Skip to main content

The Genesis of the Modern Amazon River Basin and Andean Uplift and Their Roles in Mammalian Diversification

  • Chapter
  • First Online:
History of Terrestrial Mammals in South America

Part of the book series: Topics in Geobiology ((TGBI,volume 42))

Abstract

This chapter discusses the origin of the Amazon basin and Andean uplift and their roles in mammalian evolution. Information is still sparse, due to taphonomic difficulties for fossil recovery and the widespread, deep covering of recent reworked sedimentary soils in a moist tropical, acid soil environment, but lately especially new finds of earliest rodent and primate fossils have added to our knowledge of how the tropical regions have played a large role in South American mammalian evolution, evidently through many different mechanisms. The process by which the great river was originally established is an important theme discussed as well as what the conditions must have been to allow invading mammals of open country and savannah from the north to arrive at the southernmost parts of the continent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleixo A (2004) Historical diversification of a terra-firme forest bird superspecies: a phylogeography perspective on the role of different hypotheses of Amazonian diversification. Evolution 58:1303–1317

    Article  Google Scholar 

  • Aleixo A, de Fatima Rossetti D (2007) Avian gene trees, landscape evolution, and geology: towards a modern synthesis of Amazonian historical biogeography. J Ornithol 148(Suppl 2):S443–S453

    Article  Google Scholar 

  • Anon (2009) How old is the Amazon River? University of Amsterdam Press release. http://www.uva.nl/en/content/news/press-releases/2017/03/amazon-river-no-younger-than-9-million-years-new-study-shows.html?page=1&pageSize=200&origin=zvuyIF7VQlmbnXJokCBg7g

  • Antoine PO, Maarivaux L, Croft DA, Billet G et al. (2011) Middle Eocene rodents from Peruvian Amazonia reveal the pattern and timing of caviomorph origins and biogeography. Proc R Soc B 279:1319–1326. https://doi.org/10.1098/rspb.2011.1732

    Article  Google Scholar 

  • Antoine PO, Roddaz M, Brichau S, Tejada-Lara J, Salas-Gismondi R, et al. (2013) Middle Miocene vertebrates from the Amazonian Madre de Dios Subandean Zone, Peru. J S Am Earth Sci 42:91–102

    Article  Google Scholar 

  • Antoine PO, Salas-ismondi R, Puos F, Ganerød M, Marivaux L (2017) Western Amazonia as a hotspot of mammalian biodviersity throught the Cenozoic. J Mamm Evol 24(1):5–17

    Google Scholar 

  • Antonelli A, Quijada-Nascareñas A, Crawford AJ, Bates JM, Velazco PM, Wüster W (2010) Molecular studies and phylogeography of Amazonian tetrapods and their relation to geological and climatic models. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 386–417

    Google Scholar 

  • Arita HT, Vásquez-Dominguez E (2008) The tropics; cradle, museum or casino? A dynamic null model for latitudinal gradients of species diversity. Ecol Lett 11:1–12. https://doi.org/10.1111/j.1461-0248.2008.01197.x

    Article  Google Scholar 

  • Ayres JM, Clutton-Brock TH (1992) River boundaries and species range size in Amazonian primates. Am Nat 140(3):531–537

    Article  Google Scholar 

  • Behling H, Bush M, Hooghiemstra H (2010) Biotic development of Quaternary Amazonia: a palynological perspective. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 335–348

    Google Scholar 

  • Bennett KD (1990) Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology 16(1):11–21

    Article  Google Scholar 

  • Bloch JI, Woodruff ED, Wood AR, Rincon AF et al (2016) First North American fossil monkey and early Miocene tropical biotic interchange. Nature 533:213–228. https://doi.org/10.1038/nature17415

    Article  Google Scholar 

  • Bond M, Tejedor MF, Campbell KE Jr, Chornogubsky L, Novo N, Goin F (2015) Eocene primates of South America and the African origins of New World monkeys. Nature 520:538

    Article  Google Scholar 

  • Burnham RJ, Granam A (1999) The history of Neotropical vegetation: new developments and status. Ann Mo Bot Gard 86:546–589

    Article  Google Scholar 

  • Burnham RJ, Johnson KR (2004) South American palaeobotany and the origins of neotropical rainforests. Philos Trans R Soc Lond B 359:1595–1610

    Article  Google Scholar 

  • Bush GL (1975) Modes of animal speciation. Annu Rev Ecol Syst 6:339–364

    Article  Google Scholar 

  • Bush GL, Case SM, Wilson AC et al. (1977) Rapid speciation and chromosomal evolution in mammals. Proc Natl Acad Sci USA 74(9):3942–3946

    Article  Google Scholar 

  • Bush MB, Gosling WD, Colinvaux PA (2011) Climate change in the lowlands of the Amazon basin. In: Bush M, Flenley J, Gosling W (eds) Tropical rainforest responses to climatic change. Springer, New York, pp 61–84

    Chapter  Google Scholar 

  • Campbell KE (ed) (2004a) The Paleogene Mammalian Fauna of Santa Rosa, Amazonian Peru. Natural History Museum of Los Angeles County, Los Angeles

    Google Scholar 

  • Campbell KE (2004b) The Santa Rosa local fauna: a summary. In: Campbell KE (ed) The Paleogene Mammalian Fauna of Santa Rosa, Amazoniana Peru. Natural History Museum of Los Angeles County, Los Angeles, pp 155–163

    Google Scholar 

  • Campbell KE Jr, Frailey CD (1984) Holocene flooding and species diversity in southwestern Amazonia. Quat Res 21:369–375

    Article  Google Scholar 

  • Campbell KE Jr, Frailey CD, Romero-Pittman L (2000) The late Miocene gomphothere Amahuacatherium peruvium (Proboscidea: Gomphotheriidae) from Amazonian Peru: implications for the great American faunal interchange. Instituto Geológico Minero y Metalúrgico, Boletín, Série D, Estudios Regionales 23:1–152

    Google Scholar 

  • Campbell KE Jr, Heizler M, Frailey CD, Romero-Pittman L, Prothero DR (2001) Upper Cenozoic chronostratigraphy of the southwestern Amazon Basin. Geology 29(7):595–598. https://doi.org/10.1130/0091-7613(2001)029<0595:UCCOTS>2.0.CO;2

    Article  Google Scholar 

  • Campbell KE Jr, Frailey CD, Romero-Pittman L (2006) The pan-Amazonian Ucayali peneplain, late Neogene sedimentation in Amazonia, and the birth of the modern Amazon River system. Palaeogeogr Palaeoclimatol Palaeoecol 239:166–219

    Article  Google Scholar 

  • Capparella A (1988) Genetic variation in Neotropical birds: implications for the speciation process. Cong Int Ornith 19. Acta 2:1658–1664

    Google Scholar 

  • Carrillo JD, Forasiepi A, Jaramillo C, Sánchez-Villagra MR (2015) Neotropical mammal diversity and the great American biotic interchange: spatial and temporal variation in South America’s fossil record. Front Genet 5(451). https://doi.org/10.3389/fgene.2014.00451

  • Colinvaux P (1998) A new vicariance model for Amazonian endemics. Global Ecol Biogeogr Lett 7(2):95–99

    Article  Google Scholar 

  • Colinvaux PA, Liu K-B, de Oliveira PE, Bush MB, Miller MC, Steinitz Kannan M (1996) Temperature depression in the lowland tropics in glacial times. Clim Chang 32:19–33

    Article  Google Scholar 

  • Cowling SA, Maslin MA, Sykes MT (2001) Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quat Res (55):140–149

    Article  Google Scholar 

  • Cozzuol MA (2006) The Acre vertebrate fauna: age, diversity, and geography. J S Am Earth Sci 21:185–203

    Article  Google Scholar 

  • Croft D (2007) The Middle Miocene (Laventan) Quebrada Honda fauna, southern Bolivia and a description of its notoungulates. Palaeontology 59(1):277–303

    Article  Google Scholar 

  • Croft D (2016) Horned armadillos and rafting monkeys. Indiana University Press, Bloomington

    Google Scholar 

  • Croft D (2018a) Blog. Darren A. Croft, PhD: New Mammal Species. https://dcpaleo.org/new-species/

  • Croft D (2018b) Blog. Darren A. Croft, PhD: Quebrada Honda, Bolivia. https://dcpaleo.org/quebrada-honda-bolivia/

  • Campbell KE Jr., Heizler M, Frailey CD, Romero-Pittman L, Prothero DR (2001) Upper Cenozoic chronostratigraphy of the southwestern Amazon Basin Geology 29(7):595–598. https://doi.org/10.1130/0091-7613(2001)029>0595:UCCOTS<.0.CO;2

    Article  Google Scholar 

  • Defler TR, Bueno ML (2001) Aotus diversity and the species problem. Primate Conserv 22(1):55–70

    Article  Google Scholar 

  • Defler TR and Bueno ML (2007) Aotus diversity and the species problem. Primate Conservation 22(1):55–70

    Article  Google Scholar 

  • Delsuc F, Vizcaíno SF, Douzery EJP (2004) Influence of Tertiary paleoenvironmental changes on the diversification of South American mammals: a relaxed molecular clock study within xenarthrans. BMC Evol Biol 4:1–13

    Article  Google Scholar 

  • Duivenvoorden JF, Duque A (2010). Composition and diversity of northwestern Amazonian rainforest in a geological context. In: Hoorn C, Wesselingh F (eds). Amazonia: Landscape and species evolution a look into the past. Oxford: Blackwell Publishing, Oxford, pp 360–372

    Google Scholar 

  • Emmon LH (1984) Geographic variation in densities and diversities of non-flying mammals in Amazonia. Biotropica 16(3):210–222

    Article  Google Scholar 

  • Fátima-Rossetti, Toledo P, Goes AM (2005) New geological framework for Western Amazonia (Brazil) and implicatios for biogeography and evolution. Quat Res 63:78–89

    Google Scholar 

  • Figueiredo J, Hoorn C, van der Ven P, Soares E (2009) Late Miocene onset of the Amazon River and the Amazon deep-sea fan: evidence from the Foz do Amazonas Basin. Geology:619–622

    Google Scholar 

  • Fjeldsa J, Lambin E, Mertens B (1999) Correlation between endemism and local ecoclimatic stability documented by comparing Andean bird distributions and remotely sensed land surface data. Ecography (22):63–78

    Article  Google Scholar 

  • Flynn JJ, Wyss AR, Croft DA, Charrier R (2003) The Tinguiririca fauna, Chile: biochronology, paleoecology, biogeography, and a new earliest Oligocene South American Land Mammal “Age”. Palaeoecology 195:229–259

    Article  Google Scholar 

  • Frailey CD, Campbell KE (2004) Paleogene rodents from Amazonian Peru: the Santa Rosa local fauna. In: Campbell KE (ed) The paleogene mammalian fauna of Santa Rosa, Amazonian Peru. Natural History Museum of Los Angeles County, Los Angeles, pp 71–130

    Google Scholar 

  • Frailey CD, Lavina EL, Rancy A, de Souza Filho JP (1988) A proposed Pleistocene/Holocene lake in the Amazon Basin and its significance to Amazonian geology and biogeography. Acta Amazon 18:119–143

    Article  Google Scholar 

  • Friis EM, Pedersen KR, Crane PR (2006) Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr Palaeoclimatol Palaeoecol 232:251–293

    Article  Google Scholar 

  • Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450(20/27):1184–1189

    Article  Google Scholar 

  • Galbreath GJ (1983) Karyotypic evolution in Aotus. Am J Primatol 4(3):245–251

    Article  Google Scholar 

  • Goillot C, Pierre-Olivier A, Tejada J, Pujos F, Salas Gismondi R (2011) Middle Miocene Uruguaytheriinae (Mammalia, Astrapotheria) from Peruvian Amazonia and a review of the astrapotheriid fossil record in northern South America. Geodiversitas 33(2):331–345. https://doi.org/10.5252/g2011n2a8

    Article  Google Scholar 

  • Goin FJ, Candela AM (2004) New Paleogene marsupials from the Amazon basin of eastern Peru. In: Campbell KE Jr (ed) The Paleogene mammalian fauna of Santa Rosa, Amazonian Peru, Science series, vol 40. Natural History Museum of Los Angeles County, Los Angeles, pp 1–163

    Google Scholar 

  • Graham A (2009) The Andes: a geological overview from a biological perspective. Ann Mo Bot Gard 96:371–385

    Article  Google Scholar 

  • Graham A (2011) The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. Am J Bot 98(3):336–351

    Article  Google Scholar 

  • Gregory-Wodzicki K (2000) Uplift history of the Central and Northern Andes: a review. GSA Bull 112(7):1091–1105

    Article  Google Scholar 

  • Guerrero J (1997) Stratigraphy, sedimentary environments, and the Miocene uplift of the Colombian Andes. In: Kay RF, Madden RH, Cifelli RL, Flynn JJ (eds) Vertebrate paleontology in the neotropics: the Miocene fauna of La Venta, Colombia. Smithsonian Institution Press, Washington, DC, pp 15–43

    Google Scholar 

  • Haffer J (1969) Speciation in Amazon forest birds. Science 165(3889):131–137

    Article  Google Scholar 

  • Haffer J (1985) Avian zoogeography of the Neotropical lowlands. Ornithol Monogr 36:113–146

    Article  Google Scholar 

  • Haffer J (1997) Alternative models of vertebrate speciation in Amazonia: an overview. Biodivers Conserv 6:451–476

    Article  Google Scholar 

  • Haffer J (2008) Hypotheses to explain the origin of species in Amazonia. Braz J Biol 68(4):917–947

    Article  Google Scholar 

  • Haffer J, Prance GT (2001) Climatic forcing of evolution in Amazonia during the Cenozoic: on the refuge theory of biotic differentiation. Inst Estudo Avançados da Univers São Paulo

    Google Scholar 

  • Hershkovitz P (1977) Living new world monkeys (Platyrrhini), vol 1. The University of Chicago Press, Chicago

    Google Scholar 

  • Hoorn C (1994) An environmental reconstruction of the palaeo-Amazon River system (Middle-Late Miocene, NW Amazonia). Palaeogeogr Palaeoclimatol Palaeoecol 112:187–238

    Article  Google Scholar 

  • Hoorn C (2006) The birth of the mighty Amazon. Sci Am 294(5):52–59

    Article  Google Scholar 

  • Hoorn C, Wesselingh F (eds) (2010) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York

    Google Scholar 

  • Hoorn C, Guerrero J, Sarmiento GA, Lorente MA (1995) Andean tectonics as a cause for changing drainage patterns in Miocene northern South America. Geology 23:237–240

    Article  Google Scholar 

  • Hoorn C, Wesselingh FP, Hovikoski J, Guerroro J (2010a) The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 123–142

    Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA et al (2010b) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    Article  Google Scholar 

  • Hoorn C, Mosbrugger V, Mulch A, Antonerlli A (2013) Biodiversity from mountain building. Nat Geosci 6(154)

    Article  Google Scholar 

  • Hoorn C, Bogotá-A GR, Romero-Baez M, Lammertsma EI, Flantua SGA, Dantas EL, Dino R, do Carmo DA, Chemale F Jr (2017) The Amazon at sea: onset and stages of the Amazon River from a marine record, with special reference to Neogene plant turnover in the drainage basin. Glob Planet Change. https://doi.org/10.1016/j.gloplacha2017.02.005

  • Irion G, Kalliola R (2010) Long-term landscape development processes in Amazonia. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 185–197

    Google Scholar 

  • Jaramillo CA (2002) Response of tropical vegetation to Paleogene warming. Paleobiology 28(2):222–243

    Article  Google Scholar 

  • Jaramillo CA, Hoorn C, Silva SAF, Leite F, Herrera F, Quiroz L, Dino R, Antonioli L (2010) The origin of the modern Amazon rainforest: implications of the palynological and palaeobotanical record. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 317–334

    Google Scholar 

  • Jiggens CD, Mallet J (2000) Bimodal hybrid zones and speciation. Trends Ecol Evol 15(6):250–255

    Article  Google Scholar 

  • Kay RF (2015) New World monkey origins. Science 347(6226):1068–1069

    Article  Google Scholar 

  • Kay RF, Cozzuol MA (2006) New platyrrhine monkeys from the Solimões Formation (late Miocene, Acre State, Brazil). J Hum Evol 50:673–686

    Article  Google Scholar 

  • Kay RF, Frailey CD (1993) Large fossil platyrrhines from the Río Acre fauna, late Miocene, western Amazonia. J Hum Evol 25:319–327

    Article  Google Scholar 

  • Kay RF, Madden RH (1997) Mammals and rainfall: paleoecology of the middle Miocene at La Venta (Colombia, South America). J Hum Evol 32(2–3):161–199

    Article  Google Scholar 

  • Kay RF, Madden RH, Vucetich MG, Carlini AA et al (1999) Revised age of the Casamayoran South American land mammal “Age”—climatic and biotic implications. Proc Natl Acad Sci USA 96(23):13235–13240

    Article  Google Scholar 

  • Kay RF, Madden RH, Cifelli RL, Flynn JJ (1997) Vertebrate paleontology in the Neotropics. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Kerber LO, César Bissario M Jr, Negri FR, Pereira de Souza-Filho J, Guilherme E, Schmaltzz Hsiou A (2017) A new rodent (Caviomorpha: Dinomyidae) from the upper Miocene of southwestern Brazilian Amazonia. Hist Biol. https://doi.org/10.1080/08912963.2017.1237529

  • King M (1995) Species evolution: the role of chromosome change. Cambridge University Press, Cambridge

    Google Scholar 

  • Klammer G (1984) The relief of the extra-Andean Amazon basin. In: Sioli H (ed) The Amazon. Limnology and landscape ecology of a mighty tropical river and its basin. Junk Publishers, Dordrecht, pp 47–83

    Google Scholar 

  • Latrubesse EM, Bocquentin J, Santos JCR, Ramonell CG (1997) Paleonenvironmental model for the Late Cenozoic of southwestern Amazonia: paleontology and geology. Acta Amazon 27(2):103–118

    Article  Google Scholar 

  • Latrubesse EM, da Silva SAF, Cossuol M, Absy ML (2007) Late Miocene continental sedimentation in southwestern Amazonia and its regional significance: biotic and geological evidence. J S Am Earth Sci 23:61–80

    Article  Google Scholar 

  • Latrubesse EM, Cossuol M, da Silva-Caminha AF, Rigsby CA, Absy ML, Jaramillo C (2010) The late Miocene paleogeography of the Amazon Basin and the evolution of the Amazon River system. Earth Sci Rev 99:99–124

    Article  Google Scholar 

  • Marks J (1987) Social and ecological aspects of primate cytogenetics. In: Kinzey WG (ed) Primate models: the evolution of human behavior. State University of New York Press, Albany, pp 139–151

    Google Scholar 

  • Marroig G, Cerqueira R (1997) Plio-Pleistocene South American history and the Amazon Lagoon hypothesis: a piece in the puzzle of Amazonian diversification. J Comp Biol 2:103–119

    Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1970) Populations, species, and evolution. The Belknap Press of Harvard Univerisy Press, Cambridge

    Google Scholar 

  • Mayr E, O’Hara RJ (1986) The biogeographic evidence supporting the Pleistocene forest refuge hypothesis. Evolution 40(1):55–67

    Article  Google Scholar 

  • McFadden BJ (1990) Chronology of Cenozoic primate localities in South America. J Hum Evol 19:7–21

    Article  Google Scholar 

  • Moreau CS, Bell CD (2013) Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67-8:2240–2257

    Article  Google Scholar 

  • Morley RJ (1996) Amazonian diversity: a river doesn’t run through it. Special news report. Science 273:1496–1498

    Google Scholar 

  • Morley RJ (2000) Origin and evolution of tropical rain forests. John Wiley & Sons Ltd., Chichester-New York

    Google Scholar 

  • Mittermeier RH, Myers N, Mittermeier CG, Robles G (1999) Hotspots: Earth’s biologically richest and most endangered terrestrial ecoregions. Cemex, México City.

    Google Scholar 

  • Myers N (1988) Threatened biotas: “hot spots” in tropical forests. Environmentalist 8(3):187–208

    Article  Google Scholar 

  • Myers N (1990) The biodiversity challenge: expanded hot-spots analysis. Environmentalist 10(4):243–256

    Article  Google Scholar 

  • Negri FR, Bocquentin-Villanueva J, Ferigolo J, Antoine P-O (2010) A review of Tertiary mammal faunas and birds from western Amazonia. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 245–258

    Google Scholar 

  • Patton JL, Nazareth da Silva MF, Malcolm JR (2000) Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bull Amer Mus Nat Hist 244:1–306

    Article  Google Scholar 

  • Pennington RT, Dick CW (2010) Diversification of the Amazonian flora and its relation to key geological and environmental events: a molecular perspective. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 373–385

    Google Scholar 

  • Pennington RT, Lavin M, Prado DE, Pendry CA, Pell SK, Butterworth CA (2004) Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philos Trans R Soc Lond B 359:515–537

    Article  Google Scholar 

  • Peres CA, Patton JL, da Silva MNF (1996) Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatol 67:113–124

    Article  Google Scholar 

  • Prance GT (1973) Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon Basin, based on evidence from distribution patterns in Caryocaraceae, Chrysobalanaceae, Dichapetalaceae and Lecythidaceae. Acta Amazon 3(3):5–26

    Article  Google Scholar 

  • Rancy A (1991) Pleistocene mammals and paleoecology of the western Amazon. PhD dissertation. University of Florida, Gainseville

    Google Scholar 

  • Rancy A (1993) A paleofauna da Aazonia indica áreas de patagem com pouca cobertura vegetal. Ciência Hoje 16(93):48–51

    Google Scholar 

  • Räsänen M, Linna AM, Santos JCR, Negri FR (1995) Late Miocene tidal deposits in the Amazoniana foreland basin. Science 269:386–389

    Article  Google Scholar 

  • Ridley M (1996) Evolution, 2nd edn. Blackwell Science, Cambridge, MA

    Google Scholar 

  • Romero EJ (1993) South American paleofloras. In: Goldblatt P (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, pp 62–85

    Chapter  Google Scholar 

  • Roy MS, Silva JMC, Arctander P, Garcia Moreno J, Fjeldsa J (1997) The speciation of South American and African birds in montane regions. In: Mindell DP (ed) Avian molecular evolution and systematics. Academic Press, New York, pp 325–343

    Chapter  Google Scholar 

  • Sánchez-Villagra MR, Aguilera OA, Carlini AA (eds) (2010) Urumaco and Venezuelan Paleontology. Indiana University Press, Bloomington

    Google Scholar 

  • Schneider CJ, Smith TB, Larison B, Moritz C (1999) A test of alternative models of diversification in tropical rainforests: ecological gradients vs. rainforest refugia. Proc Natl Acad Sci U S A 96:13869–13873

    Article  Google Scholar 

  • Sepulchre P, Sloan LC, Fluteau F (2010) Modelling the response of Amazonian climate to the uplift of the Andean mountain range. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 211–222

    Google Scholar 

  • Shockey BJ, Hitz R, Bond M (2004) Paleogene notoungulates from the Amazon basin of Peru. In: Campbell KE Jr (ed) The Paleogene mammalian fauna of Santa Rosa, Amazonian Peru, Science series, vol 40. Natural History Museum of Los Angeles County, Los Angeles, pp 61–69

    Google Scholar 

  • Smith TB, Wayne RK, Girman DJ, Bruford MW (1997) A role for ecotones in generating rainforest biodiversity. Science 276:1855–1857

    Article  Google Scholar 

  • Solomon SE, Bacci M Jr, Martins J Jr, Gonçalves Vinha G, Mueller UG (2008) Paleodistributions and comparative molecular phylogeography of leafcutter ants (Atta spp.) provide new insight into the origins of Amazonian diversity. PLoS One 3(7):1–15

    Article  Google Scholar 

  • Tejada-Lara JV, Sala-Gismondi R, Pujos F, Baby P, Benammi M, Brusse S, de Franceschi D, Espurt N, Urbina M, Pierre-Olivier A (2015) Life in proto-Amazonia: Middle Miocene mammals from the Fitzcarado Arch (Peruvian Amazonia). Paléo 58(2):341–378

    Google Scholar 

  • Turner JRG, Mallet JLB (1996) Did forest islands drive the diversity of warningly coloured butterflies? Biotic drift and the shifting balance. Philos Trans R Soc Lond B 351:835–845

    Article  Google Scholar 

  • Van der Hammen T, Absy ML (1994) Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109:247–261

    Article  Google Scholar 

  • Van der Hammen T, Hooghiemstra H (2000) Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quat Sci Rev 19:725–742

    Article  Google Scholar 

  • Vonhof HB, Kaandorp RJG (2010) Climate variation in Amazonia during the Neogene and the Quaternary. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 202–210

    Google Scholar 

  • Voss RS, Emmons LH (1996) Mammalian diversity in Neotropical lowland rainforests: a preliminary assessment. Bull Am Mus Nat Hist 230:1–120

    Google Scholar 

  • Wallace AR (1852) On the monkeys of the Amazon. Proc Zool Soc London 20:107–110

    Google Scholar 

  • Webb SD, Rancy A (1996) Late Cenozoic evolution of the neotropical mammal fauna. In: Jackson JB, Budd AF, Coates AG (eds) Evolution and environment in tropical America. University of Chicago Press, Chicago, pp 335–358

    Google Scholar 

  • Wesselingh FP, Hoorn C, Kroonenberg SB, Antonelli A, Lundberg JG, Vonhof HB, Hooghiemstra H (2010) On the origin of Amazonian landscapes and biodiversity: a synthesis. In: Hoorn C, Wesselingh F (eds) Amazonia: landscape and species evolution: a look into the past. Wiley-Blackwell, New York, pp 421–431

    Google Scholar 

  • Wilkins JS (2009) Species: a history of the idea. University of California Press, Berkeley

    Google Scholar 

  • Wing SL, Herrera F, Jaramillo CA, Gómez-Navarro C, Wilf P, Labandeira CC (2009) Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of neotropical rainforest. Proc Natl Acad Sci U S A 106(44):18627–186622

    Article  Google Scholar 

  • Wyss AR, Flynn JJ, Norell MA, Swisher CC II et al (1993) South America’s earliest rodent and recognition of a new interval of mammalian evolution. Nature 365:434–437

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Defler, T. (2019). The Genesis of the Modern Amazon River Basin and Andean Uplift and Their Roles in Mammalian Diversification. In: History of Terrestrial Mammals in South America. Topics in Geobiology, vol 42. Springer, Cham. https://doi.org/10.1007/978-3-319-98449-0_12

Download citation

Publish with us

Policies and ethics