Skip to main content

Viren mit einzelsträngigem, segmentiertem RNA-Genom in Negativstrangorientierung

  • Chapter
  • First Online:
Molekulare Virologie

Zusammenfassung

Zur taxonomischen Einordnung der Viren, die über ein in mehreren Segmenten vorliegendes RNA-Genom mit negativer Orientierung verfügen, hat man sich im Jahr 2018 entschlossen, mit der Ordnung der Bunyavirales ein neues System zu etablieren. Zu ihnen zählen die Familien der Arenaviridae, Fimovirid+ae, Hantaviridae, Nairoviridae, Peribunyaviridae und Phenuiviridae, die zusammen mit einigen weiteren, teilweise noch nicht endgültig zugeordneten Familien in die neu geschaffene Ordnung gruppiert wurden. Ähnlich wie die Mononegavirales benötigen auch die Viren mit einem segmentierten RNA-Genom in negativer Orientierung für die Synthese der mRNA und für die Replikation ein spezielles Enzym, das zusammen mit weiteren Viruskomponenten bei der Infektion in die Zelle gelangt: die RNA-abhängige RNA-Polymerase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Weiterführende Literatur

Abschn. 16.1

  • Abudurexiti A, Adkins S, Alioto D, Alkhovsky SV, Avšič-Županc T, Ballinger MJ, Bente DA, Beer M, Bergeron É, Blair CD, Briese T, Buchmeier MJ, Burt FJ, Calisher CH, Cháng C, Charrel RN, Choi IR, Clegg JCS, de la Torre JC, de Lamballerie X, Dèng F, Di Serio F, Digiaro M, Drebot MA, Duàn X, Ebihara H, Elbeaino T, Ergünay K, Fulhorst CF, Garrison AR, Gāo GF, Gonzalez JJ, Groschup MH, Günther S, Haenni AL, Hall RA, Hepojoki J, Hewson R, Hú Z, Hughes HR, Jonson MG, Junglen S, Klempa B, Klingström J, Kòu C, Laenen L, Lambert AJ, Langevin SA, Liu D, Lukashevich IS, Luò T, Lǚ C, Maes P, de Souza WM, Marklewitz M, Martelli GP, Matsuno K, Mielke-Ehret N, Minutolo M, Mirazimi A, Moming A, Mühlbach HP, Naidu R, Navarro B, Nunes MRT, Palacios G, Papa A, Pauvolid-Corrêa A, Pawęska JT, Qiáo J, Radoshitzky SR, Resende RO, Romanowski V, Sall AA, Salvato MS, Sasaya T, Shěn S, Shí X, Shirako Y, Simmonds P, Sironi M, Song JW, Spengler JR, Stenglein MD, Sū Z, Sūn S, Táng S, Turina M, Wáng B, Wáng C, W áng H, Wáng J, Wèi T, Whitfield AE, Zerbini FM, Zhāng J, Zhāng L, Zhāng Y, Zhang YZ, Zhāng Y, Zhou X, Zhū L, Kuhn JH.Taxonomy of the order Bunyavirales: update 2019. Arch Virol. 2019 Jul;164(7):1949–1965. doi: https://doi.org/10.1007/s00705-019-04253-6. Epub 2019 May 7. PubMed PMID: 31065850; PubMed Central PMCID: PMC6641860.

  • Barton, L. L.; Mets, M. B. Congenital lymphocytic choriomeningitis virus infection: decade of rediscovery. In: Clin. Infect. Dis. 33 (2001) S. 370–374.

    Article  CAS  PubMed  Google Scholar 

  • Bederka LH, Bonhomme CJ, Ling EL, Buchmeier MJ. Arenavirus stable signal peptide is the keystone subunit for glycoprotein complex organization. MBio. 2014 Oct 28;5(6):e02063. doi: https://doi.org/10.1128/mBio.02063-14. PubMed PMID: 25352624; PubMed Central PMCID: PMC4217180.

  • Bowen, M. D.; Rollin, P. E.; Ksiazek, T. G.; Hustad, H. L.; Bausch, D. G.; Demby, A. H.; Bajani, M. D.; Peters, C. J.; Nichol, S. T. Genetic diversity among Lassa virus strains. In: J. Virol. 74 (2000) 6992–7004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brosh-Nissimov T. Lassa fever: another threat from West Africa. Disaster Mil Med. 2016 Apr 30;2:8. doi: https://doi.org/10.1186/s40696-016-0018-3. eCollection 2016. Review. PubMed PMID: 28265442; PubMed Central PMCID:PMC5330145.

  • Brunotte L, Lelke M, Hass M, Kleinsteuber K, Becker-Ziaja B, Günther S. Domain structure of Lassa virus L protein. J Virol. 2011 Jan;85(1):324–33. doi: https://doi.org/10.1128/JVI.00721-10. Epub 2010 Oct 27. PubMed PMID: 20980514; PubMed Central PMCID: PMC3014181.

  • Burri DJ, da Palma JR, Kunz S, Pasquato A. Envelope glycoprotein of arenaviruses. Viruses. 2012 Oct 17;4(10):2162–81. doi: https://doi.org/10.3390/v4102162. Review. PubMed PMID: 23202458; PubMed Central PMCID: PMC3497046.

  • Cao, W.; Henry, M. D.; Borrow, P.; Yamada, H.; Elder, J. H.; Ravkov, E. V.; Nichol, S. T.; Compans, R. W.; Campell, K. P.; Old- stone, M. B. A. Identification of α-dystroglycan as a receptor for lymphocytic choriomeningitis virus and lassa fever virus. In: Science 282 (1998) S. 2079–2081.

    Google Scholar 

  • Centers for Disease Control and Prevention. Lymphocytic Choriomeningitis Virus Transmitted Through Solid Organ Transplantation – Massachusetts, 2008. In: MMWR 57 (2008) 799–801.

    Google Scholar 

  • Charrel, R. N.; de Lamballerie, X. Arenaviruses other than Lassa virus. In: Antiviral Res. 57 (2003) S. 89–100.

    Article  CAS  PubMed  Google Scholar 

  • Cornu, T. I.; Feldmann, H.; de la Torre, J.C. Cells expressing the RING finger Z protein are resistant to arenavirus infection. In: J. Virol. 78 (2004) S. 2979–2983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crispin M, Zeltina A, Zitzmann N, Bowden TA. Native functionality and therapeutic targeting of arenaviral glycoproteins. Curr Opin Virol. 2016 Jun;18:70–5. doi: https://doi.org/10.1016/j.coviro.2016.04.001. Epub 2016 Apr 19. Review. PubMed PMID: 27104809; PubMed Central PMCID: PMC4983490.

  • Eichler, R.; Lenz, O.; Strecker, T.; Eickmann, M.; Klenk, H. D.; Garten, W. Identification of Lassa virus glycoprotein signal peptide as a trans-acting maturation factor. In: EMBO Rep. 4 (2003) S. 1084–1088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler, R.; Strecker, T.; Kolesnikova, L.; ter Meulen, J.; Weissenhorn, W.; Becker, S.; Klenk, H. D.; Garten, W.; Lenz, O. Characterization of the Lassa virus matrix protein Z: electron microscopic study of virus-like particles and interaction with the nucleoprotein (NP). In: Virus Res. 100 (2004) S. 249–255.

    Article  CAS  PubMed  Google Scholar 

  • Eschli, B.; Quirin, K.; Wepf, A.; Weber, J.; Zinkernagel, R.; Hengartner, H. Identification of an N-Terminal Trimeric Coiled- Coil Core within Arenavirus Glycoprotein 2 Permits Assignment to Class I Viral Fusion Proteins. In: J. Virol. 80 (2006) S. 5897–5907.

    Google Scholar 

  • Ferron F, Weber F, de la Torre JC, Reguera J. Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Res. 2017 Apr 15;234:118–134. doi: https://doi.org/10.1016/j.virusres.2017.01.018. Epub 2017 Jan 27. Review. PubMed PMID: 28137457.

  • Fischer, S. A. Emerging viruses in transplantation: there is more to infection after transplant than CMV and EBV. In: Transplantation 86 (2008) S. 1327–1339.

    Article  PubMed  Google Scholar 

  • Fischer, S. A.; Graham, M. B.; Kuehnert, M. J.; Kotton, C. N.; Srinivasan, A.; Marty, F. M.; Comer, J. A.; Guarner, J.; Paddock, C. D.; DeMeo, D. L.; Shieh, W. J.; Erickson, B. R.; Bandy, U.; DeMaria, A. Jr.; Davis, J. P.; Delmonico, F. L.; Pavlin, B.; Likos, A.; Vincent, M. J.; Sealy, T. K.; Goldsmith, C. S.; Jernigan, D. B.; Rollin, P. E.; Packard, M. M.; Patel, M.; Rowland, C.; Helfand, R. F.; Nichol, S. T.; Fishman, J. A.; Ksiazek, T.; Zaki, S. R. LCMV in Transplant Recipients Investigation Team. Transmission of lymphocytic choriomeningitis virus by organ transplantation. In: N. Engl. J. Med. 354 (2006) S. 2235–2249.

    Google Scholar 

  • Günther, S.; Emmerich, P.; Laue, T.; Kühle, O.; Asper, M.; Jung, A.; Grewing, T.; ter Meulen, J.; Schmitz, H. Imported lassa fever in germany: Molecular characterization of a new lassa virus strain. In: Emerging Infect. Diseases 6 (2000) S. 466–476.

    Article  Google Scholar 

  • Hallam SJ, Koma T, Maruyama J, Paessler S. Review of Mammarenavirus Biology and Replication. Front Microbiol. 2018 Aug 3;9:1751. doi: https://doi.org/10.3389/fmicb.2018.01751. eCollection 2018. PubMed PMID: 30123198; PubMed Central PMCID: PMC6085440.

  • Hastie KM, Saphire EO. Lassa virus glycoprotein: stopping a moving target. Curr Opin Virol. 2018 May 26. pii: S1879–6257(18)30013–0. doi: https://doi.org/10.1016/j.coviro.2018.05.002. [Epub ahead of print] Review. PubMed PMID: 29843991.

  • Jae LT, Brummelkamp TR. Emerging intracellular receptors for hemorrhagic fever viruses. Trends Microbiol. 2015 Jul;23(7):392–400. doi: https://doi.org/10.1016/j.tim.2015.04.006. Epub 2015 May 21. Review. PubMed PMID: 26004032.

  • Kunz, S.; Rojek, J. M.; Perez, M.; Spiropoulou, C. F.; Oldstone, M. B. Characterization of the interaction of lassa fever virus with its cellular receptor alpha-dystroglycan. In: J. Virol. 79 (2005) S. 5979–5987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLay L, Liang Y, Ly H. Comparative analysis of disease pathogenesis and molecular mechanisms of New World and Old World arenavirus infections. J Gen Virol. 2014 Jan;95(Pt 1):1–15. doi: https://doi.org/10.1099/vir.0.057000-0. Epub 2013 Sep 25. Review. PubMed PMID: 24068704; PubMed Central PMCID: PMC4093776.

  • Meyer B, Ly H. Inhibition of Innate Immune Responses Is Key to Pathogenesis by Arenaviruses. J Virol. 2016 Mar 28;90(8):3810–3818. doi: https://doi.org/10.1128/JVI.03049-15. Print 2016 Apr. Review. PubMed PMID: 26865707; PubMed Central PMCID: PMC4810556.

  • Morin B, Coutard B, Lelke M, Ferron F, Kerber R, Jamal S, Frangeul A, Baronti C, Charrel R, de Lamballerie X, Vonrhein C, Lescar J, Bricogne G, Günther S, Canard B. The N-terminal domain of the arenavirus L protein is an RNA endonuclease essential in mRNA transcription. PLoS Pathog. 2010 Sep 16;6(9):e1001038. doi: https://doi.org/10.1371/journal.ppat.1001038. PubMed PMID: 20862324; PubMed Central PMCID: PMC2940758.

  • Mylne AQ, Pigott DM, Longbottom J, Shearer F, Duda KA, Messina JP, Weiss DJ, Moyes CL, Golding N, Hay SI. Mapping the zoonotic niche of Lassa fever in Africa. Trans R Soc Trop Med Hyg. 2015 Aug;109(8):483–92. doi: https://doi.org/10.1093/trstmh/trv047. Epub 2015 Jun 17. Review. PubMed PMID: 26085474; PubMed Central PMCID: PMC4501400.

  • Oldstone MB. Lessons learned and concepts formed from study of the pathogenesis of the two negative-strand viruses lymphocytic choriomeningitis and influenza. Proc Natl Acad Sci U S A. 2013 Mar 12;110(11):4180–3. doi: https://doi.org/10.1073/pnas.1222025110. Epub 2013 Jan 22. Review. PubMed PMID: 23341590; PubMed Central PMCID: PMC3600446.

  • Ou, R.; Zhou, S.; Huang, L.; Moskophidis, D. Critical role for Alpha/Beta and Gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T-cells. In: J. Virol. 75 (2001) 8407–84023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palacios, G.; Druce, J.; Du, L.; Tran, T.; Birch, C.; Briese, T.; Conlan, S.; Quan, P. L.; Hui, J.; Marshall, J.; Simons, J. F.; Egholm, M.; Paddock, C. D.; Shieh, W. J.; Goldsmith, C. S.; Zaki, S. R.; Catton, M.; Lipkin, W. I. A new arenavirus in a cluster of fatal transplant-associated diseases. In: N. Engl. J. Med. 358 (2008) S. 991–998.

    Article  CAS  PubMed  Google Scholar 

  • Patterson M, Grant A, Paessler S. Epidemiology and pathogenesis of Bolivian hemorrhagic fever. Curr Opin Virol. 2014 Apr;5:82–90. doi: https://doi.org/10.1016/j.coviro.2014.02.007. Epub 2014 Mar 15. Review. PubMed PMID: 24636947; PubMed Central PMCID: PMC4028408.

  • Perez, M.; Craven, R. C.; de la Torre, J. C. The small RING finger protein Z drives arenavirus budding: implications for antiviral strategies. In: Proc. Natl. Acad. Sci. USA 100 (2003) S. 12978–12983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perez, M.; Greenwald, D. L.; de la Torre, J. C. Myristoylation of the RING finger Z protein is essential for arenavirus budding. In: J. Virol. 78 (2004) S. 11443–11448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pontremoli C, Forni D, Sironi M. Arenavirus genomics: novel insights into viral diversity, origin, and evolution. Curr Opin Virol. 2019 Feb;34:18–28. doi:https://doi.org/10.1016/j.coviro.2018.11.001. Epub 2018 Nov 27. Review. PubMed PMID: 30497052.

  • Prescott JB, Marzi A, Safronetz D, Robertson SJ, Feldmann H, Best SM. Immunobiology of Ebola and Lassa virus infections. Nat Rev Immunol. 2017 Mar;17(3):195–207. doi: https://doi.org/10.1038/nri.2016.138. Epub 2017 Jan 23. Review. PubMed PMID: 28111475.

  • Rambukkana, A.; Kunz, S.; Min, J.; Campbell, K.P.; Oldstone, M.B. Targeting Schwann cells by nonlytic arenaviral infection selectively inhibits myelination. In: Proc. Natl. Acad. Sci. USA 100 (2003) S. 16071–16076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarute N, Ross SR. New World Arenavirus Biology. Annu Rev Virol. 2017 Sep 29;4(1):141–158. doi: https://doi.org/10.1146/annurev-virology-101416-042001. Epub 2017 Jun 23. Review. PubMed PMID: 28645238.

  • Shao J, Liu X, Ly H, Liang Y. Characterization of the Glycoprotein Stable Signal Peptide in Mediating Pichinde Virus Replication and Virulence. J Virol. 2016 Oct 28;90(22):10390–10397. Print 2016 Nov 15. PubMed PMID: 27630230; PubMed Central PMCID: PMC5105672.

    Google Scholar 

  • Smelt, S. C.; Borrow, P.; Kunz, S.; Cao, W.; Tishon, A.; Lewicki, H.; Campell, K. P.; Oldstone, M. B. A. Differences in affinity of binding of lymphocytic choriomeningitis virus strains to the cellular receptor α-dystroglycan correlate with viral tropism and disease kinetics. In. J. Virol. 75 (2001) S. 448–457.

    Google Scholar 

  • Stenglein MD, Sanchez-Migallon Guzman D, Garcia VE, Layton ML, Hoon-Hanks LL, Boback SM, Keel MK, Drazenovich T, Hawkins MG, DeRisi JL. Differential DiseaseSusceptibilities in Experimentally Reptarenavirus-Infected Boa Constrictors and Ball Pythons. J Virol. 2017 Jul 12;91(15). pii: e00451–17. doi:https://doi.org/10.1128/JVI.00451-17. Print 2017 Aug 1. PubMed PMID: 28515291; PubMed Central PMCID: PMC5651717.

  • Strecker, T.; Eichler, R.; Meulen, J.; Weissenhorn, W.; Klenk, H.D.; Garten, W.; Lenz, O. Lassa virus Z protein is a matrix protein and sufficient for the release of virus-like particles. In: J. Virol. 77 (2003) S. 10700–10705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torriani G, Galan-Navarro C, Kunz S. Lassa Virus Cell Entry Reveals New Aspects of Virus-Host Cell Interaction. J Virol. 2017 Jan 31;91(4). pii: e01902–16. doi: https://doi.org/10.1128/JVI.01902-16. Print 2017 Feb 15. Review. PubMed PMID:27928003; PubMed Central PMCID: PMC5286875.

  • Urata, S.; Noda, T.; Kawaoka, Y.; Yokosawa, H.; Yasuda, J. Cellular factors required for Lassa virus budding. In: J. Virol. 80 (2006) S. 4191–4195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vieth, S.; Torda, A.E.; Asper, M.; Schmitz, H.; Gunther, S. Sequence analysis of L RNA of Lassa virus. In: Virology 318 (2004) S. 153–168.

    Article  CAS  PubMed  Google Scholar 

  • Warner BM, Safronetz D, Stein DR. Current research for a vaccine against Lassa hemorrhagic fever virus. Drug Des Devel Ther. 2018 Aug 14;12:2519–2527. doi:https://doi.org/10.2147/DDDT.S147276. eCollection 2018. Review. PubMed PMID: 30147299; PubMed Central PMCID: PMC6097522.

  • Weaver, S. C.; Salas, R. A.; Manzione, N. de; Fulhorst, C. F.; Travasos da Rosa, A. P.; Duno, G.; Utrera, A.; Mills, J. N.; Ksiazek, T. G.; Tovar, D.; Guzman, H.; Kang, W.; Tesh, R. B. Extreme genetic diversity among Pirital virus (Arenaviridae) isolates from Western Venezuela. In: Virol. 285 (2001) 110–118.

    Google Scholar 

Abschn. 16.2

  • Abudurexiti A, Adkins S, Alioto D, Alkhovsky SV, Avšič-Županc T, Ballinger MJ, Bente DA, Beer M, Bergeron É, Blair CD, Briese T, Buchmeier MJ, Burt FJ, Calisher CH, Cháng C, Charrel RN, Choi IR, Clegg JCS, de la Torre JC, de Lamballerie X, Dèng F, Di Serio F, Digiaro M, Drebot MA, Duàn X, Ebihara H, Elbeaino T, Ergünay K, Fulhorst CF, Garrison AR, Gāo GF, Gonzalez JJ, Groschup MH, Günther S, Haenni AL, Hall RA, Hepojoki J, Hewson R, Hú Z, Hughes HR, Jonson MG, Junglen S, Klempa B, Klingström J, Kòu C, Laenen L, Lambert AJ, Langevin SA, Liu D, Lukashevich IS, Luò T, Lǚ C, Maes P, de Souza WM, Marklewitz M, Martelli GP, Matsuno K, Mielke-Ehret N, Minutolo M, Mirazimi A, Moming A, Mühlbach HP, Naidu R, Navarro B, Nunes MRT, Palacios G, Papa A, Pauvolid-Corrêa A, Pawęska JT, Qiáo J, Radoshitzky SR, Resende RO, Romanowski V, Sall AA, Salvato MS, Sasaya T, Shěn S, Shí X, Shirako Y, Simmonds P, Sironi M, Song JW, Spengler JR, Stenglein MD, Sū Z, Sūn S, Táng S, Turina M, Wáng B, Wáng C, W áng H, Wáng J, Wèi T, Whitfield AE, Zerbini FM, Zhāng J, Zhāng L, Zhāng Y, Zhang YZ, Zhāng Y, Zhou X, Zhū L, Kuhn JH.Taxonomy of the order Bunyavirales: update 2019. Arch Virol. 2019 Jul;164(7):1949–1965. doi: https://doi.org/10.1007/s00705-019-04253-6. Epub 2019 May 7. PubMed PMID: 31065850; PubMed Central PMCID: PMC6641860.

  • Accardi, L.; Prehaud, C.; Di Bonito, P.; Mochi, S.; Bouloy, M.; Giorgi, C. Activity of Toscana and Rift Valley fever virus transcription complexes and heterologous templates. In: J. Gen. Virol. 82 (2001) S. 781–785.

    Article  CAS  PubMed  Google Scholar 

  • Albornoz A, Hoffmann AB, Lozach PY, Tischler ND. Early Bunyavirus-Host Cell Interactions. Viruses. 2016 May 24;8(5). pii: E143. doi: https://doi.org/10.3390/v8050143.Review. PubMed PMID: 27213430; PubMed Central PMCID: PMC4885098.

  • Alff, P. J.; Gavrilovskaya, I. N.; Gorbunova, E.; Endriss, K.; Chong, Y.; Geimonen, E.; Sen, N.; Reich, N.C.; Mackow, E. R. The pathogenic NY-1 hantavirus G1 cytoplasmic tail inhibits RIG-I- and TBK-1-directed interferon responses. In: J. Virol. 80 (2006) S. 9676–9686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Billecocq, A.; Spiegel, M.; Vialat, P.; Kohl, A.; Weber, F.; Bouloy, M.; Haller, O. NSs protein of Rift Valley fever virus blocks interferon production by inhibiting host gene transcription. In: J. Virol. 78 (2004) S. 9798–9806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird, B.; Albarino, C. G.; Hartman, A. L.; Erickson, B. R.; Ksiazek, T. G.; Nichol, S. T. Rift Valley Fever Virus Lacking the NSs and NSm Genes Is Highly Attenuated, Confers Protective Immunity from Virulent Virus Challenge, and Allows for Differential Identification of Infected and Vaccinated Animals. In: J. Virol. 82 (2008) S. 2681–2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakqori, G.; Weber, F. Efficient cDNA-based rescue of La Crosse bunyaviruses expressing or lacking the nonstructural protein NSs. In: J. Virol. 79 (2005) S. 10420–10428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouloy, M.; Janzen, C.; Vialat, P.; Khun, H.; Pavlovic, J.; Huerre, M.; Haller, O. Genetic evidence for an Interferon-antagonistic function of Rift Valley Fever virus nonstructural protein NSs. In: J. Virol. 75 (2001) S. 1371–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brault AC, Savage HM, Duggal NK, Eisen RJ, Staples JE. Heartland Virus Epidemiology, Vector Association, and Disease Potential. Viruses. 2018 Sep 14;10(9). pii: E498. doi: https://doi.org/10.3390/v10090498. Review. PubMed PMID: 30223439.

  • Castillo, C., Nicklas, C., Mardones, J., Ossa, G. Andes Hantavirus as possible cause of disease in travellers to South America. In: Travel Med. Infect. Dis. 5 (2007) S. 30–34.

    Article  PubMed  Google Scholar 

  • Cifuentes-Muñoz N, Salazar-Quiroz N, Tischler ND. Hantavirus Gn and Gc envelope glycoproteins: key structural units for virus cell entry and virus assembly. Viruses. 2014 Apr 21;6(4):1801–22. doi: https://doi.org/10.3390/v6041801. Review. PubMed PMID: 24755564; PubMed Central PMCID: PMC4014721.

  • Deyde, V. M.; Rizvanov, A. A.; Chase, J.; Otteson, E. W.; St Jeor, S. C. Interactions and trafficking of Andes and Sin Nombre Hantavirus glycoproteins G1 and G2. In: Virology 331 (2005) S. 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Figueiredo LT, Souza WM, Ferrés M, Enria DA. Hantaviruses and cardiopulmonary syndrome in South America. Virus Res. 2014 Jul 17;187:43–54. Doi https://doi.org/10.1016/j.virusres.2014.01.015. Epub 2014 Feb 5. Review. PubMed PMID: 24508343.

  • Fontana, J.; López-Montero, N.; Elliott, R. M.; Fernández, J. J.; Risco C. The unique architecture of Bunyamwera virus factories around the Golgi complex. In: Cell Microbiol. 10 (2008) S. 2012–2028.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forbes KM, Sironen T, Plyusnin A. Hantavirus maintenance and transmission in reservoir host populations. Curr Opin Virol. 2018 Feb;28:1–6. doi: https://doi.org/10.1016/j.coviro.2017.09.003. Epub 2017 Nov 13. Review. PubMed PMID: 29024905.

  • Gaudreault NN, Indran SV, Balaraman V, Wilson WC, Richt JA. Molecular aspects of Rift Valley fever virus and the emergence of reassortants. Virus Genes. 2019 Feb;55(1):1–11. doi: https://doi.org/10.1007/s11262-018-1611-y. Epub 2018 Nov 13. Review. PubMed PMID: 30426314.

  • Hawman DW, Feldmann H. Recent advances in understanding Crimean-Congo hemorrhagic fever virus. F1000Res. 2018 Oct 29;7. pii: F1000 Faculty Rev-1715. doi: https://doi.org/10.12688/f1000research.16189.1. eCollection 2018. Review. PubMed PMID:30416710; PubMed Central PMCID: PMC6206615.

  • Hellert J, Aebischer A, Wernike K, et al. Orthobunyavirus spike architecture and recognition by neutralizing antibodies. Nat Commun. 2019;10(1):879. Published 2019 Feb 20. doi:https://doi.org/10.1038/s41467-019-08832-8

  • Hepojoki J, Strandin T, Lankinen H, Vaheri A. Hantavirus structure--molecular interactions behind the scene. J Gen Virol. 2012 Aug;93(Pt 8):1631–44. doi: https://doi.org/10.1099/vir.0.042218-0. Epub 2012 May 23. Review. PubMed PMID: 22622328.

  • Honig, J. E.; Osborne, J. C.; Nichol, S. T. Crimean-Congo hemorrhagic fever virus genome L RNA segment and encoded protein. In: Virology 321 (2004) S. 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Ikegami, T.; Won, S.; Peters, C. J.; Makino, S. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene. In: J. Virol. 80 (2006) S. 2933–2940.

    Google Scholar 

  • Kaukinen, P.; Vaheri, A.; Plyusnin, A. Hantavirus nucleocapsid protein: a multifunctional molecule with both housekeeping and ambassadorial duties. In: Arch. Virol. 150 (2005) S. 1693–1713.

    Google Scholar 

  • Khaiboullina, S. F.; Rizvanov, A. A.; Deyde, V. M.; St Jeor, S. C. Andes virus stimulates interferon-inducible MxA protein expression in endothelial cells. In: J. Med. Virol. 75 (2005) S. 267–275.

    Article  CAS  PubMed  Google Scholar 

  • Klempa B. Reassortment events in the evolution of hantaviruses. Virus Genes. 2018 Oct;54(5):638–646. doi: https://doi.org/10.1007/s11262-018-1590-z. Epub 2018 Jul 25. Review. PubMed PMID: 30047031.

  • Kochs, G.; Janzen C.; Hohenberg, H.; Haller, O. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. In: Proc. Natl. Acad. Sci. USA 99 (2002) S. 3153–3158.

    Google Scholar 

  • Kohl, A.; Lowen, A. C.; Leonard, V. H.; Elliott, R.M. Genetic elements regulating packaging of the Bunyamwera orthobunyavirus genome. In: J. Gen. Virol. 87 (2006) S. 177–187.

    Google Scholar 

  • Kraatz F, Wernike K, Reiche S, Aebischer A, Reimann I, Beer M. Schmallenberg virus non-structural protein NSm: Intracellular distribution and role of non-hydrophobic domains. Virology. 2018 Mar;516:46–54. doi: https://doi.org/10.1016/j.virol.2017.12.034. Epub 2018 Jan 9. PubMed PMID: 29329078.

  • Kraatz F, Wernike K, Hechinger S, König P, Granzow H, Reimann I, Beer M. Deletion mutants of Schmallenberg virus are avirulent and protect from virus challenge. J Virol. 2015 Feb;89(3):1825–37. doi: https://doi.org/10.1128/JVI.02729-14. Epub 2014 Nov 19. PubMed PMID: 25410877; PubMed Central PMCID: PMC4300748.

  • Krautkrämer E, Zeier M. Old World hantaviruses: aspects of pathogenesis and clinical course of acute renal failure. Virus Res. 2014 Jul 17;187:59–64. doi: https://doi.org/10.1016/j.virusres.2013.12.043. Epub 2014 Jan 8. Review. PubMed PMID: 24412712.

  • Krüger DH, Schönrich G, Klempa B. Human pathogenic hantaviruses and prevention of infection. Hum Vaccin. 2011 Jun;7(6):685–93. Epub 2011 Jun 1. Review. PubMed PMID: 21508676; PubMed Central PMCID: PMC3219076.

    Google Scholar 

  • Lievaart-Peterson K, Luttikholt S, Peperkamp K, Van den Brom R, Vellema P. Schmallenberg disease in sheep or goats: Past, present and future. Vet Microbiol. 2015 Dec 14;181(1–2):147–53. doi: https://doi.org/10.1016/j.vetmic.2015.08.005. Epub 2015 Aug 12. Review. PubMed PMID: 26441013.

  • Maes, P.; Clement, J.; Gavrilovskaya, I.; Van Ranst, M. Hantaviruses: immunology, treatment, and prevention. In: Viral Immunol. 17 (2004) S. 481–497.

    Article  CAS  PubMed  Google Scholar 

  • Martinez, V. P.; Bellomo, C.; San Juan, J.; Pinna, D.; Forlenza, R.; Elder, M.; Padula, P. J. Person-to-person transmission of Andes virus. In: Emerg. Infect. Dis. 11 (2005) S. 1848–1853.

    Article  PubMed  PubMed Central  Google Scholar 

  • Medina, R.A.; Mirowsky-Garcia, K.; Hutt, J.; Hjelle, B. Ribavirin, human convalescent plasma and anti-beta3 integrin antibody inhibit infection by Sin Nombre virus in the deer mouse model. In: J. Gen. Virol. 88 (2007) S. 493–505.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, B. J.; Schmaljohn, C. S. Persistent hantavirus infections: charactersitics and mechanisms. In: Trends in Microbiol. 8 (2000) S. 61–67.

    Article  CAS  Google Scholar 

  • Mir, M. A.; Duran, W.A.; Hjelle, B. L.; Ye, C.; Panganiban, A. T. Storage of cellular 5’ mRNA caps in P bodies for viral capsnatching. In: Proc. Natl. Acad. Sci. USA 105 (2008) S. 19294–19299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir, M.A.; Panganiban, A.T. Characterization of the RNA chaperone activity of hantavirus nucleocapsid protein. In: J. Virol. 80 (2006) S. 6276–6285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir, M. A.; Panganiban, A. T. A protein that replaces the entire cellular elF4F complex. In: EMBO J. 27 (2008) S. 3129–3139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mou, D. L.; Wang, Y. P.; Huang, C. X.; Li, G. Y.; Pan, L.; Yang, W. S.; Bai, X. F. Cellular entry of Hantaan virus A9 strain: specific interactions with beta3 integrins and a novel 70 kDa protein. In: Biochem. Biophys. Res. Commun. 339 (2006) S. 611–617.

    Article  CAS  PubMed  Google Scholar 

  • Reuter M, Krüger DH. The nucleocapsid protein of hantaviruses: much more than a genome-wrapping protein. Virus Genes. 2018 Feb;54(1):5–16. doi: https://doi.org/10.1007/s11262-017-1522-3. Epub 2017 Nov 20. Review. PubMed PMID: 29159494.

  • Shi, X.; Kohl A.; Leonard, V. H.; Li P.; McLees, A.; Elliott, R. M. Requirement of the N-terminal region of orthobunyavirus nonstructural protein NSm for virus assembly and morphogenesis. In: J. Virol. 80 (2006) S. 8089–8099.

    Google Scholar 

  • Shi X, Botting CH, Li P, Niglas M, Brennan B, Shirran SL, Szemiel AM, Elliott RM. Bunyamwera orthobunyavirus glycoprotein precursor is processed by cellular signal peptidase and signal peptide peptidase. Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8825–30. doi: https://doi.org/10.1073/pnas.1603364113. Epub 2016 Jul 20. PubMed PMID: 27439867; PubMed Central PMCID: PMC4978261.

  • Sick F, Beer M, Kampen H, Wernike K. Culicoides Biting Midges-Underestimated Vectors for Arboviruses of Public Health and Veterinary Importance. Viruses. 2019 Apr 24;11(4). pii: E376. doi: https://doi.org/10.3390/v11040376. Review. PubMed PMID: 31022868; PubMed Central PMCID: PMC6520762.

  • Silvas JA, Aguilar PV. The Emergence of Severe Fever with Thrombocytopenia Syndrome Virus. Am J Trop Med Hyg. 2017 Oct;97(4):992–996. doi: https://doi.org/10.4269/ajtmh.16-0967. Epub 2017 Aug 18. Review. PubMed PMID: 28820686; PubMed Central PMCID: PMC5637595.

  • Soldan, S. S.; Plassmeyer, M. L.; Matukonis, M. K.; Gonzalez- Scarano, F. La Crosse virus nonstructural protein NSs counteracts the effects of short interfering RNA. In: J. Virol. 79 (2005) S. 234–244.

    Google Scholar 

  • Spiegel M, Plegge T, Pöhlmann S. The Role of Phlebovirus Glycoproteins in Viral Entry, Assembly and Release. Viruses. 2016 Jul 21;8(7). pii: E202. doi: https://doi.org/10.3390/v8070202. Review. PubMed PMID: 27455305; PubMed Central PMCID: PMC4974537.

  • Ter Horst S, Conceição-Neto N, Neyts J, Rocha-Pereira J. Structural and functional similarities in bunyaviruses: Perspectives for pan-bunya antivirals. Rev Med Virol. 2019 May;29(3):e2039. doi: https://doi.org/10.1002/rmv.2039. Epub 2019 Feb 11. Review. PubMed PMID: 30746831.

  • Weber, F.; Dunn, E. F.; Bridgen, A.; Elliott, R. M. The Bunyamwera virus nonstructural protein NSs inhibits viral RNA synthesis in a minireplicon system. In: Virology 281 (2001) S. 67–74.

    Article  CAS  PubMed  Google Scholar 

  • Weber, F.; Bridgen, A.; Fazakerley, J. K.; Streitenfeld, H.; Kessler, N.; Randall, R. E.; Elliott, R. M. Bunyamwera bunyavirus nonstructural protein NSs counteracts the induction of alpha/beta interferon. In: J. Virol. 76 (2002) S. 7949–7955.

    Google Scholar 

  • Wernike K, Conraths F, Zanella G, Granzow H, Gache K, Schirrmeier H, Valas S, Staubach C, Marianneau P, Kraatz F, Höreth-Böntgen D, Reimann I, Zientara S, Beer M. Schmallenberg virus-two years of experiences. Prev Vet Med. 2014 Oct 15;116(4):423–34. doi: https://doi.org/10.1016/j.prevetmed.2014.03.021. Epub 2014 Apr 3. Review. PubMed PMID: 24768435.

  • Witkowski PT, Klempa B, Ithete NL, Auste B, Mfune JK, Hoveka J, Matthee S, Preiser W, Kruger DH. Hantaviruses in Africa. Virus Res. 2014 Jul 17;187:34–42. doi: https://doi.org/10.1016/j.virusres.2013.12.039. Epub 2014 Jan 7. Review. PubMed PMID: 24406800.

  • Zöller, L.; Faulda, M.; Meisl, H.; Ruh, B.; Kimmig, P.; Schelling, U.; Zeier, M.; Kulzer, P.; Becker, C.; Roggendorf, M.; Bautz, E. K. F.; Krüger, D. H.; Darai, G. Seroprevalence of hantavirus antibodies in germany as determined by a new recombinant enzyme immunoassay. In: Eur. J. Clin. Microbiol. 14 (1995) S. 305–313.

    Article  Google Scholar 

Abschn. 16.3

  • : Sivanandy P, Zi Xien F, Woon Kit L, Tze Wei Y, Hui En K, Chia Lynn L. A review on current trends in the treatment of human infection with H7N9-avian influenza A. J Infect Public Health. 2018 Sep 10. pii: S1876–0341(18)30134–5. doi: https://doi.org/10.1016/j.jiph.2018.08.005. [Epub ahead of print] Review. PubMed PMID: 30213468.

  • Asha K, Kumar B. Emerging Influenza D Virus Threat: What We Know so Far! J Clin Med. 2019 Feb 5;8(2). pii: E192. doi: https://doi.org/10.3390/jcm8020192. Review. PubMed PMID: 30764577; PubMed Central PMCID: PMC6406440.

  • Brunotte L, Beer M, Horie M, Schwemmle M. Chiropteran influenza viruses: flu from bats or a relic from the past? Curr Opin Virol. 2016 Feb;16:114–119. doi: https://doi.org/10.1016/j.coviro.2016.02.003. Epub 2016 Mar 3. Review. PubMed PMID: 26947779.

  • Bullough, P. A.; Hughson, F. M.; Skehel, J. J.; Wiley, D. C. Structure of influenza virus hemagglutinin at the pH of membrane fusion. In: Nature 371 (1994) S. 37–43.

    Article  CAS  PubMed  Google Scholar 

  • Byrd-Leotis L, Cummings RD, Steinhauer DA. The Interplay between the Host Receptor and Influenza Virus Hemagglutinin and Neuraminidase. Int J Mol Sci. 2017 Jul 17;18(7). pii: E1541. doi: https://doi.org/10.3390/ijms18071541. Review. PubMed PMID: 28714909; PubMed Central PMCID: PMC5536029.

  • Böttcher-Friebertshäuser E, Garten W, Matrosovich M, Klenk HD. The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol. 2014;385:3–34. doi: https://doi.org/10.1007/82_2014_384. Review. PubMed PMID: 25031010.

  • Böttcher-Friebertshäuser E, Klenk HD, Garten W. Activation of influenza viruses by proteases from host cells and bacteria in the human airway epithelium. Pathog Dis. 2013 Nov;69(2):87–100. doi: https://doi.org/10.1111/2049-632X.12053. Epub 2013 Jul 2. Review. PubMed PMID: 23821437.

  • Chen, W.; Calvo, P. A.; Malide, D.; Gibbs, Y.; Schubert, U.; Bacik, J.; Basta, S.; O’Neill, R.; Schickli, J.; Paleso, P.; Henklein, P.; Bennink, J. R.; Yewdell, J. W. A novel influenza A virus mitochondrial protein that induces cell death. In: Nature Medicine 7 (2001) S. 1306–1312.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Trovão NS, Wang G, Zhao W, He P, Zhou H, Mo Y, Wei Z, Ouyang K, Huang W, García-Sastre A, Nelson MI. Emergence and Evolution of Novel Reassortant Influenza A Viruses in Canines in Southern China. MBio. 2018 Jun 5;9(3). pii: e00909–18. doi: https://doi.org/10.1128/mBio.00909-18. PubMed PMID: 29871917; PubMed Central PMCID: PMC5989073.

  • Cohen, J. Pandemic influenza. Straight from the pig’s mouth: swine research with swine influenzas. In: Science 325 (2009) S. 140–141.

    Google Scholar 

  • Cohen, J.; Enserink M. Swine flu. After delays, WHO agrees: the 2009 pandemic has begun. In: Science 324 (2009) S. 1496–1497.

    Google Scholar 

  • Conenello, G. M.; Palese P. Influenza A virus PB1-F2: a small protein with a big punch. In: Cell Host Microbe 2 (2007) S. 207–209.

    Google Scholar 

  • Conenello, G. M.; Zamarin, D.; Perrone, L. A.; Tumpey, T.; Palese, P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. In: PLoS Pathog. 3 (2007) S. 1414–1421.

    Google Scholar 

  • Cook JD, Sultana A, Lee JE. Structure of the infectious salmon anemia virus receptor complex illustrates a unique binding strategy for attachment. Proc Natl Acad Sci U S A. 2017 Apr 4;114(14):E2929–E2936. doi: https://doi.org/10.1073/pnas.1617993114. Epub 2017 Mar 20. PubMed PMID: 28320973; PubMed Central PMCID: PMC5389325.

  • Crawford, P. C.; Dubovi, E. J.; Castleman, W. L.; Stephenson, I.; Gibbs, E. P. J.; Chen, L.; Smith, C.; Hill, R. C.; Ferro, P.; Pompey, J.; Bright, R. A.; Medina, M.-J.; Influenza Virus Genomics Group; Johnson, C. M.; Olsen, C. W.; Cox, N. J.; Klimov, A. I.; Katz, J. M.; Donis, R. O. Transmission of equine influenza virus to dogs. In: Science 310 (2005) S. 482–485.

    Google Scholar 

  • Cross TA. Flu BM2 structure and function. Nat Struct Mol Biol. 2009 Dec;16(12):1207–9. doi: https://doi.org/10.1038/nsmb1209-1207. PubMed PMID: 19956205; PubMed Central PMCID: PMC3727163.

  • De Vlugt C, Sikora D, Pelchat M. Insight into Influenza: A Virus Cap-Snatching. Viruses. 2018 Nov 16;10(11). pii: E641. doi: https://doi.org/10.3390/v10110641. Review. PubMed PMID: 30453478.

  • Diebold, S. S.; Kaisho, T.; Hemmi, H.; Akira, S.; Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. In: Science 303 (2004) S. 1529–1531.

    Google Scholar 

  • Dou D, Revol R, Östbye H, Wang H, Daniels R. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement. Front Immunol. 2018 Jul 20;9:1581. doi: https://doi.org/10.3389/fimmu.2018.01581. eCollection 2018. Review. PubMed PMID: 30079062; PubMed Central PMCID: PMC6062596.

  • Elderfield RA, Koutsakos M, Frise R, Bradley K, Ashcroft J, Miah S, Lackenby A, Barclay WS. NB protein does not affect influenza B virus replication in vitro and is not required for replication in or transmission between ferrets. J Gen Virol. 2016 Mar;97(3):593–601. doi: https://doi.org/10.1099/jgv.0.000386. Epub 2015 Dec 24.PubMed PMID: 26703440; PubMed Central PMCID: PMC5381391.

  • Ferhadian D, Contrant M, Printz-Schweigert A, Smyth RP, Paillart JC, Marquet R. Structural and Functional Motifs in Influenza Virus RNAs. Front Microbiol. 2018 Mar 29;9:559. doi: https://doi.org/10.3389/fmicb.2018.00559. eCollection 2018. Review. PubMed PMID: 29651275; PubMed Central PMCID: PMC5884886.

  • Fouchier, R. A. M.; Munster, V.; Wallenstein, A.; Bestebroer, T. M.; Herfst, S.; Smith, D.; Rimmelzwaan, G. F.; Olsen, B.; Osterhaus, A. D. M. E. Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black- headed gulls. In: J. Virol. 79 (2005) S. 2814–2822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel, G.; Herwig, A.; Klenk, H. D. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. In: PLoS Pathog. 4 (2008) e11.

    Google Scholar 

  • Gabriel G, Fodor E. Molecular determinants of pathogenicity in the polymerase complex. Curr Top Microbiol Immunol. 2014;385:35–60. doi: https://doi.org/10.1007/82_2014_386. Review. PubMed PMID: 25033751.

  • Garcia-Robles, I.; Akarsu, H.; Müller, C. W.; Ruigrok, R. W.; Baudin, F. Interaction of influenza virus proteins with nucleosomes. In: Virology 332 (2005) S. 329–336.

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Sastre, A. Inhibition of interferon-mediated antiviral responses by influenza A viruses and other negative-strand RNA viruses: In: Virology 279 (2001) S. 375–384.

    Article  CAS  PubMed  Google Scholar 

  • Haller, O.; Kochs, G. Thogotovirus. In: Tidona, C. A.; Darai, G. The Springer Index of Viruses. Berlin, Heidelberg, New York (Springer-Verlag) 2002, S. 615–619.

    Google Scholar 

  • Hara, K.; Shiota, M.; Kido, H.; Ohtsu, Y.; Kashiwagi, T.; Iwahashi, J.; Hamada, N.; Mizoue, K.; Tsumura, N.; Kato, H.; Toyoda, T. Influenza virus RNA polymerase PA subunit is a novel serin protease with Ser624 at the active site. In: Genes Cells 6 (2001) S. 87–97.

    Article  CAS  PubMed  Google Scholar 

  • Harder TC, Vahlenkamp TW. Influenza virus infections in dogs and cats. Vet Immunol Immunopathol. 2010 Mar 15;134(1–2):54–60. doi: https://doi.org/10.1016/j.vetimm.2009.10.009. Epub 2009 Oct 14. Review. PubMed PMID: 19896216.

  • Hatta, M.; Kawaoka, Y. The continued pandemic threat posed by avian influenza viruses in Hong Kong. In: Trends Microbiol. 10 (2002) S. 340–344.

    Article  CAS  PubMed  Google Scholar 

  • Hatta, M., Kawaoka, Y. The NB protein of influenza B virus is not necessary for virus replication in vitro. In: J. Virol. 77 (2003) S. 6050–6054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Sneyd H, Dekant R, Wang J. Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target. Curr Top Med Chem. 2017;17(20):2271–2285. doi: https://doi.org/10.2174/1568026617666170224122508. Review. PubMed PMID: 28240183; PubMed Central PMCID: PMC5967877.

  • Ison, M.G.; Gubareva, L.V.; Atmar, R.L.; Treanor, J.; Hayden, F.G. Recovery of drug-resistant influenza virus from immunocompromised patients: a case series. In: J. Infect. Dis. 193 (2006) S. 760–764.

    Article  CAS  PubMed  Google Scholar 

  • de Jong, M.D.; Tran, T. T.; Truong, H. K.; Vo, M. H.; Smith, G. J.; Nguyen, V. C.; Bach, V. C.; Phan, T. Q.; Do, Q. H.; Guan, Y.; Peiris, J. S.; Tran, T. H.; Farrar, J. Oseltamivir resistance during treatment of influenza A (H5N1) infection. In: N. Engl. J. Med. 353 (2005) S. 2667–2672.

    Article  PubMed  Google Scholar 

  • Klemm C, Boergeling Y, Ludwig S, Ehrhardt C. Immunomodulatory Nonstructural Proteins of Influenza A Viruses. Trends Microbiol. 2018 Jul;26(7):624–636. doi: https://doi.org/10.1016/j.tim.2017.12.006. Epub 2018 Jan 17. Review. PubMed PMID: 29373257.

  • Klenk, H. D. Infection of the endothelium by influenza viruses. In: Thromb. Haemost. 94 (2005) S. 262–265.

    Google Scholar 

  • Krug, R. M.; Yuan, W.; Noah, D. L.; Latham, A. G. Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. In: Virology 309 (2003) S. 181–189.

    Google Scholar 

  • Krug RM. Functions of the influenza A virus NS1 protein in antiviral defense. Curr Opin Virol. 2015 Jun;12:1–6. doi: https://doi.org/10.1016/j.coviro.2015.01.007. Epub 2015 Jan 29. Review. PubMed PMID: 25638592; PubMed Central PMCID: PMC4470714.

  • Laporte M, Naesens L. Airway proteases: an emerging drug target for influenza and other respiratory virus infections. Curr Opin Virol. 2017 Jun;24:16–24. doi: https://doi.org/10.1016/j.coviro.2017.03.018. Epub 2017 Apr 14. Review. PubMed PMID: 28414992.

  • Ludwig, S.; Pleschka, S.; Planz, O.; Wolff, T. Ringing the alarm bells: signalling and apoptosis in influenza virus infected cells. In: Cell Microbiol. 8 (2006) S. 375–386.

    Google Scholar 

  • Ma W, García-Sastre A, Schwemmle M. Expected and Unexpected Features of the Newly Discovered Bat Influenza A-like Viruses. PLoS Pathog. 2015 Jun 4;11(6):e1004819. doi: https://doi.org/10.1371/journal.ppat.1004819. eCollection 2015 Jun. Review. PubMed PMID: 26042416; PubMed Central PMCID: PMC4456350.

  • Mahmoudian S., Auerochs S., Gröne M., Marschall M. Influenza A virus proteins PB1 and NS1 are subject to functionally important phosphorylation by protein kinase C. In: J. Gen. Virol. 90 (2009) S. 1392–1397.

    Article  CAS  PubMed  Google Scholar 

  • Manzoor R, Igarashi M, Takada A. Influenza A Virus M2 Protein: Roles from Ingress to Egress. Int J Mol Sci. 2017 Dec 7;18(12). pii: E2649. doi: https://doi.org/10.3390/ijms18122649. Review. PubMed PMID: 29215568; PubMed Central PMCID: PMC5751251.

  • Matrosovich M.; Stech J.; Klenk H. D. Influenza receptors, polymerase and host range. In: Rev. Sci. Tech. 28 (2009) S. 203–217.

    Article  CAS  PubMed  Google Scholar 

  • Mazur, I.; Anhlan, D.; Mitzner, D.; Wixler, L.; Schubert, U.; Ludwig, S. The proapoptotic influenza A virus protein PB1-F2 regulates viral polymerase activity by interaction with the PB1 protein. In: Cell Microbiol. 10 (2008) S. 1140–1152.

    Google Scholar 

  • Min, J. Y.; Krug, R. M. The primary function of RNA binding by the influenza A virus NS1 protein in infected cells: Inhibiting the 2’–5’ oligo (A) synthetase/RNase L pathway. In: Proc. Natl. Acad. Sci. USA 103 (2006) S. 7100–7105.

    Google Scholar 

  • Mitzner, D.; Dudek, S. E.; Studtrucker, N.; Anhlan, D.; Mazur, I.; Wissing, J.; Jänsch, L.; Wixler, L.; Bruns, K.; Sharma, A.; Wray, V.; Henklein, P.; Ludwig, S.; Schubert, U. Phosphorylation of the influenza A virus protein PB1-F2 by PKC is crucial for apoptosis promoting functions in monocytes. In: Cell Microbiol. 2009

    Google Scholar 

  • Mould, J.A.; Paterson, R.G.; Takeda, M.; Ohigashi, Y.; Venkataraman, P.; Lamb, R.A.; Pinto, L.H. Influenza B virus BM2 protein has ion channel activity that conducts protons across membranes. In: Dev. Cell. 5 (2003) S:175–184.

    Google Scholar 

  • Muramkami, M.; Towatari, T.; Ohuchi, M.; Shiota, M.; Akao, M.; Okumura, Y.; Parry, M. A. A.; Kido, H. Mini-plasmin found in the epithelial cells of bronchioles triggers infection by broad spectrum influenza A viruses and Sendai virus. In: Eur. J. Biochem. 268 (2001) S. 2847–2855.

    Google Scholar 

  • Naffakh, N.; Massin, P.; Werf, S. van der. The transcription/ replication activity of the polymerase of influenza A viruses is not correlated with the level of proteolysis induced by the PA subunit. In: Virol. 285 (2001) S. 244–252.

    Article  CAS  Google Scholar 

  • Neumann, G.; Hughes, M. T.; Kawaoka, Y. Influenza A virus NS2 protein mediates vRNP nuclear export through NES-independent interaction hCRM1. In: EMBO Journ. 19 (2000) S. 7651–7658.

    Article  Google Scholar 

  • Nicholson, K. G.; Wood, J. M.; Zambon, M. Influenza. In: Lancet 362 (2003) S. 1733–1745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osterhaus, A. D.; Rimmelzwaan, G. F.; Martina, B. E.; Bestebroer, T. M.; Fouchier, R. A. Influenza B virus in seals. In: Science 288 (2000) S. 1051–1053.

    Google Scholar 

  • Oxford, J. S. Influenza A pandemics of the 20th century with special reference to 1918: virology, pathology and epidemiology. In: Rev. Med. Virol. 10 (2000) S. 119–133.

    Google Scholar 

  • Palese, P.; Talon, J.; O’Neill, R. E.; Anderson, D. K.; Garcia-Sastre, A.; Palese, P. Influenza B and C virus NEP (NS2) proteins possess nuclear export activities. In: J. Virol. 75 (2001) S. 7375–7383.

    Google Scholar 

  • Parrish CR, Voorhees IEH. H3N8 and H3N2 Canine Influenza Viruses: Understanding These New Viruses in Dogs. Vet Clin North Am Small Anim Pract. 2019 Jul;49(4):643–649. doi: https://doi.org/10.1016/j.cvsm.2019.02.005. Epub 2019 Apr 4. Review. PubMed PMID: 30956002.

  • Perez, D. R.; Donis, R. O. Functional analysis of PA binding by influenza A virus PB1: effects on polymerase activity and viral infectivity. In: J. Virol. 75 (2001) S. 8127–8136.

    Google Scholar 

  • Pinto, L. H.; Lamb, R. A. The M2-proton channels of influenza A and B viruses. In: J. Biol. Chem. 281 (2006) S. 8997–9000.

    Google Scholar 

  • Reid, A. H.; Fanning, T. G.; Hultin, J. V.; Taubenberger, J. K. Origin and evolution of the 1918 „spanish“ influenza virus hemagglutinin. In: Proc. Natl. Acad. Sci. USA 96 (1999) S. 1651–1656.

    Google Scholar 

  • Seo, S. H.; Hoffmann, E.; Webster, R. G. Lethal H5N1 influenza viruses escape host anti-viral cytokine responses. In: Nat. Med. 8 (2002) S. 950–954.

    Article  CAS  PubMed  Google Scholar 

  • Shinya, K., Ebina, M., Yamada, S., Ono, M., Kasai, N., Kawaoka, Y. Avian flu: influenza virus receptors in the human airway. In: Nature 440 (2006) S. 435–436.

    Article  CAS  PubMed  Google Scholar 

  • Singh RK, Dhama K, Karthik K, Khandia R, Munjal A, Khurana SK, Chakraborty S, Malik YS, Virmani N, Singh R, Tripathi BN, Munir M, van der Kolk JH. A Comprehensive Review on Equine Influenza Virus: Etiology, Epidemiology, Pathobiology, Advances in Developing Diagnostics, Vaccines, and Control Strategies. Front Microbiol. 2018 Sep 6;9:1941. doi: https://doi.org/10.3389/fmicb.2018.01941. eCollection 2018. Review. PubMed PMID: 30237788; PubMed Central PMCID: PMC6135912.

  • Skehel, J. J.; Wiley, D. C. Receptor binding and membrane fusion in virus entry: The influenza hemagglutinin. In: Annu. Rev. Biochem. 69 (2000) S. 531–569.

    Article  CAS  PubMed  Google Scholar 

  • Smith G. J.; Vijaykrishna, D.; Bahl, J.; Lycett, S. J.; Worobey, M.; Pybus, O. G.; Ma, S. K.; Cheung, C. L.; Raghwani, J.; Bhatt, S.; Peiris, J. S.; Guan, Y.; Rambaut, A. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. In: Nature 459 (2009) S. 1122–1125.

    Google Scholar 

  • Stevaert A, Naesens L. The Influenza Virus Polymerase Complex: An Update on Its Structure, Functions, and Significance for Antiviral Drug Design. Med Res Rev. 2016 Nov;36(6):1127–1173. doi: https://doi.org/10.1002/med.21401. Epub 2016 Aug 29. Review. PubMed PMID: 27569399; PubMed Central PMCID: PMC5108440.

  • Subbarao, K.; Shaw, M. W. Molecular aspects of avian influenza (H5N1) viruses isolated from humans. In: Rev. Med. Virol. 10 (2000) S. 337–348.

    Article  CAS  PubMed  Google Scholar 

  • Sutton TC. The Pandemic Threat of Emerging H5 and H7 Avian Influenza Viruses. Viruses. 2018 Aug 28;10(9). pii: E461. doi: https://doi.org/10.3390/v10090461. Review. PubMed PMID: 30154345; PubMed Central PMCID: PMC6164301.

  • Suzuki, Y. Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. In: Biol. Pharm. Bull. 28 (2005) S. 399–408.

    Article  CAS  PubMed  Google Scholar 

  • Swayne, D. E. Understanding the ecology and epidemiology of avian influenza viruses: Implications for zoonotic potential. In: Brown, C.; Brolin, C. (Hrsg.) Emerging diseases of animals. Washington D. C. (ASM Press) 2000, S. 101–130.

    Google Scholar 

  • Taubenberger, J. K.; Reid, A. H.; Janczewski, T. A.; Fanning, T. G. Integrating historical, clinical and molecular genetic data in order to explain the origin and virulence of the 1918 Spanish influenza virus. In: Philos. Trans. R. Soc. Lond. B. Biol. Sci. 356 (2001) S. 1829–1839.

    Google Scholar 

  • Te Velthuis AJ, Fodor E. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis. Nat Rev Microbiol. 2016 Aug;14(8):479–93. doi: https://doi.org/10.1038/nrmicro.2016.87. Epub 2016 Jul 11. Review. PubMed PMID: 27396566; PubMed Central PMCID: PMC4966622.

  • To, K.-F.; Chan, P. K. S.; Chan, K.-F.; Lee, W.-K.; Lam, W.-Y.; Wong, K.-F.; Tang, M. L. S.; Tsang, D. N. C.; Sung, R. Y. T.; Buckley, T. A.; Tam, J. S.; Cheng, A. F. Pathology of fatal human infection associated with avian influenza A H5N1 virus. In: J. Med. Virol. 63 (2001) S. 242–246.

    Article  CAS  PubMed  Google Scholar 

  • Tumpey, T. M.; Suarez, D. L.; Perkins, L. E.; Senne, D. A.; Lee, J. G.; Lee, Y. J.; Mo, I. P.; Sung, H. W.; Swayne, D. E. Characterization of a highly pathogenic H5N1 avian influenza A virus isolated from duck meat. In: J. Virol. 76 (2002) S. 6344–6355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner, R.; Herwig, A.; Azzouz, N.; Klenk, H. D. Acylation-mediated membrane anchoring of avian influenza virus hemagglutinin is essential for fusion pore formation and virus infectivity. In: J. Virol. 79 (2005) S. 6449–6458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang M, Veit M. Hemagglutinin-esterase-fusion (HEF) protein of influenza C virus. Protein Cell. 2016 Jan;7(1):28–45. doi: https://doi.org/10.1007/s13238-015-0193-x. Epub 2015 Jul 28. Review. PubMed PMID: 26215728; PubMed Central PMCID: PMC4707155.

  • Wanitchang A, Wongthida P, Jongkaewwattana A. Influenza B virus M2 protein can functionally replace its influenza A virus counterpart in promoting virus replication. Virology. 2016 Nov;498:99–108. doi: https://doi.org/10.1016/j.virol.2016.08.016. Epub 2016 Aug 25. PubMed PMID: 27567258.

  • Weber-Gerlach M, Weber F. To Conquer the Host, Influenza Virus Is Packing It In: Interferon-Antagonistic Strategies beyond NS1. J Virol. 2016 Sep 12;90(19):8389–94. doi: https://doi.org/10.1128/JVI.00041-16. Print 2016 Oct 1. Review. PubMed PMID: 27440898; PubMed Central PMCID: PMC5021431.

  • Webster, R. G.; Guan, Y.; Peiris, M.; Walker, D.; Krauss, S.; Zhou, N. N.; Govorkova, E. A.; Ellis, T. M.; Dyrting, K. C.; Sit, T.; Perez, D. R.; Shortridge, K. F. Characterization of H5N1 influenza viruses that continue to circulate in geese in southeastern China. In: J. Virol. 76 (2002) S. 118–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiley, D. C.; Skehel, J. J. The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. In: Annu. Rev. Biochem. 56 (1987) S. 365–394.

    Article  CAS  PubMed  Google Scholar 

  • Wise, H. M.; Foeglein, A.; Sun, J.; Dalton, R. M.; Patel, S.; Howard, W.; Anderson, E. C.; Barclay, W. S.; Digard, P. A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. In: J. Virol. 83 (2009) S. 8021–8031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamarin, D.; Garcia-Sastre, A.; Xiao, X.; Wang, R.; Palese, P. Influenza virus PB1-F2 protein induces cell death through mitochondrial ANT3 and VDAC1. In: PLoS Pathog. 1 (2005) e4.

    Google Scholar 

  • Zhu W, Yang L, Shu Y. Did the Highly Pathogenic Avian Influenza A(H7N9) Viruses Emerged in China Raise Increased Threat to Public Health? Vector Borne Zoonotic Dis. 2019 Jan;19(1):22-25. doi: https://doi.org/10.1089/vbz.2018.2299. Epub 2018 Sep 15 Review. PubMed PMID: 30222520.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Modrow .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Modrow, S., Truyen, U., Schätzl, H. (2021). Viren mit einzelsträngigem, segmentiertem RNA-Genom in Negativstrangorientierung. In: Molekulare Virologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61781-6_16

Download citation

Publish with us

Policies and ethics