polymerase chain reaction for the diagnosis of invasive fungal disease: a single center experience. Med Mycol. 2016;54(2):138–46.

    Article  PubMed  CAS  Google Scholar 

  313. Hage CA, Davis TE, Fuller D, Egan L, Witt JR 3rd, Wheat LJ, et al. Diagnosis of histoplasmosis by antigen detection in BAL fluid. Chest. 2010;137(3):623–8.

    Article  PubMed  CAS  Google Scholar 

  314. Huang YT, Hung CC, Liao CH, Sun HY, Chang SC, Chen YC. Detection of circulating galactomannan in serum samples for diagnosis of Penicillium marneffei infection and cryptococcosis among patients infected with human immunodeficiency virus. J Clin Microbiol. 2007;45(9):2858–62.

    Article  PubMed  PubMed Central  Google Scholar 

  315. Park SY, Lee SO, Choi SH, Sung H, Kim MN, Choi CM, et al. Aspergillus galactomannan antigen assay in bronchoalveolar lavage fluid for diagnosis of invasive pulmonary aspergillosis. J Infect. 2010;61(6):492–8.

    Article  PubMed  Google Scholar 

  316. de Mol M, de Jongste JC, van Westreenen M, Merkus PJ, de Vries AH, Hop WC, et al. Diagnosis of invasive pulmonary aspergillosis in children with bronchoalveolar lavage galactomannan. Pediatr Pulmonol. 2013;48(8):789–96.

    Article  PubMed  Google Scholar 

  317. Desai R, Ross LA, Hoffman JA. The role of bronchoalveolar lavage galactomannan in the diagnosis of pediatric invasive aspergillosis. Pediatr Infect Dis J. 2009;28(4):283–6.

    Article  PubMed  Google Scholar 

  318. Zhang S, Wang S, Wan Z, Li R, Yu J. The diagnosis of invasive and noninvasive pulmonary aspergillosis by serum and bronchoalveolar lavage fluid galactomannan assay. Biomed Res Int. 2015;2015:943691.

    PubMed  PubMed Central  Google Scholar 

  319. Zhou W, Li H, Zhang Y, Huang M, He Q, Li P, et al. Diagnostic value of galactomannan antigen test in serum and bronchoalveolar lavage fluid samples from patients with nonneutropenic invasive pulmonary aspergillosis. J Clin Microbiol. 2017;55(7):2153–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  320. Nguyen MH, Leather H, Clancy CJ, Cline C, Jantz MA, Kulkarni V, et al. Galactomannan testing in bronchoalveolar lavage fluid facilitates the diagnosis of invasive pulmonary aspergillosis in patients with hematologic malignancies and stem cell transplant recipients. Biol Blood Marrow Transplant. 2011;17(7):1043–50.

    Article  PubMed  CAS  Google Scholar 

  321. Zhang XB, Chen GP, Lin QC, Lin X, Zhang HY, Wang JH. Bronchoalveolar lavage fluid galactomannan detection for diagnosis of invasive pulmonary aspergillosis in chronic obstructive pulmonary disease. Med Mycol. 2013;51(7):688–95.

    Article  PubMed  CAS  Google Scholar 

  322. Pasqualotto AC, Xavier MO, Sanchez LB, de Oliveira Costa CD, Schio SM, Camargo SM, et al. Diagnosis of invasive aspergillosis in lung transplant recipients by detection of galactomannan in the bronchoalveolar lavage fluid. Transplantation. 2010;90(3):306–11.

    Article  PubMed  CAS  Google Scholar 

  323. Mohammadi S, Khalilzadeh S, Goudarzipour K, Hassanzad M, Mahdaviani A, Aarabi N, et al. Bronchoalveolar galactomannan in invasive pulmonary aspergillosis: a prospective study in pediatric patients. Med Mycol. 2015;53(7):709–16.

    Article  PubMed  CAS  Google Scholar 

  324. He S, Hang JP, Zhang L, Wang F, Zhang DC, Gong FH. A systematic review and meta-analysis of diagnostic accuracy of serum 1,3-beta-D-glucan for invasive fungal infection: focus on cutoff levels. J Microbiol Immunol Infect. 2015;48(4):351–61.

    Article  PubMed  CAS  Google Scholar 

  325. Egger M, Pruller F, Raggam R, Divjak MK, Kurath-Koller S, Lackner H, et al. False positive serum levels of (1-3)-ss-D-Glucan after infusion of intravenous immunoglobulins and time to normalisation. J Infect. 2018;76(2):206–10.

    Article  PubMed  CAS  Google Scholar 

  326. Liss B, Cornely OA, Hoffmann D, Dimitriou V, Wisplinghoff H. 1,3-ss-D-glucan concentrations in blood products predict false positive post-transfusion results. Mycoses. 2016;59(1):39–42.

    Article  PubMed  CAS  Google Scholar 

  327. Goudjil S, Chazal C, Moreau F, Leke A, Kongolo G, Chouaki T. Blood product transfusions are associated with an increase in serum (1-3)-beta-d-glucan in infants during the initial hospitalization in neonatal intensive care unit (NICU). J Matern Fetal Neonatal Med. 2017;30(8):933–7.

    Article  PubMed  CAS  Google Scholar 

  328. Calitri C, Caviglia I, Cangemi G, Furfaro E, Bandettini R, Fioredda F, et al. Performance of 1,3-beta-D-glucan for diagnosing invasive fungal diseases in children. Mycoses. 2017;60(12):789–95.

    Article  PubMed  CAS  Google Scholar 

  329. Shabaan AE, Elbaz LM, El-Emshaty WM, Shouman B. Role of serum 1,3beta-d-glucan assay in early diagnosis of invasive fungal infections in a neonatal intensive care unit. J Pediatr (Rio J). 2018;94(5):559–65.

    Article  Google Scholar 

  330. Shi XY, Liu Y, Gu XM, Hao SY, Wang YH, Yan D, et al. Diagnostic value of (1 --> 3)-beta-D-glucan in bronchoalveolar lavage fluid for invasive fungal disease: a meta-analysis. Respir Med. 2016;117:48–53.

    Article  PubMed  Google Scholar 

  331. Salerno D, Mushatt D, Myers L, Zhuang Y, de la Rua N, Calderon EJ, et al. Serum and bal beta-D-glucan for the diagnosis of Pneumocystis pneumonia in HIV positive patients. Respir Med. 2014;108(11):1688–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  332. Maguire JH. Introduction to helminth infections. In: Bennett J, Dolin R, Blaser M, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Elsevier; 2015.

    Google Scholar 

  333. Korpe PS, Ravdin JI, Petri WA. Introduction to protozoal diseases. In: Bennett J, Dolin R, Blaser M, editors. Mandell, Douglas, and Bennett’s principles and practice of infectious diseases. 8th ed. Philadelphia, PA: Elsevier; 2015.

    Google Scholar 

  334. Taylor WRJ, Hanson J, Turner GDH, White NJ, Dondorp AM. Respiratory manifestations of malaria. Chest. 2012;142(2):492–505.

    Article  PubMed  Google Scholar 

  335. de Souza GK, Costa AN, Apanavicius A, Teixeira FB, Fernandes CJ, Helito AS, et al. Tomographic findings of acute pulmonary toxoplasmosis in immunocompetent patients. BMC Pulm Med. 2014;14:185.

    Article  Google Scholar 

  336. Rey MF, Mary C, Sanguinetti D, Ranque S, Bartoli C, L’Ollivier C. Successful treatment of pulmonary and cerebral toxoplasmosis associated with pneumocystis pneumonia in an HIV patient. Diseases (Basel). 2017;5(4):35.

    Article  Google Scholar 

  337. Sumi M, Norose K, Hikosaka K, Kaiume H, Takeda W, Kirihara T, et al. Clinical characteristics and computed tomography findings of pulmonary toxoplasmosis after hematopoietic stem cell transplantation. Int J Hematol. 2016;104(6):729–40.

    Article  PubMed  Google Scholar 

  338. Roth A, Roth B, Hoffken G, Steuber S, Khalifa KI, Janitschke K. Application of the polymerase chain reaction in the diagnosis of pulmonary toxoplasmosis in immunocompromised patients. Eur J Clin Microbiol Infect Dis. 1992;11(12):1177–81.

    Article  PubMed  CAS  Google Scholar 

  339. Diehl AR, Dos Santos RP, Zimmerman R, Luz PL, Weiss T, Jacobson P, et al. Microscopy and polymerase chain reaction detection of Leishmania chagasi in the pleural and ascitic fluid of a patient with AIDS: case report and review of diagnosis and therapy of visceral leishmaniasis. Can J Infect Dis Med Microbiol. 2004;15(4):231–4.

    Article  PubMed  PubMed Central  Google Scholar 

  340. Zakaria A, Al-Share B, Al Asad K. Primary pulmonary amebiasis complicated with multicystic empyema. Case Rep Pulmonol. 2016;2016:8709347.

    PubMed  PubMed Central  Google Scholar 

  341. Shamsuzzaman SM, Hashiguchi Y. Thoracic amebiasis. Clin Chest Med. 2002;23(2):479–92.

    Article  PubMed  CAS  Google Scholar 

  342. Cunha BA, Nausheen S, Szalda D. Pulmonary complications of babesiosis: case report and literature review. Euro J Clin Microbiol Infect Dis. 2007;26(7):505–8.

    Article  CAS  Google Scholar 

  343. Cheepsattayakorn A, Cheepsattayakorn R. Parasitic pneumonia and lung involvement. Biomed Res Int. 2014;2014:874021.

    Article  PubMed  PubMed Central  Google Scholar 

  344. Vasilakopoulou A, Dimarongona K, Samakovli A, Papadimitris K, Avlami A. Balantidium coli pneumonia in an immunocompromised patient. Scand J Infect Dis. 2003;35(2):144–6.

    Article  PubMed  Google Scholar 

  345. Anargyrou K, Petrikkos GL, Suller MT, Skiada A, Siakantaris MP, Osuntoyinbo RT, et al. Pulmonary Balantidium coli infection in a leukemic patient. Am J Hematol. 2003;73(3):180–3.

    Article  PubMed  CAS  Google Scholar 

  346. Reina FT, Ribeiro CA, Araujo RS, Matte MH, Castanho RE, Tanaka II, et al. Intestinal and pulmonary infection by Cryptosporidium parvum in two patients with HIV/AIDS. Rev Inst Med Trop Sao Paulo. 2016;58:21.

    Article  PubMed  PubMed Central  Google Scholar 

  347. Poirot JL, Deluol AM, Antoine M, Heyer F, Cadranel J, Meynard JL, et al. Broncho-pulmonary cryptosporidiosis in four HIV-infected patients. J Eukaryot Microbiol. 1996;43(5):78s–9s.

    Article  PubMed  CAS  Google Scholar 

  348. Lanzafame M, Bonora S, Di Perri G, Allegranzi B, Guasparri I, Cazzadori A, et al. Microsporidium species in pulmonary cavitary lesions of AIDS patients infected with Rhodococcus equi. Clin Infect Dis. 1997;25(4):926–7.

    Article  PubMed  CAS  Google Scholar 

  349. Yao G, Zhou B, Zeng L. Imaging characteristics of bronchopulmonary Lophomonas blattarum infection: case report and literature review. J Thorac Imaging. 2009;24(1):49–51.

    Article  PubMed  Google Scholar 

  350. Saldana NG, Mendoza FJO, Larrauri FR, Trujillo DMG, Montoya EV, De La Garza EA, et al. Bronchopulmonary infection by Lophomonas blattarum in a pediatric patient after hematopoietic progenitor cell transplantation: first report in Mexico. J Thorac Dis. 2017;9(10):E899–e902.

    Article  PubMed  PubMed Central  Google Scholar 

  351. Zhang X, Xu L, Wang LL, Liu S, Li J, Wang X. Bronchopulmonary infection with Lophomonas blattarum: a case report and literature review. J Int Med Res. 2011;39(3):944–9.

    Article  PubMed  CAS  Google Scholar 

  352. Barratt JL, Harkness J, Marriott D, Ellis JT, Stark D. Importance of nonenteric protozoan infections in immunocompromised people. Clin Microbiol Rev. 2010;23(4):795–836.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  353. Schwartz C, Hams E, Fallon PG. Helminth modulation of lung inflammation. Trends Parasitol. 2018;34(5):388–403.

    Article  PubMed  CAS  Google Scholar 

  354. Craig JM, Scott AL. Helminths in the lungs. Parasite Immunol. 2014;36(9):463–74.

    Article  PubMed  CAS  Google Scholar 

  355. Loukas A, Hotez PJ, Diemert D, Yazdanbakhsh M, McCarthy JS, Correa-Oliveira R, et al. Hookworm infection. Nat Rev Dis Primers. 2016;2:16088.

    Article  PubMed  Google Scholar 

  356. Allen J, Wert M. Eosinophilic Pneumonias. J Allergy Clin Immunol Pract. 2018;6(5):1455–61.

    Article  PubMed  Google Scholar 

  357. Pavlin BI, Kozarsky P, Cetron MS. Acute pulmonary schistosomiasis in travelers: case report and review of the literature. Travel Med Infect Dis. 2012;10(5–6):209–19.

    Article  PubMed  Google Scholar 

  358. Schwartz E. Pulmonary schistosomiasis. Clin Chest Med. 2002;23(2):433–43.

    Article  PubMed  Google Scholar 

  359. Dantas-Torres F, Otranto D. Dirofilariosis in the Americas: a more virulent Dirofilaria immitis? Parasit Vectors. 2013;6(1):288.

    Article  PubMed  PubMed Central  Google Scholar 

  360. Li CY, Chang YL, Lee YC. Human pulmonary dirofilariasis coexisting with intercostal neurilemmoma: a case report and literature review. J Formos Med Assoc. 2013;112(10):644–7.

    Article  PubMed  Google Scholar 

  361. Park KH, Kim YS, Kim SK, Choi NC, Kwon OY, Lim B, et al. Toxocara canis-associated myelitis with eosinophilic pneumonia. Exp Neurobiol. 2016;25(3):139–42.

    Article  PubMed  PubMed Central  Google Scholar 

  362. Mazur-Melewska K, Jonczyk-Potoczna K, Kemnitz P, Mania A, Figlerowicz M, Sluzewski W. Pulmonary presentation of Toxocara sp. infection in children. Pneumonol Alergol Pol. 2015;83(4):250–5.

    PubMed  Google Scholar 

  363. Blair D. Paragonimiasis. Adv Exp Med Biol. 2014;766:115–52.

    Article  PubMed  Google Scholar 

  364. Lamberton PH, Jourdan PM. Human ascariasis: diagnostics update. Curr Trop Med Rep. 2015;2(4):189–200.

    Article  PubMed  PubMed Central  Google Scholar 

  365. Gupta N, Ray A, Ghosh S, Malla S, Vyas S. First things first: Importance of eosinophil count in diagnosing occult parasites. Drug Discov Ther. 2018;12(1):55–7.

    Article  PubMed  Google Scholar 

  366. Kilic D, Tercan F, Sahin E, Bilen A, Hatipoglu A. Unusual radiologic manifestations of the echinococcus infection in the thorax. J Thorac Imaging. 2006;21(1):32–6.

    Article  PubMed  Google Scholar 

  367. Vaideeswar P, Agnihotri MA, Hira P. Unusual manifestations of pleuro-pulmonary hydatidosis. Indian J Pathol Microbiol. 2012;55(1):111–2.

    Article  PubMed  Google Scholar 

  368. Sarkar M, Pathania R, Jhobta A, Thakur BR, Chopra R. Cystic pulmonary hydatidosis. Lung India. 2016;33(2):179–91.

    Article  PubMed  PubMed Central  Google Scholar 

  369. Ali SR, Mehta AC. Alive in the airways: live endobronchial foreign bodies. Chest. 2017;151(2):481–91.

    Article  PubMed  Google Scholar 

  370. Gan RW, Gohil R, Belfield K, Davies P, Daniel M. Acute airway obstruction by Ascaris lumbricoides in a 14-month-old boy. Int J Pediatr Otorhinolaryngol. 2014;78(10):1795–8.

    Article  PubMed  Google Scholar 

  371. Bailey JK, Warner P. Respiratory arrest from Ascaris lumbricoides. Pediatrics. 2010;126(3):e712–5.

    Article  PubMed  Google Scholar 

  372. Nabeya D, Haranaga S, Parrott GL, Kinjo T, Nahar S, Tanaka T, et al. Pulmonary strongyloidiasis: assessment between manifestation and radiological findings in 16 severe strongyloidiasis cases. BMC Infect Dis. 2017;17(1):320.

    Article  PubMed  PubMed Central  Google Scholar 

  373. Alsharif A, Sodhi A, Murillo LC, Headley AS, Kadaria D. Wait!!! no steroids for this asthma. Am J Case Rep. 2015;16:398–400.

    Article  PubMed  PubMed Central  Google Scholar 

  374. Rajapurkar M, Hegde U, Rokhade M, Gang S, Gohel K. Respiratory hyperinfection with Strongyloides stercoralis in a patient with renal failure. Nat Clin Pract Nephrol. 2007;3(10):573–7.

    Article  PubMed  Google Scholar 

  375. Pozio E, Gomez Morales MA, Dupouy-Camet J. Clinical aspects, diagnosis and treatment of trichinellosis. Expert Rev Anti Infect Ther. 2003;1(3):471–82.

    Article  PubMed  CAS  Google Scholar 

  376. Genetu Bayih A, Debnath A, Mitre E, Huston CD, Laleu B, Leroy D, et al. Susceptibility testing of medically important parasites. Clin Microbiol Rev. 2017;30(3):647–69.

    Article  PubMed  PubMed Central  Google Scholar 

  377. Buonfrate D, Requena-Mendez A, Angheben A, Cinquini M, Cruciani M, Fittipaldo A, et al. Accuracy of molecular biology techniques for the diagnosis of Strongyloides stercoralis infection-a systematic review and meta-analysis. PLoS Negl Trop Dis. 2018;12(2):e0006229.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  378. Schijman AG. Molecular diagnosis of Trypanosoma cruzi. Acta Trop. 2018;184:59–66.

    Article  PubMed  CAS  Google Scholar 

  379. Amir A, Cheong FW, De Silva JR, Lau YL. Diagnostic tools in childhood malaria. Parasit Vectors. 2018;11(1):53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  380. Singh R, Singh DP, Gupta R, Savargaonkar D, Singh OP, Nanda N, et al. Comparison of three PCR-based assays for the non-invasive diagnosis of malaria: detection of Plasmodium parasites in blood and saliva. Euro J Clin Microbiol Infect Dis. 2014;33(9):1631–9.

    Article  CAS  Google Scholar 

  381. Murat JB, Hidalgo HF, Brenier-Pinchart MP, Pelloux H. Human toxoplasmosis: which biological diagnostic tests are best suited to which clinical situations? Expert Rev Anti Infect Ther. 2013;11(9):943–56.

    Article  PubMed  CAS  Google Scholar 

  382. Adeyemo FE, Singh G, Reddy P, Stenstrom TA. Methods for the detection of Cryptosporidium and Giardia: from microscopy to nucleic acid based tools in clinical and environmental regimes. Acta Trop. 2018;184:15–28.

    Article  PubMed  CAS  Google Scholar 

  383. Garcia LS, Arrowood M, Kokoskin E, Paltridge GP, Pillai DR, Procop GW, et al. Laboratory diagnosis of parasites from the gastrointestinal tract. Clin Microbiol Rev. 2018;31(1):e00025–17.

    Article  PubMed  Google Scholar 

  384. Boland JM, Pritt BS. Histopathology of parasitic infections of the lung. Semin Diagn Pathol. 2017;34(6):550–9.

    Article  PubMed  Google Scholar 

  385. Zhu H, Min X, Li S, Feng M, Zhang G, Yi X. Amebic lung abscess with coexisting lung adenocarcinoma: a unusual case of amebiasis. Int J Clin Exp Pathol. 2014;7(11):8251–4.

    PubMed  PubMed Central  Google Scholar 

  386. Hizem A, M’rad S, Oudni-M’rad M, Mestiri S, Hammedi F, Mezhoud H, et al. Molecular genotyping of Echinococcus granulosus using formalin-fixed paraffin-embedded preparations from human isolates in unusual tissue sites. J Helminthol. 2016;90(4):417–21.

    Article  PubMed  CAS  Google Scholar 

  387. Rivasi F, Boldorini R, Criante P, Leutner M, Pampiglione S. Detection of Dirofilaria (Nochtiella) repens DNA by polymerase chain reaction in embedded paraffin tissues from two human pulmonary locations. APMIS. 2006;114(7–8):567–74.

    PubMed  Google Scholar 

  388. Gobbi F, Formenti F, Perandin F, Buonfrate D, Angheben A, Paiano S, et al. Real-time polymerase chain reaction assay on bronchoalveolar lavage: an alternative method for diagnosing chronic pulmonary schistosomiasis? Am J Trop Med Hyg. 2017;97(6):1808–9.

    Article  PubMed  PubMed Central  Google Scholar 

  389. Izadi M, Jonaidi Jafari N, Mahmoodzadeh Poornaki A, Sadraei J, Rezavand B, Mirzaei HR, et al. Detection of Toxoplasma gondii from clinical specimens of patients receiving renal transplant using ELISA and PCR. Nephrourol Mon. 2013;5(5):983–7.

    Article  PubMed  PubMed Central  Google Scholar 

  390. Özkoç S, Bayram Delibaş S, Akısü Ç. Evaluation of pulmonary microsporidiosis in iatrogenically immunosuppressed patients. Tuberk Toraks. 2016;64(1):9–16.

    Article  PubMed  Google Scholar 

  391. Desoubeaux G, Cabanne E, Franck-Martel C, Gombert M, Gyan E, Lissandre S, et al. Pulmonary toxoplasmosis in immunocompromised patients with interstitial pneumonia: a single-centre prospective study assessing PCR-based diagnosis. J Clin Pathol. 2016;69(8):726–30.

    Article  PubMed  CAS  Google Scholar 

  392. Montresor A, Crompton DWT, Hall A, Bundy DAP, Savioli L. Guidelines for the evaluation of soil-transmitted helminthiasis and schistosomiasis at community level: a guide for managers of control programmes. Geneva: World Health Organization; 1998.

    Google Scholar 

  393. Itoh N, Tsukahara M, Yamasaki H, Morishima Y, Sugiyama H, Kurai H. Paragonimus westermani infection mimicking recurrent lung cancer: a case report. J Infect Chemother. 2016;22(12):815–8.

    Article  PubMed  Google Scholar 

  394. Guerrero-Wooley R, Aranda-Aguirre E, Li W, Wilkin A, Palavecino E. Case report: Strongyloides stercoralis hyperinfection in a patient with chronic lymphocytic leukemia. Am J Trop Med Hyg. 2017;97(5):1629–31.

    Article  PubMed  PubMed Central  Google Scholar 

  395. Wang LF, Xu L, Luo SQ, Xie H, Chen W, Wu ZD, et al. Diagnosis of Strongyloides stercoralis by morphological characteristics combine with molecular biological methods. Parasitol Res. 2017;116(4):1159–63.

    Article  PubMed  Google Scholar 

  396. Kinjo T, Tsuhako K, Nakazato I, Ito E, Sato Y, Koyanagi Y, et al. Extensive intra-alveolar haemorrhage caused by disseminated strongyloidiasis. Int J Parasitol. 1998;28(2):323–30.

    Article  PubMed  CAS  Google Scholar 

  397. Tanyuksel M, Petri WA Jr. Laboratory diagnosis of amebiasis. Clin Microbiol Rev. 2003;16(4):713–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  398. Chaudhry IU, Manah W, Alghamdi M, Mutairi H. A rare cause of asymptomatic solitary pulmonary nodule: adult Schistosoma worm. BMJ Case Rep. 2014;2014:bcr2013202840.

    Article  PubMed  PubMed Central  Google Scholar 

  399. Yasar Z, Acat M, Turgut E, Onaran H, Dincer HE, Arda N, et al. Diagnosis of pulmonary hydatid cyst by bronchoscopy. J Bronchology Interv Pulmonol. 2015;22(4):343–6.

    Article  PubMed  Google Scholar 

  400. Komurcuoglu B, Ozkaya S, Cirak AK, Yalniz E, Polat G. Pulmonary hydatid cyst: the characteristics of patients and diagnostic efficacy of bronchoscopy. Exp Lung Res. 2012;38(6):277–80.

    Article  PubMed  Google Scholar 

  401. Prasad R, Goel MK, Mukerji PK, Agarwal PK. Microfilaria in bronchial aspirate. Indian J Chest Dis Allied Sci. 1994;36(4):223–5.

    PubMed  CAS  Google Scholar 

  402. Anupindi L, Sahoo R, Rao RV, Verghese G, Rao PV. Microfilariae in bronchial brushing cytology of symptomatic pulmonary lesions. A report of two cases. Acta Cytol. 1993;37(3):397–9.

    PubMed  CAS  Google Scholar 

  403. Cui L, Morris A, Huang L, Beck JM, Twigg HL 3rd, von Mutius E, et al. The microbiome and the lung. Ann Am Thorac Soc. 2014;11(Suppl 4):S227–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  404. Pendleton KM, Erb-Downward JR, Bao Y, Branton WR, Falkowski NR, Newton DW, et al. Rapid pathogen identification in bacterial pneumonia using real-time metagenomics. Am J Respir Crit Care Med. 2017;196(12):1610–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  405. Dickson RP, Erb-Downward JR, Prescott HC, Martinez FJ, Curtis JL, Lama VN, et al. Analysis of culture-dependent versus culture-independent techniques for identification of bacteria in clinically obtained bronchoalveolar lavage fluid. J Clin Microbiol. 2014;52(10):3605–13.

    Article  PubMed  PubMed Central  Google Scholar 

  406. Marsh RL, Kaestli M, Chang AB, Binks MJ, Pope CE, Hoffman LR, et al. The microbiota in bronchoalveolar lavage from young children with chronic lung disease includes taxa present in both the oropharynx and nasopharynx. Microbiome. 2016;4(1):37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  407. Marsh RL, Smith-Vaughan HC, Chen ACH, Marchant JM, Yerkovich ST, Gibson PG, et al. Multiple respiratory microbiota profiles are associated with lower airway inflammation in children with protracted bacterial bronchitis. Chest. 2019;155(4):778–86.

    Article  PubMed  Google Scholar 

  408. Zemanick ET, Wagner BD, Robertson CE, Ahrens RC, Chmiel JF, Clancy JP, et al. Airway microbiota across age and disease spectrum in cystic fibrosis. Eur Respir J. 2017;50(5):1700832.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  409. Harris JK, De Groote MA, Sagel SD, Zemanick ET, Kapsner R, Penvari C, et al. Molecular identification of bacteria in bronchoalveolar lavage fluid from children with cystic fibrosis. Proc Natl Acad Sci U S A. 2007;104(51):20529–33.

    Article  PubMed  PubMed Central  Google Scholar 

  410. Prevaes SM, de Winter-de Groot KM, Janssens HM, de Steenhuijsen Piters WA, Tramper-Stranders GA, Wyllie AL, et al. Development of the nasopharyngeal microbiota in infants with cystic fibrosis. Am J Respir Crit Care Med. 2016;193(5):504–15.

    Article  PubMed  CAS  Google Scholar 

  411. Renwick J, McNally P, John B, DeSantis T, Linnane B, Murphy P, et al. The microbial community of the cystic fibrosis airway is disrupted in early life. PLoS One. 2014;9(12):e109798.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  412. Blainey PC, Milla CE, Cornfield DN, Quake SR. Quantitative analysis of the human airway microbial ecology reveals a pervasive signature for cystic fibrosis. Sci Transl Med. 2012;4(153):153ra30.

    Article  CAS  Google Scholar 

  413. Zemanick ET, Wagner BD, Robertson CE, Stevens MJ, Szefler SJ, Accurso FJ, et al. Assessment of airway microbiota and inflammation in cystic fibrosis using multiple sampling methods. Ann Am Thorac Soc. 2015;12(2):221–9.

    Article  PubMed  PubMed Central  Google Scholar 

  414. Boutin S, Graeber SY, Weitnauer M, Panitz J, Stahl M, Clausznitzer D, et al. Comparison of microbiomes from different niches of upper and lower airways in children and adolescents with cystic fibrosis. PLoS One. 2015;10(1):e0116029.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  415. Rogers GB, Carroll MP, Serisier DJ, Hockey PM, Jones G, Kehagia V, et al. Use of 16S rRNA gene profiling by terminal restriction fragment length polymorphism analysis to compare bacterial communities in sputum and mouthwash samples from patients with cystic fibrosis. J Clin Microbiol. 2006;44(7):2601–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  416. Brown PS, Pope CE, Marsh RL, Qin X, McNamara S, Gibson R, et al. Directly sampling the lung of a young child with cystic fibrosis reveals diverse microbiota. Ann Am Thorac Soc. 2014;11(7):1049–55.

    Article  PubMed  PubMed Central  Google Scholar 

  417. Dickson RP, Erb-Downward JR, Freeman CM, McCloskey L, Falkowski NR, Huffnagle GB, et al. Bacterial topography of the healthy human lower respiratory tract. MBio. 2017;8(1):e02287–16.

    Article  PubMed  PubMed Central  Google Scholar 

  418. Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, et al. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio. 2015;6(2):e00037.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  419. Charlson ES, Bittinger K, Haas AR, Fitzgerald AS, Frank I, Yadav A, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011;184(8):957–63.

    Article  PubMed  PubMed Central  Google Scholar 

  420. Charlson ES, Bittinger K, Chen J, Diamond JM, Li H, Collman RG, et al. Assessing bacterial populations in the lung by replicate analysis of samples from the upper and lower respiratory tracts. PLoS One. 2012;7(9):e42786.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  421. Nguyen LD, Viscogliosi E, Delhaes L. The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol. 2015;6:89.

    Article  PubMed  PubMed Central  Google Scholar 

  422. Bousbia S, Papazian L, Saux P, Forel JM, Auffray JP, Martin C, et al. Repertoire of intensive care unit pneumonia microbiota. PLoS One. 2012;7(2):e32486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  423. McTaggart LR, Copeland JK, Surendra A, Wang PW, Husain S, Coburn B, et al. Mycobiome sequencing and analysis applied to fungal community profiling of the lower respiratory tract during fungal pathogenesis. Front Microbiol. 2019;10:512.

    Article  PubMed  PubMed Central  Google Scholar 

  424. Bittinger K, Charlson ES, Loy E, Shirley DJ, Haas AR, Laughlin A, et al. Improved characterization of medically relevant fungi in the human respiratory tract using next-generation sequencing. Genome Biol. 2014;15(10):487.

    Article  PubMed  PubMed Central  Google Scholar 

  425. Charlson ES, Diamond JM, Bittinger K, Fitzgerald AS, Yadav A, Haas AR, et al. Lung-enriched organisms and aberrant bacterial and fungal respiratory microbiota after lung transplant. Am J Respir Crit Care Med. 2012;186(6):536–45.

    Article  PubMed  PubMed Central  Google Scholar 

  426. Cui L, Lucht L, Tipton L, Rogers MB, Fitch A, Kessinger C, et al. Topographic diversity of the respiratory tract mycobiome and alteration in HIV and lung disease. Am J Respir Crit Care Med. 2015;191(8):932–42.

    Article  PubMed  PubMed Central  Google Scholar 

  427. Halwachs B, Madhusudhan N, Krause R, Nilsson RH, Moissl-Eichinger C, Hogenauer C, et al. Critical issues in mycobiota analysis. Front Microbiol. 2017;8:180.

    Article  PubMed  PubMed Central  Google Scholar 

  428. Krause R, Halwachs B, Thallinger GG, Klymiuk I, Gorkiewicz G, Hoenigl M, et al. Characterisation of candida within the mycobiome/microbiome of the lower respiratory tract of ICU patients. PLoS One. 2016;11(5):e0155033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  429. Krause R, Moissl-Eichinger C, Halwachs B, Gorkiewicz G, Berg G, Valentin T, et al. Mycobiome in the lower respiratory tract - a clinical perspective. Front Microbiol. 2016;7:2169.

    PubMed  Google Scholar 

  430. Fraczek MG, Chishimba L, Niven RM, Bromley M, Simpson A, Smyth L, et al. Corticosteroid treatment is associated with increased filamentous fungal burden in allergic fungal disease. J Allergy Clin Immunol. 2018;142(2):407–14.

    Article  PubMed  CAS  Google Scholar 

  431. Young JC, Chehoud C, Bittinger K, Bailey A, Diamond JM, Cantu E, et al. Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients. Am J Transplant. 2015;15(1):200–9.

    Article  PubMed  CAS  Google Scholar 

  432. Lewandowska DW, Schreiber PW, Schuurmans MM, Ruehe B, Zagordi O, Bayard C, et al. Metagenomic sequencing complements routine diagnostics in identifying viral pathogens in lung transplant recipients with unknown etiology of respiratory infection. PLoS One. 2017;12(5):e0177340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  433. Langelier C, Zinter MS, Kalantar K, Yanik GA, Christenson S, O’Donovan B, et al. Metagenomic sequencing detects respiratory pathogens in hematopoietic cellular transplant patients. Am J Respir Crit Care Med. 2018;197(4):524–8.

    Article  PubMed  PubMed Central  Google Scholar 

  434. Zinter MS, Dvorak CC, Mayday MY, Iwanaga K, Ly NP, McGarry ME, et al. Pulmonary metagenomic sequencing suggests missed infections in immunocompromised children. Clin Infect Dis. 2019;68(11):1847–55.

    Article  PubMed  CAS  Google Scholar 

  435. Mitchell AB, Oliver BG, Glanville AR. Translational aspects of the human respiratory virome. Am J Respir Crit Care Med. 2016;194(12):1458–64.

    Article  PubMed  CAS  Google Scholar 

  436. Yang J, Yang F, Ren L, Xiong Z, Wu Z, Dong J, et al. Unbiased parallel detection of viral pathogens in clinical samples by use of a metagenomic approach. J Clin Microbiol. 2011;49(10):3463–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  437. Wylie KM, Mihindukulasuriya KA, Sodergren E, Weinstock GM, Storch GA. Sequence analysis of the human virome in febrile and afebrile children. PLoS One. 2012;7(6):e27735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  438. Zoll J, Rahamat-Langendoen J, Ahout I, de Jonge MI, Jans J, Huijnen MA, et al. Direct multiplexed whole genome sequencing of respiratory tract samples reveals full viral genomic information. J Clin Virol. 2015;66:6–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  439. Wang Y, Zhu N, Li Y, Lu R, Wang H, Liu G, et al. Metagenomic analysis of viral genetic diversity in respiratory samples from children with severe acute respiratory infection in China. Clin Microbiol Infect. 2016;22(5):458 e1–9.

    Article  Google Scholar 

  440. Zhou Y, Fernandez S, Yoon IK, Simasathien S, Watanaveeradej V, Yang Y, et al. Metagenomics study of viral pathogens in undiagnosed respiratory specimens and identification of human enteroviruses at a Thailand Hospital. Am J Trop Med Hyg. 2016;95(3):663–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Downes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Downes, K.J., Bouso, J.M., Planet, P.J. (2021). Bronchoalveolar Lavage: Microbial Evaluation. In: Goldfarb, S., Piccione, J. (eds) Diagnostic and Interventional Bronchoscopy in Children. Respiratory Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-54924-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54924-4_9

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-54923-7

  • Online ISBN: 978-3-030-54924-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics