Skip to main content

Abstract

By any criterion, Insecta (as a subtaxon of Hexapoda) is the most successful taxon on the planet (see Chaps. 2 and 3 for the inclusion of the various subtaxa in Hexapoda versus Insecta). The number of described insect species nears one million, and they are found in almost every ecosystem, forming the major component of animal biomass in most. Within the insects, the largest group comprises the holometabolous insects. In the holometabolous insects, the outcome of embryogenesis is a larva, which normally has a relatively simple morphology, with no wings or reproductive organs and either no legs or rudimentary legs. The larva goes through several molts, pupates, and undergoes metamorphosis within the pupa, finally hatching from the pupa as an adult with limbs, wings, and reproductive organs. Most of the remaining species belong to the hemimetabolous insects, a paraphyletic group wherein the outcome of embryogenesis is a nymph, superficially similar to an adult, but with no wings or reproductive organs. The nymph undergoes several molts, each being slightly larger and closer in shape and size to the adult, with the final adult molt developing wings and reproductive organs, without going through a pupal stage or undergoing a dramatic metamorphosis. Finally, a small group of insects undergoes ametabolous development, wherein there is no terminal adult stage, and the animal continues to molt even after developing reproductive organs. These insects are all primitively wingless.

Chapter vignette artwork by Brigitte Baldrian.© Brigitte Baldrian and Andreas Wanninger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although technically incorrect, the shorthand notation Drosophila rather than D. melanogaster has become accepted in the EvoDevo literature, and it is used herein.

References

  • Abmayr SM, Pavlath GK (2012) Myoblast fusion: lessons from flies and mice. Development 139:641–656

    PubMed Central  CAS  PubMed  Google Scholar 

  • Affolter M, Caussinus E (2008) Tracheal branching morphogenesis in Drosophila: new insights into cell behaviour and organ architecture. Development 135:2055–2064

    Google Scholar 

  • Ainsworth C, Wan S, Skaer H (2000) Coordinating cell fate and morphogenesis in Drosophila renal tubules. Philos Trans R Soc Lond B Biol Sci 355:931–937

    PubMed Central  CAS  PubMed  Google Scholar 

  • Akam M (1987) The molecular basis for metameric pattern in the Drosophila embryo. Development 101:1–22

    CAS  PubMed  Google Scholar 

  • Andrew DJ, Ewald AJ (2010) Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev Biol 341:34–55

    PubMed Central  CAS  PubMed  Google Scholar 

  • Andrew DJ, Henderson KD, Seshaiah P (2000) Salivary gland development in Drosophila melanogaster. Mech Dev 92:5–17

    CAS  PubMed  Google Scholar 

  • Bae YK, Trisnadi N, Kadam S, Stathopoulos A (2012) The role of FGF signaling in guiding coordinate movement of cell groups: guidance cue and cell adhesion regulator? Cell Adh Migr 6:397–403

    PubMed Central  PubMed  Google Scholar 

  • Barrett K, Leptin M, Settleman J (1997) The Rho GTPase and a putative RhoGEF mediate a signaling pathway for the cell shape changes in Drosophila gastrulation. Cell 91:905–915

    CAS  PubMed  Google Scholar 

  • Barrett AL, Krueger S, Datta S (2008) Branchless and Hedgehog operate in a positive feedback loop to regulate the initiation of neuroblast division in the Drosophila larval brain. Dev Biol 317:234–245

    CAS  PubMed  Google Scholar 

  • Bate M (1993) The mesoderm and its derivatives. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 941–1012

    Google Scholar 

  • Bate M, Rushton E, Currie DA (1991) Cells with persistent twist expression are the embryonic precursors of adult muscles in Drosophila. Development 113:79–89

    CAS  PubMed  Google Scholar 

  • Baylies MK, Bate M, Ruiz Gomez M (1997) The specification of muscle in Drosophila. Cold Spring Harb Symp Quant Biol 62:385–393

    CAS  PubMed  Google Scholar 

  • Beckervordersandforth RM, Rickert C, Altenhein B, Technau GM (2008) Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression. Mech Dev 125:542–557

    CAS  PubMed  Google Scholar 

  • Bello BC, Izergina N, Caussinus E, Reichert H (2008) Amplification of neural stem cell proliferation by intermediate progenitor cells in Drosophila brain development. Neural Dev 3:5

    PubMed Central  PubMed  Google Scholar 

  • Betschinger J, Knoblich JA (2004) Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr Biol 14:R674–R685

    CAS  PubMed  Google Scholar 

  • Bhat KM (1999) Segment polarity genes in neuroblast formation and identity specification during Drosophila neurogenesis. Bioessays 21:472–485

    CAS  PubMed  Google Scholar 

  • Bienz M (1994) Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet 10:22–26

    CAS  PubMed  Google Scholar 

  • Bodmer R, Barbel S, Sheperd S, Jack JW, Jan LY, Jan YN (1987) Transformation of sensory organs by mutations of the cut locus of D. melanogaster. Cell 51:293–307

    CAS  PubMed  Google Scholar 

  • Bodmer R, Golden K, Lockwood WB, Ocorr KA, Park M, Su MT, Venkatesh TV (1997) Heart development in Drosophila. In: Wasserman P (ed) Advances in developmental biology, vol 5. JAI Press, Greenwich, pp 201–236

    Google Scholar 

  • Borkowski OM, Brown NH, Bate M (1995) Anterior-posterior subdivision and the diversification of the mesoderm in Drosophila. Development 121:4183–4193

    CAS  PubMed  Google Scholar 

  • Boyle M, DiNardo S (1995) Specification, migration and assembly of the somatic cells of the Drosophila gonad. Development 121:1815–1825

    CAS  PubMed  Google Scholar 

  • Boyle M, Bonini N, DiNardo S (1997) Expression and function of clift in the development of somatic gonadal precursors within the Drosophila mesoderm. Development 124:971–982

    Google Scholar 

  • Brody T, Odenwald WF (2005) Regulation of temporal identities during Drosophila neuroblast lineage development. Curr Opin Cell Biol 17:672–675

    CAS  PubMed  Google Scholar 

  • Broihier HT, Moore LA, Van Doren M, Newman S, Lehmann R (1998) Zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development 125:655–666

    CAS  PubMed  Google Scholar 

  • Bryantsev AL, Cripps RM (2009) Cardiac gene regulatory networks in Drosophila. Biochim Biophys Acta 1789:343–353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buechling T, Akasaka T, Vogler G, Ruiz-Lozano P, Ocorr K, Bodmer R (2009) Non-autonomous modulation of heart rhythm, contractility and morphology in adult fruit flies. Dev Biol 328:483–492

    PubMed Central  CAS  PubMed  Google Scholar 

  • Buff E, Carmena A, Gisselbrecht S, Jiménez F, Michelson AM (1998) Signalling by the Drosophila epidermal growth factor receptor is required for the specification and diversification of embryonic muscle progenitors. Development 125:2075–2086

    CAS  PubMed  Google Scholar 

  • Cagan R (1993) Cell fate specification in the developing Drosophila retina. Dev Suppl 1993:19–28

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1997) The embryonic development of Drosophila melanogaster, 2nd edn. Springer, Berlin/Heidelberg

    Google Scholar 

  • Campos-Ortega JA, Jan YN (1991) Genetic and molecular bases of neurogenesis in Drosophila melanogaster. Annu Rev Neurosci 14:399–420

    CAS  PubMed  Google Scholar 

  • Carmena A, Bate M, Jiménez F (1995) Lethal of scute, a proneural gene, participates in the specification of muscle progenitors during Drosophila embryogenesis. Genes Dev 9:2373–2383

    CAS  PubMed  Google Scholar 

  • Carmena A, Murugasu-Oei B, Menon D, Jiménez F, Chia W (1998) Inscuteable and numb mediate asymmetric muscle progenitor cell divisions during Drosophila myogenesis. Genes Dev 12:304–315

    PubMed Central  CAS  PubMed  Google Scholar 

  • Carmena A, Buff E, Halfon MS, Gisselbrecht S, Jiménez F, Baylies MK, Michelson AM (2002) Reciprocal regulatory interactions between the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm. Dev Biol 244:226–242

    CAS  PubMed  Google Scholar 

  • Carratalá M, Vernós I, Ransom R, Marco R (1989) Modeling the regulation of the bithorax complex in Drosophila melanogaster: the phenotypic effects of Ubx, abd-A and Abd-B heterozygotic larvae, and a homozygous Ubx- abd A hybrid gene. Int J Dev Biol 33:455–466

    Google Scholar 

  • Casanova J, Sánchez-Herrero E, Morata G (1986) Identification and characterization of a parasegment specific regulatory element of the abdominal-B gene of Drosophila. Cell 47:627–636

    CAS  PubMed  Google Scholar 

  • Casares F, Sánchez-Herrero E (1995) Regulation of the infraabdominal regions of the bithorax complex of Drosophila by gap genes. Development 121:1855–1866

    CAS  PubMed  Google Scholar 

  • Chell JM, Brand AH (2010) Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143:1161–1173

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen F, Krasnow MA (2014) Progenitor outgrowth from the niche in Drosophila trachea is guided by FGF from decaying branches. Science 343:186–189

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen SM, Jürgens G (1990) Mediation of Drosophila head development by gap-like segmentation genes. Nature 346:482–485

    CAS  PubMed  Google Scholar 

  • Cooley L, Theurkauf WE (1994) Cytoskeletal functions during Drosophila oogenesis. Science 266:590–596

    CAS  PubMed  Google Scholar 

  • Corty MM, Matthews BJ, Grueber WB (2009) Molecules and mechanisms of dendrite development in Drosophila. Development 136:1049–1061

    PubMed Central  CAS  PubMed  Google Scholar 

  • Costa M, Wilson ET, Wieschaus E (1994) A putative cell signal encoded by the folded gastrulation gene coordinates cell shape changes during Drosophila gastrulation. Cell 76:1075–1089

    CAS  PubMed  Google Scholar 

  • Crozatier M, Meister M (2007) Drosophila haematopoiesis. Cell Microbiol 9:1117–1126

    CAS  PubMed  Google Scholar 

  • Crozatier M, Ubeda JM, Vincent A, Meister M (2004) Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier. PLoS Biol 2:E196

    PubMed Central  PubMed  Google Scholar 

  • Dambly-Chaudière C, Jamet E, Burri M, Bopp D, Basler K, Hafen E, Dumont N, Spielmann P, Ghysen A, Noll M (1992) The paired box gene pox neuro: a determinant of poly-innervated sense organs in Drosophila. Cell 69:159–172

    PubMed  Google Scholar 

  • Dansereau DA, Lasko P (2008) The development of germline stem cells in Drosophila. Methods Mol Biol 450:3–26

    PubMed Central  CAS  PubMed  Google Scholar 

  • Dawes-Hoang RE, Parmar KM, Christiansen AE, Phelps CB, Brand AH, Wieschaus EF (2005) Folded gastrulation, cell shape change and the control of myosin localization. Development 132(18):4165–4178

    Google Scholar 

  • de Velasco B, Mandal L, Mkrtchyan M, Hartenstein V (2006) Subdivision and developmental fate of the head mesoderm in Drosophila melanogaster. Dev Genes Evol 216:39–51

    PubMed  Google Scholar 

  • Denholm B, Hu N, Fauquier T, Caubit X, Fasano L, Skaer H (2013) The tiptop/teashirt genes regulate cell differentiation and renal physiology in Drosophila. Development 140:1100–1110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deshpande G, Swanhart L, Chiang P, Schedl P (2001) Hedgehog signaling in germ cell migration. Cell 106:759–769

    CAS  PubMed  Google Scholar 

  • Dickson BJ, Gilestro GF (2006) Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675

    CAS  PubMed  Google Scholar 

  • Di Cara F, King-Jones K (2013) How clocks and hormones act in concert to control the timing of insect development. Curr Top Dev Biol 105:1–36

    Google Scholar 

  • DiNardo S, Sher E, Heemskerk-Jongens J, Kassis JA, O’Farrell PH (1988) Two-tiered regulation of spatially patterned engrailed gene expression during Drosophila embryogenesis. Nature 332:604–609

    PubMed Central  CAS  PubMed  Google Scholar 

  • DiNardo S, Heemskerk J, Dougan S, O’Farrell PH (1994) The making of a maggot: patterning the Drosophila embryonic epidermis. Curr Opin Genet Dev 4:529–534

    PubMed Central  CAS  PubMed  Google Scholar 

  • Doe CQ, Technau GM (1993) Identification and cell lineage of individual neural precursors in the Drosophila CNS. Trends Neurosci 16:510–514

    CAS  PubMed  Google Scholar 

  • Dubreuil RR (2004) Copper cells and stomach acid secretion in the Drosophila midgut. Int J Biochem Cell Biol 36:745–752

    CAS  PubMed  Google Scholar 

  • Dumstrei K, Wang F, Hartenstein V (2003) Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development. J Neurosci 23:3325–3335

    CAS  PubMed  Google Scholar 

  • Eastham LES (1930a) The formation of germ layers in insects. Biol Rev 5:1–29

    Google Scholar 

  • Eastham LES (1930b) The embryology of Pieris rapae. Organogeny. Philos Trans R Soc Lond B 219:1–50

    Google Scholar 

  • Ebens AJ, Garren H, Cheyette BN, Zipursky SL (1993) The Drosophila anachronism locus: a glycoprotein secreted by glia inhibits neuroblast proliferation. Cell 74:15–27

    CAS  PubMed  Google Scholar 

  • Edwards TN, Nuschke AC, Nern A, Meinertzhagen IA (2012) Organization and metamorphosis of glia in the Drosophila visual system. J Comp Neurol 520:2067–2085

    PubMed  Google Scholar 

  • Evans CJ, Hartenstein V, Banerjee U (2003) Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev Cell 5:673–690

    CAS  PubMed  Google Scholar 

  • Fernandes JJ, Celniker SE, VijayRaghavan K (1996) Development of the indirect flight muscle attachment sites in Drosophila: role of the PS integrins and the stripe gene. Dev Biol 176:166–184

    CAS  PubMed  Google Scholar 

  • Figeac N, Jagla T, Aradhya R, Da Ponte JP, Jagla K (2010) Drosophila adult muscle precursors form a network of interconnected cells and are specified by the rhomboid-triggered EGF pathway. Development 137:1965–1973

    CAS  PubMed  Google Scholar 

  • Fischbach KF, Hiesinger PR (2008) Optic lobe development. Adv Exp Med Biol 628:115–136

    PubMed  Google Scholar 

  • Fossett N, Tevosian SG, Gajewski K, Zhang Q, Orkin SH, Schulz RA (2001) The Friend of GATA proteins U-shaped, FOG-1, and FOG-2 function as negative regulators of blood, heart, and eye development in Drosophila. Proc Natl Acad Sci U S A 98:7342–7347

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fossett N, Hyman K, Gajewski K, Orkin SH, Schulz RA (2003) Combinatorial interactions of serpent, lozenge, and U-shaped regulate crystal cell lineage commitment during Drosophila hematopoiesis. Proc Natl Acad Sci U S A 100:11451–11456

    PubMed Central  CAS  PubMed  Google Scholar 

  • Franke JD, Montague RA, Kiehart DP (2005) Nonmuscle myosin II generates forces that transmit tension and drive contraction in multiple tissues during dorsal closure. Curr Biol 15:2208–2221

    CAS  PubMed  Google Scholar 

  • Frasch M (1999) Intersecting signalling and transcriptional pathways in Drosophila heart specification. Semin Cell Dev Biol 10:61–71

    CAS  PubMed  Google Scholar 

  • Fuller MT, Spradling AC (2007) Male and female Drosophila germline stem cells: two versions of immortality. Science 316:402–404

    CAS  PubMed  Google Scholar 

  • Fuss B, Hoch M (2002) Notch signaling controls cell fate specification along the dorsoventral axis of the Drosophila gut. Curr Biol 12:171–179

    CAS  PubMed  Google Scholar 

  • Fuss B, Josten F, Feix M, Hoch M (2004) Cell movements controlled by the Notch signalling cascade during foregut development in Drosophila. Development 131:1587–1595

    CAS  PubMed  Google Scholar 

  • García-Bellido A (1975) Genetic control of wing disc development in Drosophila. Ciba Found Symp 0:161–182

    PubMed  Google Scholar 

  • Gaul U, Jäckle H (1990) Role of gap genes in early Drosophila development. Adv Genet 27:239–275

    CAS  PubMed  Google Scholar 

  • Gaul U, Weigel D (1990) Regulation of Krüppel expression in the anlage of the Malpighian tubules in the Drosophila embryo. Mech Dev 33:57–67

    CAS  PubMed  Google Scholar 

  • Gehring WJ (1985–1986) Homeotic genes, the homeobox, and the spatial organization of the embryo. Harvey Lect 81:153–172

    Google Scholar 

  • Gendre N, Lüer K, Friche S, Grillenzoni N, Ramaekers A, Technau GM, Stocker RF (2004) Integration of complex larval chemosensory organs into the adult nervous system of Drosophila. Development 131:83–92

    CAS  PubMed  Google Scholar 

  • Ghysen A, Dambly-Chaudière C, Jan LY, Jan YN (1993) Cell interactions and gene interactions in peripheral neurogenesis. Genes Dev 7:723–733

    CAS  PubMed  Google Scholar 

  • Gilbert SF (2006) Developmental biology, 8th edn. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  • Godt D, Laski FA (1995) Mechanisms of cell rearrangement and cell recruitment in Drosophila ovary morphogenesis and the requirement of bric à brac. Development 121:173–187

    CAS  PubMed  Google Scholar 

  • Godt D, Tepass U (1998) Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395:387–391

    CAS  PubMed  Google Scholar 

  • Goodman CS, Doe CQ (1993) Embryonic development of the Drosophila central nervous system. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 941–1012

    Google Scholar 

  • Goulding SE, zur Lage P, Jarman AP (2000) Amos, a proneural gene for Drosophila olfactory sense organs that is regulated by lozenge. Neuron 25:69–78

    CAS  PubMed  Google Scholar 

  • Grenningloh G, Goodman CS (1992) Pathway recognition by neuronal growth cones: genetic analysis of neural cell adhesion molecules in Drosophila. Curr Opin Neurobiol 2:42–47

    CAS  PubMed  Google Scholar 

  • Grigorian M, Mandal L, Hakimi M, Ortiz I, Hartenstein V (2011) The convergence of Notch and MAPK signaling specifies the blood progenitor fate in the Drosophila mesoderm. Dev Biol 353:105–118

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guha A, Kornberg TB (2005) Tracheal branch repopulation precedes induction of the Drosophila dorsal air sac primordium. Dev Biol 287:192–200

    CAS  PubMed  Google Scholar 

  • Guillemin K, Groppe J, Ducker K, Treisman R, Hafen E, Affolter M, Krasnow MA (1996) The pruned gene encodes the Drosophila serum response factor and regulates cytoplasmic outgrowth during terminal branching of the tracheal system. Development 122:1353–1362

    Google Scholar 

  • Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17:27–41

    PubMed  Google Scholar 

  • Hallberg E, Hansson BS (1999) Arthropod sensilla: morphology and phylogenetic considerations. Microsc Res Tech 47:428–439

    CAS  PubMed  Google Scholar 

  • Hanyu-Nakamura K, Kobayashi S, Nakamura A (2004) Germ cell-autonomous Wunen2 is required for germline development in Drosophila embryos. Development 131:4545–4553

    CAS  PubMed  Google Scholar 

  • Harbecke R, Janning W (1989) The segmentation gene Krüppel of Drosophila melanogaster has homeotic properties. Genes Dev 3:114–122

    CAS  PubMed  Google Scholar 

  • Harding K, Wedeen C, McGinnis W, Levine M (1985) Spatially regulated expression of homeotic genes in Drosophila. Science 229:1236–1242

    CAS  PubMed  Google Scholar 

  • Hartenstein V (1997) Development of the insect stomatogastric nervous system. Trends Neurosci 20:421–427

    CAS  PubMed  Google Scholar 

  • Hartenstein V (2006) The neuroendocrine system of invertebrates: a developmental and evolutionary perspective. J Endocrinol 190:555–570

    CAS  PubMed  Google Scholar 

  • Hartenstein V (2011) Morphological diversity and development of glia in Drosophila. Glia 59:1237–1252

    PubMed Central  PubMed  Google Scholar 

  • Hartenstein AY, Rugendorff A, Tepass U, Hartenstein V (1992) The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development 116:1203–1220

    CAS  PubMed  Google Scholar 

  • Hartenstein V, Spindler S, Pereanu W, Fung S (2008) The development of the Drosophila larval brain. Adv Exp Med Biol 628:1–31

    PubMed  Google Scholar 

  • Hartmann B, Reichert H (1998) The genetics of embryonic brain development in Drosophila. Mol Cell Neurosci 12:194–205

    CAS  PubMed  Google Scholar 

  • Hayes SA, Miller JM, Hoshizaki DK (2001) Serpent, a GATA-like transcription factor gene, induces fat-cell development in Drosophila melanogaster. Development 128:1193–1200

    CAS  PubMed  Google Scholar 

  • Hoch M, Broadie K, Jäckle H, Skaer H (1994) Sequential fates in a single cell are established by the neurogenic cascade in the Malpighian tubules of Drosophila. Development 120:3439–3450

    Google Scholar 

  • Hoch M, Pankratz MJ (1996) Control of gut development by fork head and cell signaling molecules in Drosophila. Mech Dev 58:3–14

    CAS  PubMed  Google Scholar 

  • Ingham PW (1991) Segment polarity genes and cell patterning within the Drosophila body segment. Curr Opin Genet Dev 1:261–267

    Google Scholar 

  • Ip YT, Levine M, Small SJ (1992) The bicoid and dorsal morphogens use a similar strategy to make stripes in the Drosophila embryo. J Cell Sci Suppl 16:33–38

    CAS  PubMed  Google Scholar 

  • Ito K, Hotta Y (1992) Proliferation pattern of postembryonic neuroblasts in the brain of Drosophila melanogaster. Dev Biol 149:134–148

    CAS  PubMed  Google Scholar 

  • Jacinto A, Woolner S, Martin P (2002) Dynamic analysis of dorsal closure in Drosophila: from genetics to cell biology. Dev Cell 3:9–19

    CAS  PubMed  Google Scholar 

  • Jäckle H, Hoch M, Pankratz MJ, Gerwin N, Sauer F, Brönner G (1992) Transcriptional control by Drosophila gap genes. J Cell Sci Suppl 16:39–51

    PubMed  Google Scholar 

  • Jagla K, Bellard M, Frasch M (2001) A cluster of Drosophila homeobox genes involved in mesoderm differentiation programs. Bioessays 23:125–133

    Google Scholar 

  • Jan YN, Jan LY (1994) Genetic control of cell fate specification in Drosophila peripheral nervous system. Annu Rev Genet 28:373–393

    CAS  PubMed  Google Scholar 

  • Jarman AP, Groves AK (2013) The role of Atonal transcription factors in the development of mechanosensitive cells. Semin Cell Dev Biol 24:438–447

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang H, Edgar BA (2009) EGFR signaling regulates the proliferation of Drosophila adult midgut progenitors. Development 136:483–493

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jiang H, Grenley MO, Bravo MJ, Blumhagen RZ, Edgar BA (2011) EGFR/Ras/MAPK signaling mediates adult midgut epithelial homeostasis and regeneration in Drosophila. Cell Stem Cell 8:84–95

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jones BW (2005) Transcriptional control of glial cell development in Drosophila. Dev Biol 278:265–273

    CAS  PubMed  Google Scholar 

  • Jung AC, Denholm B, Skaer H, Affolter M (2005) Renal tubule development in Drosophila: a closer look at the cellular level. J Am Soc Nephrol 16:322–328

    CAS  PubMed  Google Scholar 

  • Jürgens G, Hartenstein V (1993) The terminal regions of the body patter. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 941–1012

    Google Scholar 

  • Kaltschmidt JA, Brand AH (2002) Asymmetric cell division: microtubule dynamics and spindle asymmetry. J Cell Sci 115:2257–2264

    CAS  PubMed  Google Scholar 

  • Karpowicz P, Perez J, Perrimon N (2010) The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137:4135–4145

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaufman TC, Seeger MA, Olsen G (1990) Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. Adv Genet 27:309–362

    Google Scholar 

  • Keshishian H, Chang TN, Jarecki J (1994) Precision and plasticity during Drosophila neuromuscular development. FASEB J 8:731–737

    CAS  PubMed  Google Scholar 

  • Kiehart DP, Galbraith CG, Edwards KA, Rickoll WL, Montague RA (2000) Multiple forces contribute to cell sheet morphogenesis for dorsal closure in Drosophila. J Cell Biol 149:471–490

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kiger AA, Jones DL, Schulz C, Rogers MB, Fuller MT (2001) Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science 294:2542–2545

    CAS  PubMed  Google Scholar 

  • King RC (1970) Ovarian development in Drosophila melanogaster. Academic, New York

    Google Scholar 

  • Kirilly D, Xie T (2007) The Drosophila ovary: an active stem cell community. Cell Res 17:15–25. Erratum in: Cell Res 17:271

    CAS  PubMed  Google Scholar 

  • Klämbt C, Hummel T, Granderath S, Schimmelpfeng K (2001) Glial cell development in Drosophila. Int J Dev Neurosci 19:373–378

    PubMed  Google Scholar 

  • Klapper R (2000) The longitudinal visceral musculature of Drosophila melanogaster persists through metamorphosis. Mech Dev 95:47–54

    CAS  PubMed  Google Scholar 

  • Klapper R, Stute C, Schomaker O, Strasser T, Janning W, Renkawitz-Pohl R, Holz A (2002) The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, sns and mbc. Mech Dev 110:85–96

    CAS  PubMed  Google Scholar 

  • Klingler M (1990) The organization of the antero-posterior axis. Semin Cell Biol 1:151–160

    CAS  PubMed  Google Scholar 

  • Kobayashi S, Okada M (1988) Molecular analysis of a cytoplasmic factor essential for pole cell formation in Drosophila embryos. Cell Differ Dev 25:25–29

    CAS  PubMed  Google Scholar 

  • Krzemień J, Dubois L, Makki R, Meister M, Vincent A, Crozatier M (2007) Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446:325–328

    PubMed  Google Scholar 

  • Krzemien J, Crozatier M, Vincent A (2010) Ontogeny of the Drosophila larval hematopoietic organ, hemocyte homeostasis and the dedicated cellular immune response to parasitism. Int J Dev Biol 54:1117–1125

    PubMed  Google Scholar 

  • Kuo YM, Jones N, Zhou B, Panzer S, Larson V, Beckendorf SK (1996) Salivary duct determination in Drosophila: roles of the EGF receptor signalling pathway and the transcription factors fork head and trachealess. Development 122:1909–1917

    CAS  PubMed  Google Scholar 

  • Lai EC, Orgogozo V (2004) A hidden program in Drosophila peripheral neurogenesis revealed: fundamental principles underlying sensory organ diversity. Dev Biol 269:1–17

    CAS  PubMed  Google Scholar 

  • Landgraf M, Sánchez-Soriano N, Technau GM, Urban J, Prokop A (2003) Charting the Drosophila neuropile: a strategy for the standardised characterisation of genetically amenable neurites. Dev Biol 260:207–225

    CAS  PubMed  Google Scholar 

  • Larsen C, Shy D, Spindler SR, Fung S, Pereanu W, Younossi-Hartenstein A, Hartenstein V (2009) Patterns of growth, axonal extension and axonal arborization of neuronal lineages in the developing Drosophila brain. Dev Biol 335:289–304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lawrence PA (1987) Pair-rule genes: do they paint stripes or draw lines? Cell 51:879–880

    CAS  PubMed  Google Scholar 

  • Lebestky T, Chang T, Hartenstein V, Banerjee U (2000) Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288:146–149

    CAS  PubMed  Google Scholar 

  • Lebestky T, Jung SH, Banerjee U (2003) A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev 17:348–353

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee WC, Beebe K, Sudmeier L, Micchelli CA (2009) Adenomatous polyposis coli regulates Drosophila intestinal stem cell proliferation. Development 136:2255–2264

    CAS  PubMed  Google Scholar 

  • Lehmann R, Nüsslein-Volhard C (1991) The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development 112:679–691

    CAS  PubMed  Google Scholar 

  • Lengyel JA, Iwaki DD (2002) It takes guts: the Drosophila hindgut as a model system for organogenesis. Dev Biol 243:1–19

    CAS  PubMed  Google Scholar 

  • Leptin M (1995) Drosophila gastrulation: from pattern formation to morphogenesis. Annu Rev Cell Dev Biol 11:189–212

    CAS  PubMed  Google Scholar 

  • Levine M, Harding K (1987) Spatial regulation of homeo box gene expression in Drosophila. Oxf Surv Eukaryot Genes 4:116–142

    CAS  PubMed  Google Scholar 

  • Li MA, Alls JD, Avancini RM, Koo K, Godt D (2003) The large Maf factor Traffic Jam controls gonad morphogenesis in Drosophila. Nat Cell Biol 5:994–1000

    CAS  PubMed  Google Scholar 

  • Li X, Erclik T, Bertet C, Chen Z, Voutev R, Venkatesh S, Morante J, Celik A, Desplan C (2013) Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498:456–462

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lin G, Xu N, Xi R (2008) Paracrine wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455:1119–1123

    CAS  PubMed  Google Scholar 

  • Liu S, Jack J (1992) Regulatory interactions and role in cell type specification of the Malpighian tubules by the cut, Krüppel, and caudal genes of Drosophila. Dev Biol 150:133–143

    CAS  PubMed  Google Scholar 

  • Lo PC, Frasch M (2003) Establishing A-P polarity in the embryonic heart tube: a conserved function of Hox genes in Drosophila and vertebrates? Trends Cardiovasc Med 13:182–187

    CAS  PubMed  Google Scholar 

  • Lohmann I, McGinnis N, Bodmer M, McGinnis W (2002) The Drosophila Hox gene deformed sculpts head morphology via direct regulation of the apoptosis activator reaper. Cell 110:457–466

    Google Scholar 

  • Lu X, Perkins LA, Perrimon N (1993) The torso pathway in Drosophila: a model system to study receptor tyrosine kinase signal transduction. Dev Suppl 1993:47–56

    Google Scholar 

  • Lubarsky B, Krasnow MA (2003) Tube morphogenesis: making and shaping biological tubes. Cell 112:19–28

    CAS  PubMed  Google Scholar 

  • Lucchetta EM, Ohlstein B (2012) The Drosophila midgut: a model for stem cell driven tissue regeneration. Wiley Interdiscip Rev Dev Biol 1:781–788

    CAS  PubMed  Google Scholar 

  • Mandal L, Dumstrei K, Hartenstein V (2004a) Role of FGFR signaling in the morphogenesis of the Drosophila visceral musculature. Dev Dyn 231:342–348

    CAS  PubMed  Google Scholar 

  • Mandal L, Banerjee U, Hartenstein V (2004b) Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm. Nat Genet 36:1019–1023

    CAS  PubMed  Google Scholar 

  • Mandal L, Martinez-Agosto JA, Evans CJ, Hartenstein V, Banerjee U (2007) A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446:320–324

    Google Scholar 

  • Manning G, Krasnow MA (1993) The development of the Drosophila tracheal system. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 941–1012

    Google Scholar 

  • Manning AJ, Rogers SL (2014) The Fog signaling pathway: insights into signaling in morphogenesis. Dev Biol 394:6–14

    PubMed Central  CAS  PubMed  Google Scholar 

  • Martin BS, Ruiz-Gómez M, Landgraf M, Bate M (2001) A distinct set of founders and fusion-competent myoblasts make visceral muscles in the Drosophila embryo. Development 128:3331–3338

    CAS  PubMed  Google Scholar 

  • Martinez-Arias A, Lawrence PA (1985) Parasegments and compartments in the Drosophila embryo. Nature 313:639–642

    CAS  PubMed  Google Scholar 

  • Mathur D, Bost A, Driver I, Ohlstein B (2010) A transient niche regulates the specification of Drosophila intestinal stem cells. Science 327:210–213

    PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuzaki F (2000) Asymmetric division of Drosophila neural stem cells: a basis for neural diversity. Curr Opin Neurobiol 10:38–44

    CAS  PubMed  Google Scholar 

  • Meinertzhagen IA, Hanson TE (1993) Pattern formation in the Drosophila retina. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 1363–1492

    Google Scholar 

  • Micchelli CA, Perrimon N (2006) Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439:475–479

    CAS  PubMed  Google Scholar 

  • Miller A (1950) The internal anatomy and histology of the imago of Drosophila melanogaster. In: Demerec M (ed) Biology of Drosophila. Wiley, New York, pp 420–534

    Google Scholar 

  • Mondal BC, Mukherjee T, Mandal L, Evans CJ, Sinenko SA, Martinez-Agosto JA, Banerjee U (2011) Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147:1589–1600

    PubMed Central  CAS  PubMed  Google Scholar 

  • Morisato D, Anderson KV (1995) Signaling pathways that establish the dorsal-ventral pattern of the Drosophila embryo. Annu Rev Genet 29:371–399

    CAS  PubMed  Google Scholar 

  • Moussian B, Roth S (2005) Dorsoventral axis formation in the Drosophila embryo–shaping and transducing a morphogen gradient. Curr Biol 15:R887–R899

    CAS  PubMed  Google Scholar 

  • Murakami R, Takashima S, Hamaguchi T (1999) Developmental genetics of the Drosophila gut: specification of primordia, subdivision and overt-differentiation. Cell Mol Biol (Noisy-le-Grand) 45:661–676

    CAS  Google Scholar 

  • Murakami R, Okumura T, Uchiyama H (2005) GATA factors as key regulatory molecules in the development of Drosophila endoderm. Dev Growth Differ 47:581–589

    CAS  PubMed  Google Scholar 

  • Nassif C, Noveen A, Hartenstein V (2003) Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J Comp Neurol 455:417–434

    PubMed  Google Scholar 

  • Noselli S, Agnès F (1999) Roles of the JNK signaling pathway in Drosophila morphogenesis. Curr Opin Genet Dev 9:466–472

    CAS  PubMed  Google Scholar 

  • Nüsslein-Volhard C (1991) Determination of the embryonic axes of Drosophila. Dev Suppl 1:1–10

    PubMed  Google Scholar 

  • Nüsslein-Volhard C, Roth S (1989) Axis determination in insect embryos. Ciba Found Symp 144:37–55

    PubMed  Google Scholar 

  • Oda H, Tsukita S, Takeichi M (1998) Dynamic behavior of the cadherin-based cell-cell adhesion system during Drosophila gastrulation. Dev Biol 203:435–450

    CAS  PubMed  Google Scholar 

  • Ohlstein B, Spradling A (2006) The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439:470–474

    CAS  PubMed  Google Scholar 

  • Omoto JJ, Yogi P, Hartenstein V (2015) Origin and development of neuropil glia of the Drosophila larval and adult brain: two distinct glial populations derived from separate progenitors. Dev Biol (2015 Mar 14. pii: S0012-1606(15)00111-6). doi: 10.1016/j.ydbio.2015.03.004. [Epub ahead of print]

  • Panzer S, Weigel D, Beckendorf SK (1992) Organogenesis in Drosophila melanogaster: embryonic salivary gland determination is controlled by homeotic and dorsoventral patterning genes. Development 114:49–57

    CAS  PubMed  Google Scholar 

  • Park Y, Rangel C, Reynolds MM, Caldwell MC, Johns M, Nayak M, Welsh CJ, McDermott S, Datta S (2003) Drosophila perlecan modulates FGF and hedgehog signals to activate neural stem cell division. Dev Biol 253:247–257

    CAS  PubMed  Google Scholar 

  • Parks S, Wieschaus E (1991) The Drosophila gastrulation gene concertina encodes a G alpha-like protein. Cell 64:447–458

    CAS  PubMed  Google Scholar 

  • Pearson BJ, Doe CQ (2004) Specification of temporal identity in the developing nervous system. Annu Rev Cell Dev Biol 20:619–647

    CAS  PubMed  Google Scholar 

  • Pereanu W, Shy D, Hartenstein V (2005) Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev Biol 283:191–203

    CAS  PubMed  Google Scholar 

  • Pereanu W, Kumar A, Jennett A, Reichert H, Hartenstein V (2010) Development-based compartmentalization of the Drosophila central brain. J Comp Neurol 518:2996–3023

    PubMed Central  PubMed  Google Scholar 

  • Pitsouli C, Perrimon N (2010) Embryonic multipotent progenitors remodel the Drosophila airways during metamorphosis. Development 137:3615–3624

    PubMed Central  CAS  PubMed  Google Scholar 

  • Prokop A, Bray S, Harrison E, Technau GM (1998) Homeotic regulation of segment-specific differences in neuroblast numbers and proliferation in the Drosophila central nervous system. Mech Dev 74:99–110

    CAS  PubMed  Google Scholar 

  • Rajagopalan S, Vivancos V, Nicolas E, Dickson BJ (2000) Selecting a longitudinal pathway: robo receptors specify the lateral position of axons in the Drosophila CNS. Cell 103:1033–1045

    Google Scholar 

  • Ready DF, Hanson TE, Benzer S (1976) Development of the Drosophila retina, a neurocrystalline lattice. Dev Biol 53:217–240

    CAS  PubMed  Google Scholar 

  • Rehorn KP, Thelen H, Michelson AM, Reuter R (1996) A molecular aspect of hematopoiesis and endoderm development common to vertebrates and Drosophila. Development 122:4023–4031

    CAS  PubMed  Google Scholar 

  • Ren F, Wang B, Yue T, Yun EY, Ip YT, Jiang J (2010) Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 107:21064–210649

    PubMed Central  CAS  PubMed  Google Scholar 

  • Riechmann V, Irion U, Wilson R, Grosskortenhaus R, Leptin M (1997) Control of cell fates and segmentation in the Drosophila mesoderm. Development 124:2915–2922

    CAS  PubMed  Google Scholar 

  • Riechmann V, Rehorn KP, Reuter R, Leptin M (1998) The genetic control of the distinction between fat body and gonadal mesoderm in Drosophila. Development 125:713–723

    CAS  PubMed  Google Scholar 

  • Riley PD, Carroll SB, Scott MP (1987) The expression and regulation of Sex combs reduced protein in Drosophila embryos. Genes Dev 1:716–730

    CAS  PubMed  Google Scholar 

  • Rivera-Pomar R, Lu X, Perrimon N, Taubert H, Jäckle H (1995) Activation of posterior gap gene expression in the Drosophila blastoderm. Nature 376:253–256

    CAS  PubMed  Google Scholar 

  • Rizki TM (1980) The circulatory system and associated cells and tissues. In: Ashburner M, Wright TRF (eds) The genetics and biology of Drosophila, vol 2b. Academic, London

    Google Scholar 

  • Rochlin K, Yu S, Roy S, Baylies MK (2010) Myoblast fusion: when it takes more to make one. Dev Biol 341:66–83

    PubMed Central  CAS  PubMed  Google Scholar 

  • Roy S, VijayRaghavan K (1997) Homeotic genes and the regulation of myoblast migration, fusion and fibre-specific gene expression during adult myogenesis in Drosophila. Development 124:3333–3341

    CAS  PubMed  Google Scholar 

  • Roy S, VijayRaghavan K (1999) Muscle pattern diversification in Drosophila: the story of imaginal myogenesis. Bioessays 21:486–498

    CAS  PubMed  Google Scholar 

  • Roy S, Shashidhara LS, VijayRaghavan K (1997) Muscles in the Drosophila second thoracic segment are patterned independently of autonomous homeotic gene function. Curr Biol 7:222–227

    CAS  PubMed  Google Scholar 

  • Rugendorff AE, Younossi-Hartenstein A, Hartenstein V (1993) Embryonic development of the Drosophila heart. Roux’s Arch Dev Biol 203:266–280

    Google Scholar 

  • Ruohola-Baker H, Jan LY, Jan YN (1994) The role of gene cassettes in axis formation during Drosophila oogenesis. Trends Genet 10:89–94

    CAS  PubMed  Google Scholar 

  • Rusch J, Levine M (1996) Threshold responses to the dorsal regulatory gradient and the subdivision of primary tissue territories in the Drosophila embryo. Curr Opin Genet Dev 6:416–423

    CAS  PubMed  Google Scholar 

  • Rushlow C, Arora K (1990) Dorsal-ventral polarity and pattern formation in the Drosophila embryo. Semin Cell Biol 1:137–149

    CAS  PubMed  Google Scholar 

  • Samakovlis C, Manning G, Steneberg P, Hacohen N, Cantera R, Krasnow MA (1996) Genetic control of epithelial tube fusion during Drosophila tracheal development. Development 122:3531–3536

    CAS  PubMed  Google Scholar 

  • Sato M, Kornberg TB (2002) FGF is an essential mitogen and chemoattractant for the air sacs of the Drosophila tracheal system. Dev Cell 3:195–207

    CAS  PubMed  Google Scholar 

  • Sato M, Suzuki T, Nakai Y (2013) Waves of differentiation in the fly visual system. Dev Biol 380:1–11

    CAS  PubMed  Google Scholar 

  • Schottenfeld J, Song Y, Ghabrial AS (2010) Tube continued: morphogenesis of the Drosophila tracheal system. Curr Opin Cell Biol 22:633–639

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schulz RA, Fossett N (2005) Hemocyte development during Drosophila embryogenesis. Methods Mol Med 105:109–122

    PubMed  Google Scholar 

  • Schulz C, Tautz D (1995) Zygotic caudal regulation by hunchback and its role in abdominal segment formation of the Drosophila embryo. Development 121:1023–1028

    CAS  PubMed  Google Scholar 

  • Schüpbach T, Roth S (1994) Dorsoventral patterning in Drosophila oogenesis. Curr Opin Genet Dev 4:502–507

    PubMed  Google Scholar 

  • Schweisguth F, Vincent A, Lepesant JA (1991) Genetic analysis of the cellularization of the Drosophila embryo. Biol Cell 72:15–23

    CAS  PubMed  Google Scholar 

  • Schweitzer R, Zelzer E, Volk T (2010) Connecting muscles to tendons: tendons and musculoskeletal development in flies and vertebrates. Development 137:2807–2817. Erratum in: development (2010) 137:3347

    Google Scholar 

  • Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731–1744

    CAS  PubMed  Google Scholar 

  • Shaw RL, Kohlmaier A, Polesello C, Veelken C, Edgar BA, Tapon N (2010) The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137:4147–4158

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shim J, Mukherjee T, Banerjee U (2012) Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat Cell Biol 14:394–400

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siegmund T, Korge G (2001) Innervation of the ring gland of Drosophila melanogaster. J Comp Neurol 431:481–491

    CAS  PubMed  Google Scholar 

  • Sinenko SA, Mandal L, Martinez-Agosto JA, Banerjee U (2009) Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev Cell 16:756–763

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh SR, Liu W, Hou SX (2007) The adult Drosophila malpighian tubules are maintained by multipotent stem cells. Cell Stem Cell 1:191–203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Singh SR, Zeng X, Zheng Z, Hou SX (2011) The adult Drosophila gastric and stomach organs are maintained by a multipotent stem cell pool at the foregut/midgut junction in the cardia (proventriculus). Cell Cycle 10:1109–1120

    PubMed Central  CAS  PubMed  Google Scholar 

  • Skaer H (1993) The alimentary canal. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 941–1012

    Google Scholar 

  • Skeath JB, Carroll SB (1994) The achaete-scute complex: generation of cellular pattern and fate within the Drosophila nervous system. FASEB J 8:714–721

    CAS  PubMed  Google Scholar 

  • Skeath JB, Thor S (2003) Genetic control of Drosophila nerve cord development. Curr Opin Neurobiol 13:8–15

    CAS  PubMed  Google Scholar 

  • Small S, Levine M (1991) The initiation of pair-rule stripes in the Drosophila blastoderm. Curr Opin Genet Dev 1:255–260

    CAS  PubMed  Google Scholar 

  • Søndergaard L (1993) Homology between the mammalian liver and the Drosophila fat body. Trends Genet 9:193

    PubMed  Google Scholar 

  • Sousa-Nunes R, Yee LL, Gould AP (2011) Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471:508–512

    PubMed Central  CAS  PubMed  Google Scholar 

  • Soustelle L, Giangrande A (2007) Glial differentiation and the Gcm pathway. Neuron Glia Biol 3:5–16

    PubMed  Google Scholar 

  • Spindler SR, Hartenstein V (2010) The Drosophila neural lineages: a model system to study brain development and circuitry. Dev Genes Evol 220:1–10

    Google Scholar 

  • Spradling A, Fuller MT, Braun RE, Yoshida S (2011) Germline stem cells. Cold Spring Harb Perspect Biol 3:a002642

    PubMed Central  PubMed  Google Scholar 

  • Staehling-Hampton K, Hoffmann FM, Baylies MK, Rushton E, Bate M (1994) Dpp induces mesodermal gene expression in Drosophila. Nature 372:783–786

    CAS  PubMed  Google Scholar 

  • Stanojevi D, Hoey T, Levine M (1989) Sequence-specific DNA-binding activities of the gap proteins encoded by hunchback and Krüppel in Drosophila. Nature 341:331–335

    Google Scholar 

  • Stork T, Bernardos R, Freeman MR (2012) Analysis of glial cell development and function in Drosophila. Cold Spring Harb Protoc 2012:1–17

    PubMed  Google Scholar 

  • Stork T, Sheehan A, Tasdemir-Yilmaz OE, Freeman MR (2014) Neuron-glia interactions through the Heartless FGF receptor signaling pathway mediate morphogenesis of Drosophila astrocytes. Neuron 83:388–403

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takashima S, Hartenstein V (2012) Genetic control of intestinal stem cell specification and development: a comparative view. Stem Cell Rev 8:597–608

    PubMed Central  PubMed  Google Scholar 

  • Takashima S, Mkrtchyan M, Younossi-Hartenstein A, Merriam JR, Hartenstein V (2008) The behaviour of Drosophila adult hindgut stem cells is controlled by Wnt and Hh signalling. Nature 454:651–655

    CAS  PubMed  Google Scholar 

  • Takashima S, Adams KL, Ortiz PA, Ying CT, Moridzadeh R, Younossi-Hartenstein A, Hartenstein V (2011a) Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway. Dev Biol 353:161–172

    CAS  PubMed  Google Scholar 

  • Takashima S, Younossi-Hartenstein A, Ortiz PA, Hartenstein V (2011b) A novel tissue in an established model system: the Drosophila pupal midgut. Dev Genes Evol 221:69–81

    PubMed Central  PubMed  Google Scholar 

  • Takashima S, Paul M, Aghajanian P, Younossi-Hartenstein A, Hartenstein V (2013) Migration of Drosophila intestinal stem cells across organ boundaries. Development 140:1903–1911

    PubMed Central  CAS  PubMed  Google Scholar 

  • Takashima S, Aghajanian P, Younossi-Hartenstein A, Paul M, Hartenstein V (2014) Origin and dynamic lineage characteristics of the developing Drosophila midgut stem cells (in review)

    Google Scholar 

  • Tasdemir-Yilmaz OE, Freeman MR (2014) Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev 28:20–33

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tepass U, Hartenstein V (1994a) The development of cellular junctions in the Drosophila embryo. Dev Biol 161:563–596

    CAS  PubMed  Google Scholar 

  • Tepass U, Hartenstein V (1994b) Epithelium formation in the Drosophila midgut depends on the interaction of endoderm and mesoderm. Development 120:579–590

    CAS  PubMed  Google Scholar 

  • Tepass U, Hartenstein V (1995) Neurogenic and proneural genes control cell fate specification in the Drosophila endoderm. Development 121:393–405

    CAS  PubMed  Google Scholar 

  • Tepass U, Fessler LI, Aziz A, Hartenstein V (1994) Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120:1829–1837

    CAS  PubMed  Google Scholar 

  • Tilney LG, DeRosier DJ (2005) How to make a curved Drosophila bristle using straight actin bundles. Proc Natl Acad Sci U S A 102:18785–18792

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tixier V, Bataillé L, Jagla K (2010) Diversification of muscle types: recent insights from Drosophila. Exp Cell Res 316:3019–3027

    CAS  PubMed  Google Scholar 

  • Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, Rubin GM (2002) Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 3:research0088.1

    Google Scholar 

  • Treisman JE (2013) Retinal differentiation in Drosophila. Wiley Interdiscip Rev Dev Biol 2:545–557

    PubMed Central  CAS  PubMed  Google Scholar 

  • Truman JW, Moats W, Altman J, Marin EC, Williams DW (2010) Role of Notch signaling in establishing the hemilineages of secondary neurons in Drosophila melanogaster. Development 137:53–61

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tulina N, Matunis E (2001) Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science 294:2546–2549

    CAS  PubMed  Google Scholar 

  • Uemura T, Shepherd S, Ackerman L, Jan LY, Jan YN (1989) numb, a gene required in determination of cell fate during sensory organ formation in Drosophila embryos. Cell 58:349–360

    Google Scholar 

  • VanHook A, Letsou A (2008) Head involution in Drosophila: genetic and morphogenetic connections to dorsal closure. Dev Dyn 237:28–38

    PubMed  Google Scholar 

  • Viktorin G, Riebli N, Popkova A, Giangrande A, Reichert H (2011) Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev Biol 356:553–565

    CAS  PubMed  Google Scholar 

  • Volk T (1999) Singling out Drosophila tendon cells: a dialogue between two distinct cell types. Trends Genet 15:448–453

    CAS  PubMed  Google Scholar 

  • von Ohlen T, Doe CQ (2000) Convergence of dorsal, dpp, and egfr signaling pathways subdivides the Drosophila neuroectoderm into three dorsal-ventral columns. Dev Biol 224:362–372

    Google Scholar 

  • Wang S, Tulina N, Carlin DL, Rulifson EJ (2007) The origin of islet-like cells in Drosophila identifies parallels to the vertebrate endocrine axis. Proc Natl Acad Sci U S A 104:19873–19878

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ward EJ, Skeath JB (2000) Characterization of a novel subset of cardiac cells and their progenitors in the Drosophila embryo. Development 127:4959–4969

    CAS  PubMed  Google Scholar 

  • Warn RM, Warn A, Planques V, Robert-Nicoud M (1990) Cytokinesis in the early Drosophila embryo. Ann N Y Acad Sci 582:222–232

    CAS  PubMed  Google Scholar 

  • Warrior R (1994) Primordial germ cell migration and the assembly of the Drosophila embryonic gonad. Dev Biol 166:180–194

    CAS  PubMed  Google Scholar 

  • Weavers H, Prieto-Sánchez S, Grawe F, Garcia-López A, Artero R, Wilsch-Bräuninger M, Ruiz-Gómez M, Skaer H, Denholm B (2009) The insect nephrocyte is a podocyte-like cell with a filtration slit diaphragm. Nature 457:322–326

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wernet MF, Desplan C (2004) Building a retinal mosaic: cell-fate decision in the fly eye. Trends Cell Biol 14:576–584

    CAS  PubMed  Google Scholar 

  • White RA, Lehmann R (1986) A gap gene, hunchback, regulates the spatial expression of Ultrabithorax. Cell 47:311–321

    CAS  PubMed  Google Scholar 

  • Williams DW, Shepherd D (2002) Persistent larval sensory neurones are required for the normal development of the adult sensory afferent projections in Drosophila. Development 129:617–624

    CAS  PubMed  Google Scholar 

  • Wilson R, Leptin M (2000) Fibroblast growth factor receptor-dependent morphogenesis of the Drosophila mesoderm. Philos Trans R Soc Lond B Biol Sci 355:891–895

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wodarz A (2005) Molecular control of cell polarity and asymmetric cell division in Drosophila neuroblasts. Curr Opin Cell Biol 17:475–481

    CAS  PubMed  Google Scholar 

  • Wolff T, Ready DF (1993) Pattern formation in the Drosophila retina. In: Bate M, Martinez-Arias A (eds) The development of Drosophila melanogaster. Cold Spring Habor Laboratory Press, Plainview, pp 1277–1326

    Google Scholar 

  • Wolpert L (1989) Positional information revisited. Development 107:3–12

    PubMed  Google Scholar 

  • Wolpert L (2002) Principles of development, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Xie T, Spradling AC (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290:328–330

    CAS  PubMed  Google Scholar 

  • Xu N, Wang SQ, Tan D, Gao Y, Lin G, Xi R (2011) EGFR, Wingless and JAK/STAT signaling cooperatively maintain Drosophila intestinal stem cells. Dev Biol 354:31–43

    CAS  PubMed  Google Scholar 

  • Yu HH, Kolodkin AL (1999) Semaphorin signaling: a little less per-plexin. Neuron 22:11–14

    CAS  PubMed  Google Scholar 

  • Yu F, Kuo CT, Jan YN (2006) Drosophila neuroblast asymmetric cell division: recent advances and implications for stem cell biology. Neuron 51:13–20

    CAS  PubMed  Google Scholar 

  • Zamore PD, Lehmann R (1996) Drosophila development: homeodomains and translational control. Curr Biol 6:773–775

    CAS  PubMed  Google Scholar 

  • Zhuang S, Shao H, Guo F, Trimble R, Pearce E, Abmayr SM (2009) Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes. Development 136:2335–2344

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zlatic M, Landgraf M, Bate M (2003) Genetic specification of axonal arbors: atonal regulates robo3 to position terminal branches in the Drosophila nervous system. Neuron 37:41–51

    CAS  PubMed  Google Scholar 

  • Zlatic M, Li F, Strigini M, Grueber W, Bate M (2009) Positional cues in the Drosophila nerve cord: semaphorins pattern the dorso-ventral axis. PLoS Biol 7:e1000135

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

VH wrote most of the text of this chapter and prepared the figures. He warmly thanks ADC for writing the introductory sections and contributing to other sections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Hartenstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Wien

About this chapter

Cite this chapter

Hartenstein, V., Chipman, A.D. (2015). Hexapoda: A Drosophila’s View of Development. In: Wanninger, A. (eds) Evolutionary Developmental Biology of Invertebrates 5. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1868-9_1

Download citation

Publish with us

Policies and ethics