Skip to main content

Fusarium graminearum Genomics and Beyond

  • Chapter
  • First Online:
Genomics of Plant-Associated Fungi: Monocot Pathogens

Abstract

The filamentous ascomycete Fusarium graminearum has been studied intensively over decades. The fungus causes disease and produces mycotoxins on cereal crops, such as wheat, barley, and maize, threatening global food safety and human health. There is no effective approach to manage the disease or control mycotoxin production due to our limited understanding of underlying gene mechanisms and the lack of resistant cultivars. As great credit to the genome sequencing and analysis of F. graminearum, significant progress has been achieved in the past decade, covering multiple aspects including secondary metabolism, sexual and asexual development, and virulence. Together with advances in systematics, molecular diagnostics, molecular genetics and pathogenomics, F. graminearum is emerging as a model species to study fungal–plant interactions and filamentous fungal biology. In this chapter, we review current F. graminearum research in the postgenome era, focusing on the impact of genome sequencing, functional genomics, and technology applications. We also present our view on current challenges and future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam K, Bahkali A, Moslem M, Amin OE, Niessen L (2011) An optimized protocol for DNA extraction from wheat seeds and loop-mediated isothermal amplification (LAMP) to detect Fusarium graminearum contamination of wheat grain. Int J Mol Sci 12:3459–3472

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alexander NJ, Hohn TM, McCormick SP (1998) The TRI11 gene of Fusarium sporotrichioides encodes a cytochrome P-450 monooxygenase required for C-15 hydroxylation in trichothecene biosynthesis. Appl Environ Microbiol 64:221–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alexander NJ, McCormick SP, Hohn TM (1999) TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol Gen Genet 261:977–984

    CAS  PubMed  Google Scholar 

  • Andersen B, Nielsen KF, Jarvis BB (2002) Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. Mycologia 94:392–403

    CAS  PubMed  Google Scholar 

  • Atoui A, El Khoury A, Kallassy M, Lebrihi A (2012) Quantification of Fusarium graminearum and Fusarium culmorum by real-time PCR system and zearalenone assessment in maize. Int J Food Microbiol 154:59–65

    CAS  PubMed  Google Scholar 

  • Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    CAS  PubMed  Google Scholar 

  • Baldwin TK, Gaffoor I, Antoniw J, Andries C, Guenther J, Urban M, Hallen-Adams HE, Pitkin J, Hammond-Kosack KE, Trail F (2010a) A partial chromosomal deletion caused by random plasmid integration resulted in a reduced virulence phenotype in Fusarium graminearum. Mol Plant Microbe Interact 23:1083–1096

    CAS  PubMed  Google Scholar 

  • Baldwin TK, Urban M, Brown N, Hammond-Kosack KE (2010b) A role for topoisomerase I in Fusarium graminearum and F. culmorum pathogenesis and sporulation. Mol Plant Microbe Interact 23:566–577

    CAS  PubMed  Google Scholar 

  • Beasley VR (1989) Trichothecene mycotoxicosis pathophysiologic effects, 1st edn. CRC Press, Boca Raton

    Google Scholar 

  • Becher R, Weihmann F, Deising HB, Wirsel SG (2011) Development of a novel multiplex DNA microarray for Fusarium graminearum and analysis of azole fungicide responses. BMC Genom 12:52

    CAS  Google Scholar 

  • Bernardo A, Bai G, Guo P, Xiao K, Guenzi AC, Ayoubi P (2007) Fusarium graminearum-induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars. Funct Integr Genomics 7:69–77

    CAS  PubMed  Google Scholar 

  • Bischof M, Eichmann R, Hückelhoven R (2011) Pathogenesis-associated transcriptional patterns in Triticeae. J Plant Physiol 168:9–19

    CAS  PubMed  Google Scholar 

  • Bluhm BH, Cousin MA, Woloshuk CP (2004) Multiplex real-time PCR detection of fumonisin-producing and trichothecene-producing groups of Fusarium species. J Food Prot 67:536–543

    CAS  PubMed  Google Scholar 

  • Bluhm BH, Flaherty JE, Cousin MA, Woloshuk CP (2002) Multiplex polymerase chain reaction assay for the differential detection of trichothecene- and fumonisin-producing species of Fusarium in cornmeal. J Food Prot 65:1955–1961

    CAS  PubMed  Google Scholar 

  • Bluhm BH, Zhao X, Flaherty JE, Xu JR, Dunkle LD (2007) RAS2 regulates growth and pathogenesis in Fusarium graminearum. Mol Plant Microbe Interact 20:627–636

    CAS  PubMed  Google Scholar 

  • Boddu J, Cho S, Kruger WM, Muehlbauer GJ (2006) Transcriptome analysis of the barley-Fusarium graminearum interaction. Mol Plant Microbe Interact 19:407–417

    CAS  PubMed  Google Scholar 

  • Boddu J, Cho S, Muehlbauer GJ (2007) Transcriptome analysis of trichothecene-induced gene expression in barley. Mol Plant Microbe Interact 20:1364–1375

    CAS  PubMed  Google Scholar 

  • Boenisch MJ, Schafer W (2011) Fusarium graminearum forms mycotoxin producing infection structures on wheat. BMC Plant Biol 11:110

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bömke C, Tudzynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

    PubMed  Google Scholar 

  • Brandfass C, Karlovsky P (2008) Upscaled CTAB-based DNA extraction and real-time PCR assays for Fusarium culmorum and F. graminearum DNA in plant material with reduced sampling error. Int J Mol Sci 9:2306–2321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brown DW, McCormick SP, Alexander NJ, Proctor RH, Desjardins AE (2002) Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol 36:224–233

    CAS  PubMed  Google Scholar 

  • Brown NA, Antoniw J, Hammond-Kosack KE (2012) The predicted secretome of the plant pathogenic fungus Fusarium graminearum: a refined comparative analysis. PLoS ONE 7:e33731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    CAS  Google Scholar 

  • Burlakoti RR, Estrada R, Rivera VV, Boddeda A, Secor GA, Adhikari TB (2007) Real-time PCR quantification and mycotoxin production of Fusarium graminearum in wheat inoculated with isolates collected from potato, sugar beet, and wheat. Phytopathology 97:835–841

    CAS  PubMed  Google Scholar 

  • Bushnell WR, Hazen BE, Pritsch C (2003) Histology and physiology of Fusarium head blight. In: Leonard KJ, Bushnell WR (eds) Fusarium head blight of wheat and barley. APS Press, St. Paul, pp 44–83

    Google Scholar 

  • Campbell MA, Rokas A, Slot JC (2012) Horizontal transfer and death of a fungal secondary metabolic gene cluster. Genome Biol Evol 4:289–293

    PubMed Central  PubMed  Google Scholar 

  • Carapito R, Hatsch D, Vorwerk S, Petkovski E, Jeltsch JM, Phalip V (2008) Gene expression in Fusarium graminearum grown on plant cell wall. Fungal Genet Biol 45:738–748

    CAS  PubMed  Google Scholar 

  • Carter JP, Rezanoor HN, Desjardins AE, Nicholson P (2000) Variation in Fusarium graminearum isolates from Nepal associated with their host of origin. Plant Pathol 49:452–460

    CAS  Google Scholar 

  • Catlett NL, Lee B-N, Yoder OC, Turgeon BG (2003) Split-marker recombination for efficient targeted deletion of fungal genes. Fungal Genet Newsl 50:9–11

    Google Scholar 

  • Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC et al (2009) The genome Nectria haematococca: Contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5(8):e1000618. doi:10.1371/journal.pgen.1000618

  • Cuomo CA, Guldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M et al (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317:1400–1402

    CAS  PubMed  Google Scholar 

  • Cutler Horace G (1988) Trichothecenes and their role in the expression of plant disease. In: Biotechnology for crop protection (American chemical society), pp 50–72

    Google Scholar 

  • Davidson RC, Blankenship JR, Kraus PR, de Jesus Berrios M, Hull CM, D’Souza C, Wang P, Heitman J (2002) A PCR-based strategy to generate integrative targeting alleles with large regions of homology. Microbiology 148:2607–2615

    Google Scholar 

  • de Hoogt R, Luyten WH, Contreras R, De Backer MD (2000) PCR- and ligation-mediated synthesis of split-marker cassettes with long flanking homology regions for gene disruption in Candida albicans. Biotechniques 28:1112–1116

    PubMed  Google Scholar 

  • Demeke T, Grafenhan T, Clear RM, Phan A, Ratnayaka I, Chapados J, Patrick SK, Gaba D, Levesque CA, Seifert KA (2010) Development of a specific TaqMan real-time PCR assay for quantification of Fusarium graminearum clade 7 and comparison of fungal biomass determined by PCR with deoxynivalenol content in wheat and barley. Int J Food Microbiol 141:45–50

    CAS  PubMed  Google Scholar 

  • Desjardins AE, Hohn TM, McCormick SP (1993) Trichothecene biosynthesis in Fusarium species: chemistry, genetics, and significance. Microbiol Rev 57:595–604

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desjardins AE, Manandhar HK, Plattner RD, Manandhar GG, Poling SM, Maragos CM (2000) Fusarium species from Nepalese rice and production of mycotoxins and gibberellic acid by selected species. Appl Environ Microbiol 66:1020–1025

    CAS  PubMed Central  PubMed  Google Scholar 

  • Desjardins AE, Plattner RD, Shaner G, Brown DW, Buechley G, Proctor RH, Turgeon GG (2006) Field release of Gibberella zeae genetically modified to lack ascospores. In: Canty SM, Clark A, Van Sanford D (eds) Fusarium head blight forum. University of Kentucky, Research Triangle Park, NC, USA, pp 39–44

    Google Scholar 

  • Ding S, Mehrabi R, Koten C, Kang Z, Wei Y, Seong K, Kistler HC, Xu JR (2009) Transducin beta-like gene FTL1 is essential for pathogenesis in Fusarium graminearum. Eukaryot Cell 8:867–876

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dufresne M, van der Lee T, Ben M’barek S, Xu X, Zhang X, Liu T, Waalwijk C, Zhang W, Kema GH, Daboussi MJ (2008) Transposon-tagging identifies novel pathogenicity genes in Fusarium graminearum. Fungal Genet Biol 45:1552–1561

    Google Scholar 

  • Dyer RB, Kendra DF, Brown DW (2006) Real-time PCR assay to quantify Fusarium graminearum wild-type and recombinant mutant DNA in plant material. J Microbiol Methods 67:534–542

    CAS  PubMed  Google Scholar 

  • Fairhead C, Llorente B, Denis F, Soler M, Dujon B (1996) New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using ‘split-marker’ recombination. Yeast 12:1439–1457

    CAS  PubMed  Google Scholar 

  • Fernando T, Bean G (1986) Production of trichothecene mycotoxins on cereal-grains by Myrothecium Spp. Food Chem 20:235–240

    CAS  Google Scholar 

  • Fu J, Hettler E, Wickes BL (2006) Split marker transformation increases homologous integration frequency in Cryptococcus neoformans. Fungal Genet Biol 43:200–212

    CAS  PubMed  Google Scholar 

  • Gaffoor I, Trail F (2006) Characterization of two polyketide synthase genes involved in zearalenone biosynthesis in Gibberella zeae. Appl Environ Microbiol 72:1793–1799

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gale LR, Chen LF, Hernick CA, Takamura K, Kistler HC (2002) Population analysis of Fusarium graminearum from wheat fields in eastern China. Phytopathology 92:1315–1322

    CAS  PubMed  Google Scholar 

  • Gardiner DM, Kazan K, Manners JM (2009) Novel genes of Fusarium graminearum that negatively regulate deoxynivalenol production and virulence. Mol Plant Microbe Interact 22:1588–1600

    CAS  PubMed  Google Scholar 

  • Gardiner DM, McDonald MC, Covarelli L, Solomon PS, Rusu AG, Marshall M, Kazan K, Chakraborty S, McDonald BA, Manners JM (2012) Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Pathog 8:1–22

    Google Scholar 

  • Golkari S, Gilbert J, Prashar S, Procunier JD (2007) Microarray analysis of Fusarium graminearum-induced wheat genes: identification of organ-specific and differentially expressed genes. Plant Biotechnol J 5:38–49

    CAS  PubMed  Google Scholar 

  • Goswami RS (2011) Targeted gene replacement in fungi using a split-marker approach. Plant Fungal Pathogens, Methods in Molecular Biology), 835:255–269

    Google Scholar 

  • Goswami RS, Kistler HC (2004) Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol 5:515–525

    CAS  PubMed  Google Scholar 

  • Goswami RS, Kistler HC (2005) Pathogenicity and in planta mycotoxin accumulation among members of the Fusarium graminearum species complex on wheat and rice. Phytopathology 95(12):1397--1404

    Google Scholar 

  • Greenshields DL, Liu G, Feng J, Selvaraj G, Wei Y (2007) The siderophore biosynthetic gene SID1, but not the ferroxidase gene FET3, is required for full Fusarium graminearum virulence. Mol Plant Pathol 8:411–421

    CAS  PubMed  Google Scholar 

  • Guldener U, Seong KY, Boddu J, Cho S, Trail F, Xu JR, Adam G, Mewes HW, Muehlbauer GJ, Kistler HC (2006) Development of a Fusarium graminearum Affymetrix GeneChip for profiling fungal gene expression in vitro and in planta. Fungal Genet Biol 43:316–325

    PubMed  Google Scholar 

  • Hallen HE, Huebner M, Shiu SH, Guldener U, Trail F (2007) Gene expression shifts during perithecium development in Gibberella zeae (anamorph Fusarium graminearum), with particular emphasis on ion transport proteins. Fungal Genet Biol 44:1146–1156

    CAS  PubMed  Google Scholar 

  • Hallen HE, Trail F (2008) The L-type calcium ion channel cch1 affects ascospore discharge and mycelial growth in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Eukaryot Cell 7:415–424

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halstensen AS, Nordby KC, Eduard W, Klemsdal SS (2006) Real-time PCR detection of toxigenic Fusarium in airborne and settled grain dust and associations with trichothecene mycotoxins. J Environ Monit 8:1235–1241

    CAS  PubMed  Google Scholar 

  • Han YK, Kim MD, Lee SH, Yun SH, Lee YW (2007) A novel F-box protein involved in sexual development and pathogenesis in Gibberella zeae. Mol Microbiol 63:768–779

    CAS  PubMed  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    CAS  PubMed  Google Scholar 

  • Hohn TM, Desjardins AE, McCormick SP (1995) The Tri4 gene of Fusarium sporotrichioides encodes a cytochrome P450 monooxygenase involved in trichothecene biosynthesis. Mol Gen Genet 248:95–102

    CAS  PubMed  Google Scholar 

  • Hohn TM, Krishna R, Proctor RH (1999) Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet Biol 26:224–235

    CAS  PubMed  Google Scholar 

  • Horevaj P, Bluhm BH (2012) BDM1, a phosducin-like gene of Fusarium graminearum, is involved in virulence during infection of wheat and maize. Mol Plant Pathol 13:431–444

    CAS  PubMed  Google Scholar 

  • Horevaj P, Milus EA, Bluhm BH (2011) A real-time qPCR assay to quantify Fusarium graminearum biomass in wheat kernels. J Appl Microbiol 111:396–406

    CAS  PubMed  Google Scholar 

  • Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 15:1119–1127

    CAS  PubMed  Google Scholar 

  • Ikeda K (2010) Role of perithecia as an inoculum source for stem rot type of pepper root rot caused by Fusarium solani f. sp. piperis (teleomorph: Nectria haematococca f. sp. piperis). J Gen Plant Pathol 76:241–246

    Google Scholar 

  • Ilgen P, Hadeler B, Maier FJ, Schafer W (2009) Developing kernel and rachis node induce the trichothecene pathway of Fusarium graminearum during wheat head infection. Mol Plant Microbe Interact 22:899–908

    CAS  PubMed  Google Scholar 

  • Jenczmionka NJ, Maier FJ, Losch AP, Schafer W (2003) Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr Genet 43:87–95

    CAS  PubMed  Google Scholar 

  • Jia H, Cho S, Muehlbauer GJ (2009) Transcriptome analysis of a wheat near-isogenic line pair carrying Fusarium head blight-resistant and -susceptible alleles. Mol Plant Microbe Interact 22:1366–1378

    CAS  PubMed  Google Scholar 

  • Jiang J, Liu X, Yin Y, Ma Z (2011a) Involvement of a velvet protein FgVeA in the regulation of asexual development, lipid and secondary metabolisms and virulence in Fusarium graminearum. PLoS ONE 6:e28291

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang J, Yun Y, Fu J, Shim WB, Ma Z (2011b) Involvement of a putative response regulator FgRrg-1 in osmotic stress response, fungicide resistance and virulence in Fusarium graminearum. Mol Plant Pathol 12:425–436

    CAS  PubMed  Google Scholar 

  • Jiang J, Yun Y, Liu Y, Ma Z (2012) FgVELB is associated with vegetative differentiation, secondary metabolism and virulence in Fusarium graminearum. Fungal Genet Biol 49:653–662

    CAS  PubMed  Google Scholar 

  • Jiang L, Yang J, Fan F, Zhang D, Wang X (2010) The type 2C protein phosphatase FgPtc1p of the plant fungal pathogen Fusarium graminearum is involved in lithium toxicity and virulence. Mol Plant Pathol 11:277–282

    CAS  PubMed  Google Scholar 

  • Johnson DD, Flaskerud GK, Taylor RD, Satyanarayana V (1998) Economic impacts of Fusarium head blight in wheat. In: Agricultural Economics Report

    Google Scholar 

  • Jonkers W, Dong Y, Broz K, Kistler HC (2012) The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Pathog 8:e1002724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HK, Lee T, Yun SH (2008) A putative pheromone signaling pathway is dispensable for self-fertility in the homothallic ascomycete Gibberella zeae. Fungal Genet Biol 45:1188–1196

    CAS  PubMed  Google Scholar 

  • Kim JE, Han KH, Jin J, Kim H, Kim JC, Yun SH, Lee YW (2005) Putative polyketide synthase and laccase genes for biosynthesis of aurofusarin in Gibberella zeae. Appl Environ Microbiol 71:1701–1708

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JE, Lee HJ, Lee J, Kim KW, Yun SH, Shim WB, Lee YW (2009) Gibberella zeae chitin synthase genes, GzCHS5 and GzCHS7, are required for hyphal growth, perithecia formation, and pathogenicity. Curr Genet 55:449–459

    CAS  PubMed  Google Scholar 

  • Kimura M, Tokai T, Takahashi-Ando N, Ohsato S, Fujimura M (2007) Molecular and genetic studies of Fusarium trichothecene biosynthesis: pathways, genes, and evolution. Biosci Biotechnol Biochem 71:2105–2123

    CAS  PubMed  Google Scholar 

  • Kristensen R, Berdal KG, Holst-Jensen A (2007a) Simultaneous detection and identification of trichothecene- and moniliformin-producing Fusarium species based on multiplex SNP analysis. J Appl Microbiol 102:1071–1081

    CAS  PubMed  Google Scholar 

  • Kristensen R, Gauthier G, Berdal KG, Hamels S, Remacle J, Holst-Jensen A (2007b) DNA microarray to detect and identify trichothecene- and moniliformin-producing Fusarium species. J Appl Microbiol 102:1060–1070

    CAS  PubMed  Google Scholar 

  • Kistler HC, Rep M, Ma L-J (2013) Structural dynamics of Fusarium genomes In: Brown DW, Proctor RH (eds) Fusarium: genomics, molecular and cellular biology. Horizon Scientific Press, Norwich

    Google Scholar 

  • Kumar L, Breakspear A, Kistler C, Ma LJ, Xie X (2010) Systematic discovery of regulatory motifs in Fusarium graminearum by comparing four Fusarium genomes. BMC Genom 11:208

    Google Scholar 

  • Kwon SJ, Cho SY, Lee KM, Yu J, Son M, Kim KH (2009) Proteomic analysis of fungal host factors differentially expressed by Fusarium graminearum infected with Fusarium graminearum virus-DK21. Virus Res 144:96–106

    CAS  PubMed  Google Scholar 

  • Lee J, Leslie JF, Bowden RL (2008a) Expression and function of sex pheromones and receptors in the homothallic ascomycete Gibberella zeae. Eukaryot Cell 7:1211–1221

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee J, Myong K, Kim JE, Kim HK, Yun SH, Lee YW (2012) FgVelB globally regulates sexual reproduction, mycotoxin production and pathogenicity in the cereal pathogen Fusarium graminearum. Microbiology 158:1723–1733

    CAS  PubMed  Google Scholar 

  • Lee S, Son H, Lee J, Lee YR, Lee YW (2011) A putative ABC transporter gene, ZRA1, is required for zearalenone production in Gibberella zeae. Curr Genet 57:343–351

    CAS  PubMed  Google Scholar 

  • Lee SH, Kim YK, Yun SH, Lee YW (2008b) Identification of differentially expressed proteins in a mat1-2-deleted strain of Gibberella zeae, using a comparative proteomics analysis. Curr Genet 53:175–184

    CAS  PubMed  Google Scholar 

  • Lee SH, Lee J, Lee S, Park EH, Kim KW, Kim MD, Yun SH, Lee YW (2009) GzSNF1 is required for normal sexual and asexual development in the ascomycete Gibberella zeae. Eukaryot Cell 8:116–127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SH, Lee S, Choi D, Lee YW, Yun SH (2006) Identification of the down-regulated genes in a mat1-2-deleted strain of Gibberella zeae, using cDNA subtraction and microarray analysis. Fungal Genet Biol 43:295–310

    CAS  PubMed  Google Scholar 

  • Lee T, Han YK, Kim KH, Yun SH, Lee YW (2002) Tri13 and Tri7 determine deoxynivalenol- and nivalenol-producing chemotypes of Gibberella zeae. Appl Environ Microbiol 68:2148–2154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leslie JF, Summerell BA (2006) Fusarium laboratory manual. Blackwell Publishing, Ames

    Google Scholar 

  • Li G, Zhou X, Kong L, Wang Y, Zhang H, Zhu H, Mitchell TK, Dean RA, Xu JR (2011a) MoSfl1 is important for virulence and heat tolerance in Magnaporthe oryzae. PLoS ONE 6:e19951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Wang C, Liu W, Wang G, Kang Z, Kistler HC, Xu JR (2011b) The HDF1 histone deacetylase gene is important for conidiation, sexual reproduction, and pathogenesis in Fusarium graminearum. Mol Plant Microbe Interact 24:487–496

    CAS  PubMed  Google Scholar 

  • Li HP, Wu AB, Zhao CS, Scholten O, Loffler H, Liao YC (2005) Development of a generic PCR detection of deoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum. FEMS Microbiol Lett 243:505–511

    CAS  PubMed  Google Scholar 

  • Lin Y, Son H, Lee J, Min K, Choi GJ, Kim JC, Lee YW (2011) A putative transcription factor MYT1 is required for female fertility in the ascomycete Gibberella zeae. PLoS ONE 6:e25586

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lin Y, Son H, Min K, Lee J, Choi GJ, Kim JC, Lee YW (2012) A putative transcription factor MYT2 regulates perithecium size in the ascomycete Gibberella zeae. PLoS ONE 7:e37859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu X, Jiang J, Yin Y, Ma Z (2012) Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium graminearum. Mol Plant Pathol 14:71–83

    Google Scholar 

  • Liu X, Tang WH, Zhao XM, Chen L (2010) A network approach to predict pathogenic genes for Fusarium graminearum. PloS One 5(10):e13021

    Google Scholar 

  • Lysoe E, Klemsdal ss, Bone KR, Frands RJ, Johansen T, Thrane U and Giese H (2006). The PKS4 gene of Fusarium graminerium is essential for zearalenone production. Appl Environ Microbiol 72:3924--3932

    Google Scholar 

  • Lysoe E, Pasquali M, Breakspear A, Kistler HC (2011a) The transcription factor FgStuAp influences spore development, pathogenicity, and secondary metabolism in Fusarium graminearum. Mol Plant Microbe Interact 24:54–67

    PubMed  Google Scholar 

  • Lysoe E, Seong KY, Kistler HC (2011b) The transcriptome of Fusarium graminearum during the infection of wheat. Mol Plant Microbe Interact 24:995–1000

    PubMed  Google Scholar 

  • Ma LJ, Geiser DM, Proctor RH, Rooney AP, O’Donnell K, Trail F, Gardiner DM, Manners JM, Kazan K (2013) Fusarium pathogenomics. Annu Rev Microbiol 67:399–416

    CAS  PubMed  Google Scholar 

  • Ma LJ, van der Does HC, Borkovich KA, Coleman JJ, Daboussi MJ, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malz S, Grell MN, Thrane C, Maier FJ, Rosager P, Felk A, Albertsen KS, Salomon S, Bohn L, Schafer W et al (2005) Identification of a gene cluster responsible for the biosynthesis of aurofusarin in the Fusarium graminearum species complex. Fungal Genet Biol 42:420–433

    CAS  PubMed  Google Scholar 

  • McCormick SP, Alexander NJ (2002) Fusarium Tri8 encodes a trichothecene C-3 esterase. Appl Environ Microbiol 68:2959–2964

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCormick SP, Hohn TM, Desjardins AE (1996) Isolation and characterization of Tri3, a gene encoding 15-O-acetyltransferase from Fusarium sporotrichioides. Appl Environ Microbiol 62:353–359

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menke J, Dong Y, Kistler HC (2012) Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation. Mol Plant Microbe Interact 25:1408–1418

    CAS  PubMed  Google Scholar 

  • Min K, Lee J, Kim JC, Kim SG, Kim YH, Vogel S, Trail F, Lee YW (2010) A novel gene, ROA, is required for normal morphogenesis and discharge of ascospores in Gibberella zeae. Eukaryot Cell 9:1495–1503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moradi M, Oerke EC, Steiner U, Tesfaye D, Schellander K, Dehne HW (2010) Microbiological and SYBR green real-time PCR detection of major Fusarium head blight pathogens on wheat ears. Mikrobiologiia 79:655–663

    CAS  PubMed  Google Scholar 

  • Nganje WE, Bangsund DA, Leistritz FL, Wilson WW, Tiapo NM (2004) Regional economic impacts of Fusarium head blight in wheat and barley. Rev Agric Econ 26:332–347

    Google Scholar 

  • Nguyen LN, Bormann J, Le GT, Starkel C, Olsson S, Nosanchuk JD, Giese H, Schafer W (2011) Autophagy-related lipase FgATG15 of Fusarium graminearum is important for lipid turnover and plant infection. Fungal Genet Biol 48:217–224

    CAS  PubMed  Google Scholar 

  • Nicolaisen M, Justesen AF, Thrane U, Skouboe P, Holmstrom K (2005) An oligonucleotide microarray for the identification and differentiation of trichothecene producing and non-producing Fusarium species occurring on cereal grain. J Microbiol Methods 62:57–69

    CAS  PubMed  Google Scholar 

  • Nielsen KF, Grafenhan T, Zafari D, Thrane U (2005) Trichothecene production by Trichoderma brevicompactum. J Agric Food Chem 53:8190–8196

    CAS  PubMed  Google Scholar 

  • Nielsen LK, Jensen JD, Rodriguez A, Jorgensen LN, Justesen AF (2012) TRI12 based quantitative real-time PCR assays reveal the distribution of trichothecene genotypes of F. graminearum and F. culmorum isolates in Danish small grain cereals. Int J Food Microbiol 157:384–392

    CAS  PubMed  Google Scholar 

  • Niessen L, Schmidt H, Vogel RF (2004) The use of tri5 gene sequences for PCR detection and taxonomy of trichothecene-producing species in the Fusarium section Sporotrichiella. Int J Food Microbiol 95:305–319

    CAS  PubMed  Google Scholar 

  • Niessen L, Vogel RF (2010) Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int J Food Microbiol 140:183–191

    CAS  PubMed  Google Scholar 

  • Niessen ML, Vogel RF (1998) Group specific PCR-detection of potential trichothecene-producing Fusarium-species in pure cultures and cereal samples. Syst Appl Microbiol 21:618–631

    CAS  PubMed  Google Scholar 

  • Nyvall RF, Percich JA, Mirocha CJ (1999) Fusarium head blight of cultivated and natural wild rice (Zizania palustris) in Minnesota caused by Fusarium graminearum and associated Fusarium spp. Plant Dis 83:159–164

    Google Scholar 

  • O’Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci USA 97:7905–7910

    PubMed Central  PubMed  Google Scholar 

  • O’Donnell K, Ward TJ, Geiser DM, Corby Kistler H, Aoki T (2004) Genealogical concordance between the mating type locus and seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clade. Fungal Genet Biol 41:600–623

    Google Scholar 

  • Oide S, Krasnoff SB, Gibson DM, Turgeon BG (2007) Intracellular siderophores are essential for ascomycete sexual development in heterothallic Cochliobolus heterostrophus and homothallic Gibberella zeae. Eukaryot Cell 6:1339–1353

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paper JM, Scott-Craig JS, Adhikari ND, Cuomo CA, Walton JD (2007) Comparative proteomics of extracellular proteins in vitro and in planta from the pathogenic fungus Fusarium graminearum. Proteomics 7:3171–3183

    CAS  PubMed  Google Scholar 

  • Phalip V, Delalande F, Carapito C, Goubet F, Hatsch D, Leize-Wagner E, Dupree P, Dorsselaer AV, Jeltsch JM (2005) Diversity of the exoproteome of Fusarium graminearum grown on plant cell wall. Curr Genet 48:366–379

    CAS  PubMed  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP (1995a) Reduced virulence of Gibberella zeae caused by disruption of a trichothecene toxin biosynthetic gene. Mol Plant Microbe Interact 8:593–601

    CAS  PubMed  Google Scholar 

  • Proctor RH, Hohn TM, McCormick SP, Desjardins AE (1995b) Tri6 encodes an unusual zinc finger protein involved in regulation of trichothecene biosynthesis in Fusarium sporotrichioides. Appl Environ Microbiol 61:1923–1930

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi W, Kwon C, Trail F (2006) Microarray analysis of transcript accumulation during perithecium development in the filamentous fungus Gibberella zeae (anamorph Fusarium graminearum). Mol Genet Genomics 276:87–100

    CAS  PubMed  Google Scholar 

  • Rampitsch C, Subramaniam R, Djuric-Ciganovic S, Bykova NV (2010) The phosphoproteome of Fusarium graminearum at the onset of nitrogen starvation. Proteomics 10:124–140

    CAS  PubMed  Google Scholar 

  • Rampitsch C, Tinker NA, Subramaniam R, Barkow-Oesterreicher S, Laczko E (2012) Phosphoproteome profile of Fusarium graminearum grown in vitro under nonlimiting conditions. Proteomics 12:1002–1005

    CAS  PubMed  Google Scholar 

  • Rebrikov DV, Trofimov DY (2006) Real-time PCR: a review of approaches to data analysis. Appl Biochem Microbiol 42:455–463

    CAS  Google Scholar 

  • Reischer GH, Lemmens M, Farnleitner A, Adler A, Mach RL (2004) Quantification of Fusarium graminearum in infected wheat by species specific real-time PCR applying a TaqMan Probe. J Microbiol Methods 59:141–146

    CAS  PubMed  Google Scholar 

  • Rep M, Kistler HC (2010) The genomic organization of plant pathogenicity in Fusarium species. Curr Opin Plant Biol 13:420–426

    CAS  PubMed  Google Scholar 

  • Reyes-Dominguez Y, Boedi S, Sulyok M, Wiesenberger G, Stoppacher N, Krska R, Strauss J (2012) Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum. Fungal Genet Biol 49:39–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rittenour WR, Harris SD (2008) Characterization of Fusarium graminearum Mes1 reveals roles in cell-surface organization and virulence. Fungal Genet Biol 45:933–946

    CAS  PubMed  Google Scholar 

  • Rocha O, Ansari K, Doohan FM (2005) Effects of trichothecene mycotoxins on eukaryotic cells: a review. Food Addit Contam 22:369–378

    CAS  PubMed  Google Scholar 

  • Sarver BA, Ward TJ, Gale LR, Broz K, Kistler HC, Aoki T, Nicholson P, Carter J, O’Donnell K (2011) Novel Fusarium head blight pathogens from Nepal and Louisiana revealed by multilocus genealogical concordance. Fungal Genet Biol 48:1096–1107

    PubMed  Google Scholar 

  • Schoental R (1974) Letter: role of podophyllotoxin in the bedding and dietary zearalenone on incidence of spontaneous tumors in laboratory animals. Cancer Res 34:2419–2420

    CAS  PubMed  Google Scholar 

  • Seong K, Hou Z, Tracy M, Kistler HC, Xu JR (2005) Random insertional mutagenesis identifies genes associated with virulence in the wheat scab fungus Fusarium graminearum. Phytopathology 95:744–750

    CAS  PubMed  Google Scholar 

  • Seong KY, Pasquali M, Zhou X, Song J, Hilburn K, McCormick S, Dong Y, Xu JR, Kistler HC (2009) Global gene regulation by Fusarium transcription factors Tri6 and Tri10 reveals adaptations for toxin biosynthesis. Mol Microbiol 72:354–367

    CAS  PubMed  Google Scholar 

  • Shim WB, Sagaram US, Choi YE, So J, Wilkinson HH, Lee YW (2006) FSR1 is essential for virulence and female fertility in Fusarium verticillioides and F. graminearum. Mol Plant Microbe Interact 19:725–733

    CAS  PubMed  Google Scholar 

  • Sikhakolli UR, Lopez-Giraldez F, Li N, Common R, Townsend JP, Trail F (2012) Transcriptome analyses during fruiting body formation in Fusarium graminearum and Fusarium verticillioides reflect species life history and ecology. Fungal Genet Biol 49:663–673

    CAS  PubMed  Google Scholar 

  • Sinha RC, Savard ME (1997) Concentration of deoxynivalenol in single kernels and various tissues of wheat heads. Can J Plant Pathol 19:8–12

    CAS  Google Scholar 

  • Son H, Lee J, Park AR, Lee YW (2011a) ATP citrate lyase is required for normal sexual and asexual development in Gibberella zeae. Fungal Genet Biol 48:408–417

    CAS  PubMed  Google Scholar 

  • Son H, Seo YS, Min K, Park AR, Lee J, Jin JM, Lin Y, Cao P, Hong SY, Kim EK et al (2011b) A phenome-based functional analysis of transcription factors in the cereal head blight fungus, Fusarium graminearum. PloS Pathog 7:e1002310

    CAS  PubMed Central  PubMed  Google Scholar 

  • Starkey DE, Ward TJ, Aoki T, Gale LR, Kistler HC, Geiser DM, Suga H, Toth B, Varga J, O’Donnell K (2007) Global molecular surveillance reveals novel Fusarium head blight species and trichothecene toxin diversity. Fungal Genet Biol 44:1191–1204

    CAS  PubMed  Google Scholar 

  • Sutton JC (1982) Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Can J Plant Pathol 4:195–209

    Google Scholar 

  • Tag AG, Garifullina GF, Peplow AW, Ake C Jr, Phillips TD, Hohn TM, Beremand MN (2001) A novel regulatory gene, Tri10, controls trichothecene toxin production and gene expression. Appl Environ Microbiol 67:5294–5302

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor RD, Saparno A, Blackwell B, Anoop V, Gleddie S, Tinker NA, Harris LJ (2008) Proteomic analyses of Fusarium graminearum grown under mycotoxin-inducing conditions. Proteomics 8:2256–2265

    CAS  PubMed  Google Scholar 

  • Urban M, Mott E, Farley T, Hammond-Kosack K (2003) The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia. Mol Plant Pathol 4:347–359

    CAS  PubMed  Google Scholar 

  • Van Thuat N, Schafer W, Bormann J (2012) The stress-activated protein kinase FgOS-2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Mol Plant Microbe Interact 25:1142–1156

    PubMed  Google Scholar 

  • Voigt CA, Schafer W, Salomon S (2005) A secreted lipase of Fusarium graminearum is a virulence factor required for infection of cereals. Plant J Cell Mol Biol 42:364–375

    CAS  Google Scholar 

  • Wang C, Zhang S, Hou R, Zhao Z, Zheng Q, Xu Q, Zheng D, Wang G, Liu H, Gao X et al (2011a) Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog 7:e1002460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang G, Wang C, Hou R, Zhou X, Li G, Zhang S, Xu JR (2012) The AMT1 arginine methyltransferase gene is important for plant infection and normal hyphal growth in Fusarium graminearum. PLoS ONE 7:e38324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang JH, Li HP, Qu B, Zhang JB, Huang T, Chen FF, Liao YC (2008) Development of a generic PCR detection of 3-acetyldeoxy-nivalenol-, 15-acetyldeoxynivalenol- and nivalenol-chemotypes of Fusarium graminearum Clade. Int J Mol Sci 9:2495–2504

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Y, DiGuistini S, Wang TC, Bohlmann J, Breuil C (2010) Agrobacterium-meditated gene disruption using split-marker in Grosmannia clavigera, a mountain pine beetle associated pathogen. Curr Genet 56:297–307

    PubMed  Google Scholar 

  • Wang Y, Liu W, Hou Z, Wang C, Zhou X, Jonkers W, Ding S, Kistler HC, Xu JR (2011b) A novel transcriptional factor important for pathogenesis and ascosporogenesis in Fusarium graminearum. Mol Plant Microbe Interact 24:118–128

    CAS  PubMed  Google Scholar 

  • White DG (ed) (1999) Compendium of Corn diseases, 3rd edn. American Phytopathological Society, St. Paul

    Google Scholar 

  • Wiemann P, Sieber CMK, von Bargen KW, Studt L, Niehaus E-M et al (2013) Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLoS Pathog 9(6):e1003475. doi:10.1371/journal.ppat.1003475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilbert FM, Kemmelmeier C (2003) Identification of deoxynivalenol, 3-acetyldeoxynivalenol, and zearalenone in galactose oxidase-producing isolates of Fusarium graminearum. J Basic Microbiol 43:148–157

    CAS  PubMed  Google Scholar 

  • Wingfield BD, Steenkamp ET, Santana QC, Coetzee MPA, Bam S et al (2012) First fungal genome sequence from Africa: a preliminary analysis. S Afr J Sci 108:104–112

    CAS  Google Scholar 

  • Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantification. Biotechniques 39:75–85

    CAS  PubMed  Google Scholar 

  • Yang F, Jensen JD, Svensson B, Jorgensen HJ, Collinge DB, Finnie C (2012) Secretomics identifies Fusarium graminearum proteins involved in the interaction with barley and wheat. Mol Plant Pathol 13:445–453

    CAS  PubMed  Google Scholar 

  • Yli-Mattila T, Gagkaeva T, Ward TJ, Aoki T, Kistler HC, O’Donnell K (2009) A novel Asian clade within the Fusarium graminearum species complex includes a newly discovered cereal head blight pathogen from the Russian Far East. Mycologia 101:841–852

    PubMed  Google Scholar 

  • You BJ, Lee MH, Chung KR (2009) Gene-specific disruption in the filamentous fungus Cercospora nicotianae using a split-marker approach. Arch Microbiol 191:615–622

    CAS  PubMed  Google Scholar 

  • Yu HY, Seo JA, Kim JE, Han KH, Shim WB, Yun SH, Lee YW (2008) Functional analyses of heterotrimeric G protein G alpha and G beta subunits in Gibberella zeae. Microbiology 154:392–401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu JH, Hamari Z, Han KH, Seo JA, Reyes-Dominguez Y, Scazzocchio C (2004) Double-joint PCR: a PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet Biol 41:973–981

    CAS  PubMed  Google Scholar 

  • Zhang D, Fan F, Yang J, Wang X, Qiu D, Jiang L (2010) FgTep1p is linked to the phosphatidylinositol-3 kinase signalling pathway and plays a role in the virulence of Fusarium graminearum on wheat. Mol Plant Pathol 11:495–502

    CAS  PubMed  Google Scholar 

  • Zhang XW, Jia LJ, Zhang Y, Jiang G, Li X, Zhang D, Tang WH (2012) In planta stage-specific fungal gene profiling elucidates the molecular strategies of Fusarium graminearum growing inside wheat coleoptiles. Plant Cell 24:5159–5176

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao C, Waalwijk C, de Wit PJ, Tang D, van der Lee T (2013) RNA-Seq analysis reveals new gene models and alternative splicing in the fungal pathogen Fusarium graminearum. BMC Genom 14:21

    CAS  Google Scholar 

  • Zhao C, Waalwijk C, de Wit PJ, van der Lee T, Tang D (2011) EBR1, a novel Zn(2)Cys(6) transcription factor, affects virulence and apical dominance of the hyphal tip in Fusarium graminearum. Mol Plant Microbe Interact 24:1407–1418

    PubMed  Google Scholar 

  • Zhao XM, Zhang XW, Tang WH, Chen L (2009) FPPI: Fusarium graminearum protein-protein interaction database. J Proteome Res 8:4714–4721

    CAS  PubMed  Google Scholar 

  • Zhou X, Heyer C, Choi YE, Mehrabi R, Xu JR (2010) The CID1 cyclin C-like gene is important for plant infection in Fusarium graminearum. Fungal Genet Biol 47:143–151

    CAS  PubMed  Google Scholar 

  • Zinedine A, Soriano JM, Molto JC, Manes J (2007) Review on the toxicity, occurrence, metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic mycotoxin. Food Chem Toxicol 45:1–18

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This chapter is dedicated to Dr. H. Corby Kistler, an inspirational mentor and colleague, and an excellent Fusarium biologist who embraces the power of genomics. The authors would like to thank Dr. Jon Hulvey for critical reading of the manuscript and offering constructive suggestions. LG and LJM are grateful for the support of United States Department of Agriculture, National Institute of Food and Agriculture Grant awards MASR-2009-04374, MAS00441. LJM was also supported by United States Department of Agriculture, National Institute of Food and Agriculture Grant awards 2008-35604-18800 and 2008-35600-04691.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Jun Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guo, L., Ma, LJ. (2014). Fusarium graminearum Genomics and Beyond. In: Dean, R., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Fungi: Monocot Pathogens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44053-7_4

Download citation

Publish with us

Policies and ethics