Skip to main content

Bed-Load Transport

  • Chapter
  • First Online:
Fluvial Hydrodynamics

Part of the book series: GeoPlanet: Earth and Planetary Sciences ((GEPS))

Abstract

The mode of sediment transport where the sediment particles slide, roll, or travel in succession of low jumps close to the bed is known as bed-load transport. In this chapter, theories of bed-load and formulations to predict the bed-load transport rate are presented. The pioneering attempt to predict the bed-load transport rate was due to MP du Boys in 1879, who expressed bed-load transport rate as a function of excess bed shear stress, that is the bed shear stress exceeding the threshold bed shear stress. Thereafter, number of researchers suggested du Boys type equations making use of the excess bed shear stress in different forms and coefficients. Other concepts to predict the bed-load transport rate are the discharge concept (Schoklitsch type), the velocity concept, the bedform concept, the probabilistic concept (Einstein type), the deterministic concept (Bagnold type), and the equal mobility concept. The additional features of this chapter are the discussion on particle saltation, sediment sorting, streambed armoring, and sediment entrainment probability to bed load. The effects of bed load on velocity distribution, length scales of turbulence, and von Kármán constant are also discussed in details. The method of computation of bed-load transport is illustrated through worked out examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The probability of a particle performing (n + 1) number of jumps is (1 − p)p n(n + 1). Then,

    $$ \sum\nolimits_{n = 0}^{\infty } {(1 - p)p^{n} } (n + 1) = 1 + p +p^2+p^3++p^n=(1 - p)^{-1}.$$
  2. 2.

    To minimize the errors, the standard deviation of lift force fluctuations given by Eq. (5.68) should be small, then B * → ∞ as η 0 → ∞. Hence,

    $$ - B_{ * }\Psi _{\text{b*}} - \frac{1}{{\eta_{0} }} = - \infty \;{\text{and}}\;B_{ * }\Psi _{\text{b*}} - \frac{1}{{\eta_{0} }} \ne 0 $$
  3. 3.

    The use of Einstein’s Ψb*b*) curve as shown in Fig. 5.10 is as follows:

    Step 1: From the given bed sediment and flow conditions, compute Ψb* from Eq. (5.67). Then, the correction factors ξ and Y can be obtained from Figs. 5.8 and 5.9, respectively. The other parameters required to be computed are B * from Eq. (5.67), Δ k = k s/x k, x k from Fig. 5.7, \( u_{*}^{{\prime }} = (gR_{\text b}^{{\prime }} S_{0} )^{0.5} \hbox{,}\,\delta^{{\prime }} = { 11}. 6\upsilon /u_{*}^{{\prime }} \), and Ψb and B from Eq. (5.66).

    Step 2: From Fig. 5.10, determine Φb* for the computed Ψb*. Thus, q b or g b can be obtained from Eq. (5.2).

  4. 4.

    The procedure of transformation of second order differential equation to first order and the numerical solution methodology of a system of ordinary simultaneous differential equations can be found in Bose (2009).

  5. 5.

    The procedure of computation of total bed-load transport for the entire range of particle size distribution of the bed sediment is as follows:

    Step 1: Compute Φbi for the fraction p i of sediment size d i by using Einstein’s approach or Ashida and Michiue’s bed-load transport formula or by any other standard method given in this chapter.

    Step 2: Compute i b q b by using Eq. (5.140) as

    $$ \Phi _{{{\text{b}}i}} = \frac{{q_{{{\text{b}}i}} }}{{p_{i} (\Delta gd_{i}^{3} )^{0.5} }} \quad \wedge\quad q_{{{\text{b}}i}} = i_{\text{b}} q_{\text{b}} \; \Rightarrow\; i_{\text{b}} q_{\text{b}} =\Phi _{{{\text{b}}i}} \times p_{i} (\Delta gd_{i}^{3} )^{0.5} $$

    Step 3: For each size fraction, the i b q b can be computed in this way. The total bed-load transport can therefore be obtained by summing up the results over the entire range of particle size distribution.

    Note: In case of a mixture of small size of sediment spread, the size d 35 can be approximated as an effective sediment size for the approximate estimation of total bed-load.

References

  • Abbott JE, Francis JRD (1977) Saltation and suspension trajectories of solid grains in a water stream. Proc R Soc London A 284(1321):225–254

    Google Scholar 

  • Ashida K, Michiue M (1972) Study on hydraulic resistance and bed-load transport rate in alluvial streams. Trans Japan Soc Civ Eng 206:59–69

    Google Scholar 

  • Bagnold RA (1954) Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc R Soc London A 255(1160):49–63

    Article  Google Scholar 

  • Bagnold RA (1956) The flow of cohesionless grains in fluids. Philos Trans R Soc London A 249(964):315–319

    Article  Google Scholar 

  • Bagnold RA (1966) An approach to the sediment transport problem from general physics. Geological survey professional paper 422-I, Washington, DC

    Google Scholar 

  • Bagnold RA (1977) Bed load transport by natural rivers. Water Resour Res 13(2):303–312

    Article  Google Scholar 

  • Barekyan AS (1962) Discharge of channel forming sediments and elements of sand waves. Trans Am Geophys Union 2:128–130

    Google Scholar 

  • Bennett SJ, Bridge JS (1995) The geometry and dynamics of low-relief bed forms in heterogeneous sediment in a laboratory channel, and their relationship to water flow and sediment transport. J Sediment Res 65A(1):29–39

    Google Scholar 

  • Best J, Bennett S, Bridge J, Leeder M (1997) Turbulence modulation and particle velocities over flat sand beds at low transport rates. J Hydraul Eng 123(12):1118–1129

    Article  Google Scholar 

  • Borah DK (1989) Scour-depth prediction under armoring conditions. J Hydraul Eng 115(10):1421–1425

    Article  Google Scholar 

  • Borah DK, Alonso CV, Prasad SN (1982) Routing graded sediment in streams: formation. J Hydraul Div 108(12):1486–1503

    Google Scholar 

  • Bose SK (2009) Numeric computing in Fortran. Narosa, New Delhi

    Google Scholar 

  • Bose SK, Dey S (2013) Sediment entrainment probability and threshold of sediment suspension: Exponential-based approach. J Hydraul Eng 139(10):1099–1106

    Article  Google Scholar 

  • Brown CB (1950) Sediment transportation. In: Rouse H (ed) Engineering hydraulics. Wiley, New York, pp 769–857

    Google Scholar 

  • Chang FM, Simons DB, Richardson EV (1967) Total bed-material discharge in alluvial channels. In: Proceedings of the twelfth congress of International Association for Hydraulic Research, Fort Collins, Colorado, pp 132–140

    Google Scholar 

  • Cheng N-S (2002) Exponential formula for bedload transport. J Hydraul Eng 128(10):942–946

    Article  Google Scholar 

  • Cheng N-S, Chiew Y-M (1998) Pickup probability for sediment entrainment. J Hydraul Eng 124(2):232–235

    Article  Google Scholar 

  • Chien N (1954) Meyer-Peter formula for bed load transport and Einstein bed load function. Missouri River division sediment series number 7, University of California-Berkeley and Missouri River Division, United States Army Corps of Engineers, Berkeley, California

    Google Scholar 

  • Chien N, Wan Z (1999) Mechanics of sediment transport. ASCE Press, Reston

    Google Scholar 

  • Chin CO, Melville BW, Raudkivi AJ (1994) Streambed armoring. J Hydraul Eng 120(8):899–918

    Article  Google Scholar 

  • Correia L, Graf WH (1988) Grain-size distribution and armoring in gravel-bed rivers. Activities report of the hydraulics research laboratory, École Polytechnique Fédérale de Lausanne, Lausanne

    Google Scholar 

  • Crowe CT (1993) Modelling turbulence in multiphase flows. In: Rodi W, Martelli F (eds) Engineering turbulence modelling and experiments, vol 2., Elsevier, Amsterdam, pp 899–913

    Google Scholar 

  • Damgaard JS, Whitehouse RJS, Soulsby RL (1997) Bedload sediment transport on steep longitudinal slopes. J Hydraul Eng 123(12):1130–1138

    Article  Google Scholar 

  • de Ruiter JCC (1982) The mechanism of sediment transport on bed forms. In: Proceedings of the Euromech conference, vol 156, Technical University of Istanbul, Istanbul

    Google Scholar 

  • de Ruiter JCC (1983) Incipient motion and pick-up of sediment as function of local variables. Report R 657-XI, Delft Hydraulics Laboratory, Delft

    Google Scholar 

  • Dey S, Das R, Gaudio R, Bose SK (2012) Turbulence in mobile-bed streams. Acta Geophys 60(6):1547–1588

    Article  Google Scholar 

  • Dey S, Debnath K (2001) Sediment pick-up on stream-wise sloping beds. J Irrig Drainage Eng 127(1):39–43

    Article  Google Scholar 

  • Dey S, Raikar RV (2007) Characteristics of loose rough boundary streams at near-threshold. J Hydraul Eng 133(3):288–304

    Article  Google Scholar 

  • Dey S, Sarkar S, Solari L (2011) Near-bed turbulence characteristics at the entrainment threshold of sediment beds. J Hydraul Eng 137(9):945–958

    Article  Google Scholar 

  • Donat J (1929) Über sohlangriff und geschiebetrieb. Wasserwirtschaft 26:27–36

    Google Scholar 

  • Dou GR (1964) Bed-load transport. Report, Nanjing Hydraulic Research Institute, Nanjing

    Google Scholar 

  • du Boys MP (1879) Le rhone et les rivieres a lit affouillable. Annales des Ponts et Chaussés 18(5):141–195

    Google Scholar 

  • Egiazaroff JV (1965) Calculation of non-uniform sediment concentrations. J Hydraul Div 91(4):225–247

    Google Scholar 

  • Einstein HA (1942) Formulas for the transportation of bed load. Trans Am Soc Civ Eng 107:561–577

    Google Scholar 

  • Einstein HA (1950) The bed-load function for sediment transportation in open channel flows. Technical bulletin number 1026, United States Department of Agriculture, Soil Conservation Service, Washington, DC

    Google Scholar 

  • Einstein HA, El-Samni EA (1949) Hydrodynamic forces on rough wall. Rev Modern Phys 21(3):520–524

    Article  Google Scholar 

  • Engelund F, Fredsøe J (1976) A sediment transport model for straight alluvial channels. Nord Hydrol 7(5):293–306

    Google Scholar 

  • Engelund F, Hansen E (1967) A monograph on sediment transport in alluvial streams. Technical Press (Teknish Forlag), Copenhagen

    Google Scholar 

  • Exner FM (1925) Über die wechselwirkung zwischen wasser und geschiebe in flüssen. Sitzungsberichte der Akademie der Wissenschaften 134(2a):165–203

    Google Scholar 

  • Fernandez Luque R (1974) Erosion and transport of bed-load sediment. PhD thesis, Delft University of Technology, Meppel

    Google Scholar 

  • Fernandez Luque R, van Beek R (1976) Erosion and transport of bed-load sediment. J Hydraul Res 14(2):127–144

    Article  Google Scholar 

  • Francis JRD (1973) Experiments on the motion of solitary grains along the bed of a water stream. Proc R Soc London A 332(1591):443–471

    Article  Google Scholar 

  • Fredsøe J, Deigaard R (1992) Mechanics of coastal sediment transport. World Scientific, Singapore

    Google Scholar 

  • Frijlink HC (1952) Discussion of bed load transport formulas. Report number X2344/LV, Delft Hydraulics, Delft

    Google Scholar 

  • Froehlich DC (1995) Armor-limited clear-water contraction scour at bridges. J Hydraul Eng 121(6):490–493

    Article  Google Scholar 

  • Gallagher M, McEwan I, Nikora V (1999) The changing structure of turbulence over a self-stabilising sediment bed. Internal report number 21, Department of Engineering, University of Aberdeen, Aberdeen

    Google Scholar 

  • Gaudio R, Dey S (2012) Evidence of non-universality of von Kármán’s κ. In: Rowinski P (ed) Experimental and computational solutions of hydraulic problems. Springer, Heidelberg, pp 71–83

    Google Scholar 

  • Gaudio R, Miglio A, Calomino F (2011) Friction factor and von Kármán’s κ in open channels with bed-load. J Hydraul Res 49(2):239–247

    Article  Google Scholar 

  • Gaudio R, Miglio A, Dey S (2010) Non-universality of von Kármán’s κ in fluvial streams. J Hydraul Res 48(5):658–663

    Article  Google Scholar 

  • Gilbert GK (1914) Transportation of debris by running water. Professional paper number 86, United States Geological Survey, Washington DC

    Google Scholar 

  • Gore RA, Crowe CT (1991) Modulation of turbulence by a dispersed phase. J Fluids Eng 113(6):304–307

    Article  Google Scholar 

  • Graf WH (1971) Hydraulics of sediment transport. McGraw-Hill Book Company, New York

    Google Scholar 

  • Graf WH, Suszka L (1987) Sediment transport in steep channels. J Hydrosci Hydraul Eng 5(1):11–26

    Google Scholar 

  • Gust G, Southard JB (1983) Effects of weak bed load on the universal law of the wall. J Geophys Res 88(C10):5939–5952

    Article  Google Scholar 

  • Guy HP, Simons DB, Richardson EV (1966) Summary of alluvial channel data from flume experiments, 1956–1961. United States Geological survey professional paper, 462-1, Washington, DC

    Google Scholar 

  • Hanes DM (1986) Grain flows and bed-load sediment transport: review and extension. Acta Mech 63(1–4):131–142

    Article  Google Scholar 

  • Hetsroni G (1993) The effect of particles on the turbulence in a boundary layer. In: Raco MC (ed) Particulate two-phase flow. Butterworth-Heinemann, pp 244–264

    Google Scholar 

  • Hetsroni G, Zakin JL, Mosyak A (1997) Low-speed streaks in drag-reduced turbulent flow. Phys Fluids 9(8):2397–2404

    Article  Google Scholar 

  • Hsu SM, Holly FM (1992) Conceptual bed-load transport model and verification for sediment mixtures. J Hydraul Eng 118(8):1135–1152

    Article  Google Scholar 

  • Hu CH, Hui YJ (1996) Bed-load transport. I: mechanical characteristics. J Hydraul Eng 122(5):245–254

    Article  Google Scholar 

  • Julien PY (1998) Erosion and sedimentation, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kalinske AA (1947) Movement of sediment as bed-load in rivers. Trans Am Geophys Union 28(4):615–620

    Article  Google Scholar 

  • Kironoto BA, Graf WH (1994) Turbulence characteristics in rough uniform open-channel flow. Water Marit Energ Proc Inst Civ Eng (London) 106(4): 333–344

    Google Scholar 

  • Lajeunesse E, Malverti L, Charru F (2010) Bed load transport in turbulent flow at the grain scale: Experiments and modeling. J Geophys Res 115(F04001). doi:10.1029/2009JF001628

  • Lee HY, Hsu I-S (1994) Investigation saltating particle motions. J Hydraul Eng 120(7):831–845

    Article  Google Scholar 

  • Madsen OS (1991) Mechanics of cohesionless sediment transport in coastal waters. In: Kraus NC, Gingerich KJ, Kriedel DL (eds) Coastal sediment ’91. American Society of Civil Engineers, New York, pp 15–27

    Google Scholar 

  • Meyer-Peter E, Favre H, Einstein HA (1934) Neuere versuchsresultate über den geschiebetrieb. Schweizerische Bauzeitung 103(13):147–150

    Google Scholar 

  • Meyer-Peter E, Müller R (1948) Formulas for bed-load transport. In: Proceedings of the second meeting of International Association for Hydraulic Research, vol 3. Stockholm, pp 39–64

    Google Scholar 

  • Misri RL, Garde RJ, Ranga Raju KG (1984) Bed load transport of coarse nonuniform sediment. J Hydraul Eng 110(3):312–328

    Article  Google Scholar 

  • Monin AS, Yaglom AM (2007) Statistical fluid mechanics, volume II: mechanics of turbulence. Dover Publications, New York

    Google Scholar 

  • Morsi SA, Alexander AJ (1972) An investigation of particle trajectories in two-phase flow systems. J Fluid Mech 55:193–208

    Article  Google Scholar 

  • Nakagawa H, Tsujimoto T (1980) Sand bed instability due to bed load motion. J Hydraul Div 106(12):2029–2051

    Google Scholar 

  • Nelson J, Shreve RL, McLean SR, Drake TG (1995) Role of near-bed turbulence structure in bed load transport and bed form mechanics. Water Resour Res 31(8):2071–2086

    Article  Google Scholar 

  • Nezu I, Nakagawa H (1993) Turbulence in open-channel flows. Balkema, Rotterdam

    Google Scholar 

  • Nielsen P (1992) Coastal bottom boundary layers and sediment transport. World Scientific, Singapore

    Google Scholar 

  • Nikora VI, Goring DG (1999) Effects of bed mobility on turbulence structure. NIWA internal report number 48, National Institute of Water & Atmospheric Research (NIWA), Christchurch

    Google Scholar 

  • Nikora V, Goring D (2000) Flow turbulence over fixed and weakly mobile gravel beds. J Hydraul Eng 126(9):679–690

    Article  Google Scholar 

  • Niño Y, García M, Ayala L (1994) Gravel saltation: 1. experiments. Water Resour Res 30(6):1907–1914

    Article  Google Scholar 

  • Niño Y, García MH (1998) Using Lagrangian particle saltation observations for bedload sediment transport modelling. Hydrol Process 12(8):1197–1218

    Article  Google Scholar 

  • Paintal A (1971) Concept of critical shear stress in loose boundary open channels. J Hydraul Res 9(1):91–113

    Article  Google Scholar 

  • Parker G (1979) Hydraulic geometry of active gravel rivers. J Hydraul Div 105(9):1185–1201

    Google Scholar 

  • Parker G, Kilingeman PC, McLean DG (1982) Bed load and size distribution in paved gravel-bed streams. J Hydraul Div 108(4):544–571

    Google Scholar 

  • Patel PL, Ranga Raju KG (1996) Fractionwise calculation of bed load transport. J Hydraul Res 34(3):363–379

    Article  Google Scholar 

  • Pope SB (2001) Turbulent flows. Cambridge University Press

    Google Scholar 

  • Poreh M, Sagiv A, Seginer J (1970) Sediment sampling efficiency of slots. J Hydraul Div 96(10):2065–2078

    Google Scholar 

  • Qin YY (1980) Incipient motion of nonuniform sediment. J Sediment Res 1:83–91

    Google Scholar 

  • Raudkivi AJ (1990) Loose boundary hydraulics. Pergamon, New York

    Google Scholar 

  • Recking A, Frey P, Paquier A, Belleudy P, Champagne JY (2008) Feedback between bed load transport and flow resistance in gravel and cobble bed rivers. Water Resour Res 44(W05412). doi:10.1029/2007WR006219

  • Rickenmann D (1991) Bed load transport and hyperconcentrated flow at steep slopes. Fluvial hydraulics of mountain regions, Lecture notes in earth sciences, vol 37, pp 429–441

    Google Scholar 

  • Rubey W (1933) Settling velocities of gravel, sand and silt particles. Am J Sci 225(148):325–338

    Article  Google Scholar 

  • Rubinow SI, Keller JB (1961) The transverse force on a spinning sphere moving in a viscous fluid. J Fluid Mech 11:447–459

    Article  Google Scholar 

  • Saffman PG (1968) Corrigendum, the lift on a small sphere in a slow shear flow. J Fluid Mech 31:624

    Article  Google Scholar 

  • Schoklitsch A (1914) Über schleppkraft und geschiebebewegung. Engelmann, Leipzig

    Google Scholar 

  • Schoklitsch A (1934) Geschiebetrieb und die geschiebefracht. Wasserkraft und Wasserwirtschaft 39(4):1–7

    Google Scholar 

  • Sekine M, Kikkawa H (1992) Mechanics of saltating grains.II. J Hydraul Eng 118(4):536–558

    Article  Google Scholar 

  • Shields AF (1936) Application of similarity principles and turbulence research to bed-load movement. Mitteilungen der Preussischen Versuchsanstalt für Wasserbau und Schiffbau 26:5–24

    Google Scholar 

  • Smart GM (1984) Sediment transport formula for steep channels. J Hydraul Eng 110(3):267–276

    Article  Google Scholar 

  • Straub LG (1935) Missouri river report. In-House document 238, Seventy-third Congress, Second Session, United States Government Printing office, Washington, DC

    Google Scholar 

  • Sumer BM, Chua LHC, Cheng N-S, Fredsøe J (2003) Influence of turbulence on bed load sediment transport. J Hydraul Eng 129(8):585–596

    Article  Google Scholar 

  • Tiederman WG, Luchik TS, Bogard DG (1985) Wall layer structure and drag reduction. J Fluid Mech 156:419–437

    Article  Google Scholar 

  • van Rijn LC (1981) Computation of bed-load concentration and bed-load transport. Research report S 487-1, Delft Hydraulics Laboratory, Delft

    Google Scholar 

  • van Rijn LC (1984a) Sediment transport, part I: bed load transport. J Hydraul Eng 110(10):1431–1456

    Article  Google Scholar 

  • van Rijn LC (1984b) Sediment pick-up function. J Hydraul Eng 110(10):1494–1502

    Article  Google Scholar 

  • van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, The Netherlands

    Google Scholar 

  • Wang X, Zheng J, Danxun L, Qu Z (2008) Modification of the Einstein bed-load formula. J Hydraul Eng 134(9):1363–1369

    Article  Google Scholar 

  • White BR, Schultz JC (1977) Magnus effect in saltation. J Fluid Mech 81:497–512

    Article  Google Scholar 

  • Williams PG (1970) Flume width and water depth effects in sediment transport experiments. Geological survey professional paper 562-H, Washington, DC

    Google Scholar 

  • Wilson KC (1966) Bedload transport at high shear stresses. J Hydraul Div 92(6):49–59

    Google Scholar 

  • Wong M, Parker G (2006) Re-analysis and correction of bedload relation of Meyer-Peter and Muller using their own database. J Hydraul Eng 132(11):1159–1168

    Article  Google Scholar 

  • Wu F-C, Lin Y-C (2002) Pickup probability of sediment under log-normal velocity distribution. J Hydraul Eng 128(4):438–442

    Article  Google Scholar 

  • Wu W, Wang SSY, Jia Y (2000) Nonuniform sediment transport in alluvial rivers. J Hydraul Res 38(6):427–434

    Article  Google Scholar 

  • Yalin MS (1977) Mechanics of sediment transport. Pergamon, Oxford

    Google Scholar 

  • Yalin MS, Karahan E (1979) Inception of sediment transport. J Hydraul Div 105(11):1433–1443

    Google Scholar 

  • Yen CL, Lee HY, Chang SY, Hsu SH (1988) A study on aggradation/degradation of coarse sediment in alluvial stream. Research report number 88, Hydraulic Research Laboratory, National Taiwan University, Taipei (in Chinese)

    Google Scholar 

  • Zhang RJ, Xie JH, Wang MF, Huang JT (1989) Dynamics of river sedimentation. Water and Power Press, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhasish Dey .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dey, S. (2014). Bed-Load Transport. In: Fluvial Hydrodynamics. GeoPlanet: Earth and Planetary Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19062-9_5

Download citation

Publish with us

Policies and ethics