Skip to main content

How Corals Coordinate and Organize: An Ecosystemic Analysis Based on Biocommunication and Fractal Properties

  • Chapter
  • First Online:
Biocommunication of Animals

Abstract

Tropical coral reefs harbour some of the most diverse biological communities on our planet and as such rival tropical forests communities in species diversity and number of individuals from all domains. The cooperative interplay of prokaryotes, eukaryotes – particularly – the interactions among plantae and animalia shape this delicate balance, which ultimately culminate in the beauty of the coral reef biome. Some algal species but especially scleractinian corals with their interconnected organizational structure precipitate a calcium-carbonate skeleton that, upon generation after generation, form and shape structures that can even be seen from space. Yet this process is limited by light penetrability – either by depth or by visibility – that provides endosymbiotic algae with the energetic flux to convert light quanta into biochemically available energy. As a result, the sheer dominance of coral species somewhat camouflages the delicate balance between reef builders and bioerosive processes. This intrinsically interwoven biocommunicative dynamics is a key issue in order to comprehend how such structures can evolve and stretch out over 1,000s of km. Neglecting the importance of these processes compromises a full understanding of reef-dynamics and in turn promotes accelerated reef degradation due to improper use of reef resources to those who rely on them. Doing so simply increments reef instability and as such its long-term survival. This article attempts to shed light on the crucial role of biocommunicative processes and how these are manifested across taxa. In fact biocommunication is so essential in assigning each organism a specific role in this network of interdependences that the elegance even within organisms themselves – seen from a biomic perspective –attain self-similar properties. In turn and regardless of the taxa involved, self-similarity in coral reef ecosystems is an underlying feature that relies on intact and efficient biocommunicative pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alieva NO, Konzen KA, Field SF, Meleshkevitch EA, Hunt ME, Beltran-Ramirez V, Miller DJ, Wiedenmann J, Salih A, Mats MV (2008) Diversity and evolution of coral fluorescent proteins. PLoS One 3(7):e2680 1–12

    Google Scholar 

  • Alker AP, Kim K, Dube DH et al (2004) Localized induction of a generalized response against multiple biotic agents in Caribbean sea fans. Coral Reef 23:397–405

    Google Scholar 

  • Ates R (1989) Aggressive behavior in corals. FAMA 12:104–112

    Google Scholar 

  • Baird AH, Bhagooli R, Ralph PJ et al (2009) Coral bleaching. The role of the host. Trends Ecol Evol 24:16–20

    PubMed  Google Scholar 

  • Bak RPM, Termaat RM, Dekker R (1982) Complexity of coral interactions; influence of time, location of interaction and epifauna. Mar Biol 69:215–222

    Google Scholar 

  • Barnes R, Hughes R (1999) An introduction to marine ecology, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  • Basillais E (1998) Functional role of the fractal morphology of corals: a full model of the nutrient turbulent diffusion fluxes to a coral reef. C R Acad Sci Paris Sci de la vie 321:295–298

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology, individuals, populations and communities, 3rd edn. Blackwell Science, Oxford

    Google Scholar 

  • Bigger CH, Olano CT (1993) Alloimmune cellular responses of the gorgonian coral Swiftia exserta. J Immunol 150:134

    Google Scholar 

  • Bou-Abdallah F, Chasteen ND, Lesser MP (2006) Quenching of superoxide radicals by green fluorescent protein. Biochim Biophys Acta 1760:1690–1695

    PubMed  CAS  Google Scholar 

  • Bradbury H, Reichelt RE (1983) Fractal dimension of a coral reef at ecological scales. Mar Ecol Prog Ser 10:169–171

    Google Scholar 

  • Bruno JF, Witman JD (1996) Defense mechanisms of scleractinian cup corals against overgrowth by colonial invertebrates. J Exp Mar Biol Ecol 207:229–241

    Google Scholar 

  • Buddemeier R, Baker A, Fautin DG et al (2004) The adaptive hypothesis of bleaching. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin/Heidelberg

    Google Scholar 

  • Chadwick-Furman N, Rinkevich B (1994) A complex allorecognition system in a reef-building coral: delayed responses, reversals and nontransitive hierarchies. Coral Reef 13:57–63

    Google Scholar 

  • Chaumette A, Chaumette G (2008) Beyond the blue. Liquid Motion Film, USA

    Google Scholar 

  • Chen CA, Wallace CC, Yu JK et al (2000) Strategies for amplification by polymerase chain reaction of the complete sequence of the gene encoding nuclear large subunit ribosomal RNA in corals. Mar Biotechnol 2:558–570

    PubMed  CAS  Google Scholar 

  • Chen MC, Cheng YM, Hong MC et al (2004) Molecular cloning of Rab5 (ApRab5) in Aiptasia pulchella and its retention in phagosomes harboring live zooxanthellae. Biochem Biophys Res Commun 324:1024–1033

    PubMed  CAS  Google Scholar 

  • Chen MC, Hong MC, Huang YS et al (2005) ApRab11, a cnidarian homologue of the recycling regulatory protein Rab11, is involved in the establishment and maintenance of the Aiptasia-Symbiodinium endosymbiosis. Biochem Biophys Res Commun 338:1607–1616

    PubMed  CAS  Google Scholar 

  • Connell JH (1976) Competitive interactions and the species diversity of corals. In: Mackie GO (ed) Coelenterate ecology and behavior. Plenum Press, New York

    Google Scholar 

  • Cope M (1982) Interspecific coral interactions in Hong Kong. Proc 4th Int Coral Reef Symp Manila 2:357–362

    Google Scholar 

  • Edmunds PJ, Gates RD (2003) Has coral bleaching delayed our understanding of fundamental aspects of coral–dinoflagellate symbioses? BioScience 53:976–980

    Google Scholar 

  • Elmqvist T, Folke C, Nyström M et al (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494

    Google Scholar 

  • Enquist BJ, Niklas KJ (2001) Invariant scaling relations across tree-dominated communities. Nature 410:655–660

    PubMed  CAS  Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    CAS  Google Scholar 

  • Enquist BJ, Haskell JP, Tiffney BH (2002) General patterns of taxonomic and biomass partitioning in extant and fossil plant communities. Nature 419:610–613

    PubMed  CAS  Google Scholar 

  • Ferriz-Dominguez N, Horta-Puga G (2001) Short-term aggressive behavior in scleractinian corals from La Blanquilla reef, Ve-racruz reef system. Rev Biol Trop 49:67–75

    PubMed  CAS  Google Scholar 

  • Frank U, Rinkevich B (2001) Alloimmune memory is absent in the Red Sea hydrocoral Millepora dichotoma. J Exp Zool 291:25–39

    PubMed  CAS  Google Scholar 

  • Geffen Y, Rosenberg E (2005) Stress-induced rapid release of antibacterials by scleractinian corals. Mar Biol 146:931–935

    Google Scholar 

  • Geistner J (1977) The influence of wave exposure on the ecological zonation of Caribbean coral reefs. Proc 3rd Int Coral Reef Symp Miami 2:23–29

    Google Scholar 

  • Gleason DF, Edmunds PJ, Gates RD (2005) Ultraviolet radiation effects on the behavior and recruitment of larvae from the reef coral Porites astreoides. Mar Biol 148:503–512

    Google Scholar 

  • Golberg K, Eltzov E, Shnit-Orland M, Marks RS, Kushmaro A (2011) Characterization of quorum sensing signals in coral-associated bacteria. Microb Ecol 61:783–792

    PubMed  Google Scholar 

  • Gunthorpe L, Cameron AM (1990) Toxic exudates from the hard coral Goniopora tenuidens. Toxicon 28:1347–1350

    PubMed  CAS  Google Scholar 

  • Hallock P (1997) Reefs and reef limestones in earth history. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, London

    Google Scholar 

  • Harrison PL, Babcock RC, Bull GD et al (1984) Mass spawning in tropical reef corals. Science 223:1186–1189

    PubMed  CAS  Google Scholar 

  • Hatcher BG (1997) Organic production and decomposition. In: Birkeland C (ed) Life and death of coral reefs. Chapman & Hall, London

    Google Scholar 

  • Hay ME (1997) The ecology and evolution of seaweed-herbivore interactions on coral reefs. Coral Reef 16:67–76

    Google Scholar 

  • Hay ME, Fenical W, Gustafson K (1987) Chemical defense against diverse coral-reef herbivores. Ecology 68:1581–1591

    CAS  Google Scholar 

  • Hidaka M, Yurugi K, Sunagawa S et al (1997) Contact reactions between young colonies of the coral Pocillopora damicornis. Coral Reef 16:13–20

    Google Scholar 

  • Hildemann WH, Raison RL, Cheung G et al (1977) Immunological specificity and memory in a scleractinian coral. Nature 270:219–223

    PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Google Scholar 

  • Hoegh-Guldberg O (2004) Coral reefs and projections of future change. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin/Heidelberg

    Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ et al (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    PubMed  CAS  Google Scholar 

  • Horiguchi T, Kawai H, Kubota M et al (1999) Phototactic responses of four marine dinoflagellates with different types of eye-spot and chloroplast. Phycol Res 47:101–107

    Google Scholar 

  • Hughes TP (1994) Catastrophes, phase-shifts and large scale degradation of a Caribbean coral reef. Science 265:1547–1551

    PubMed  CAS  Google Scholar 

  • Idjadi JA, Karlson RH (2007) Spatial arrangement of competitors influences coexistence of reef-building corals. Ecology 88:2449–2454

    PubMed  Google Scholar 

  • Iguchi K, Kukaya T, Yasumoto A et al (2004) New marine sesquiterpenoids and diterpenoids from the Okinawan soft coral Cla-vularia koellikeri. J Nat Prod 67:577–583

    PubMed  CAS  Google Scholar 

  • Iwashima M, Matsumoto Y, Takahashi H, Iguchi K (2000) New marine steroids, yonarasterols, isolated from the okinawan soft coral, Clavularia viridis. Steroids 65(3):130–137

    PubMed  CAS  Google Scholar 

  • Iwao K, Fujisawa T, Hatta M (2002) A cnidarian neuropeptide of the GLW-amide family induces metamorphosis of reef-building corals in the genus Acropora. Coral Reef 21:127–129

    Google Scholar 

  • Jones AM, Berkelmans R, van Oppen MJ et al (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc Biol Sci 275:1359–1365

    PubMed  CAS  Google Scholar 

  • Kelman D, Benayahu Y, Kashman Y (1999) Chemical defence of the soft coral Parerythropodium fulvum fulvum (Forskal) in the Red Sea against generalist reef fish. J Exp Mar Biol Ecol 238:127–137

    CAS  Google Scholar 

  • Kelman D, Kashman Y, Rosenberg E, Kushmaro A, Loya Y (2006) Antimicrobial activity of Red Sea corals. Mar Biol 149:357–363

    CAS  Google Scholar 

  • Kelmanson IV, Matz MV (2003) Molecular basis and evolutionary origins of color diversity in great star coral Montastraea cavernosa (Scleractinia: Faviida). Mol Biol Evol 20:1125–1133

    PubMed  CAS  Google Scholar 

  • Kenkel CD, Traylor MR, Wiedenmann J, Salih A, Matz VM (2011) Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress. Proc R Soc B 278:2691–2697

    PubMed  CAS  Google Scholar 

  • Kim K (1994) Antimicrobial activity in gorgonian corals (Coe-lenterata, Octocorallia). Coral Reef 13:75–80

    Google Scholar 

  • Kiselev VG, Hahn KR, Auer DP (2003) Is the brain cortex a fractal? NeuroImage 20:1765–1774

    PubMed  Google Scholar 

  • Koblinger L, Hofmann W (1985) Analysis of human lung morphometric data for stochastic aerosol deposition calculations. Phys Med Biol 30:541–556

    PubMed  CAS  Google Scholar 

  • Koblinger L, Hofmann W (1988) Stochastic morphometric model of the rat lung. Anat Rec 221:533–539

    PubMed  CAS  Google Scholar 

  • Koh EGL (1997) Do scleractinian corals engage in chemical warfare against microbes? J Chem Ecol 23:379–398

    CAS  Google Scholar 

  • Kramarsky-Winter E (2004) What can regeneration process tell us about coral disease? In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin/Heidelberg

    Google Scholar 

  • Krediet CJ, Ritchie KB, Paul VJ, Teplitski M (2013) Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc R Soc B 280(20122328):1–9

    Google Scholar 

  • Kushmaro A, Kramarsky-Winter E (2004) Bacteria as a source of coral nutrition. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin/Heidelberg

    Google Scholar 

  • Lang JC (1970) Inter-specific aggression within the scleractinian reef corals. PhD thesis, Yale University, New Haven

    Google Scholar 

  • Lang JC (1971) Interspecific aggression by scleractinian corals; 1. The rediscovery of Scolymia cubensis (Milne-Edwards and Haime). Bull Mar Sci 21:952–959

    Google Scholar 

  • Lang JC (1973) Interspecific aggression by scleractinian corals. Why the race is not only to the swift. Bull Mar Sci 23:260–279

    Google Scholar 

  • Lang JC, Chornesky EA (1990) Competition between scleractinian reef corals – a review of mechanisms and effects. In: Dubinsky Z (ed) Coral reefs; ecosystems of the world 25. Elsevier, Amsterdam

    Google Scholar 

  • Leruste A, Bouvier T, Bettarel Y (2012) Enumerating viruses in coral mucus. Appl Environ Microbiol 78(17):6377–6379

    PubMed  CAS  Google Scholar 

  • Lesser MP (2004) Experimental biology of coral reef ecosystems. J Exp Mar Biol Ecol 300:217–252

    Google Scholar 

  • Leutenegger A, D’Angelo C, Matz MV, Denzel A, Oswald F, Salih A, Nienhaus GU, Wiedenmann J (2007) It’s cheap to be colourful – Anthozoans show a slow turnover of GFP-like proteins. FEBS 274:2496–2505

    CAS  Google Scholar 

  • Lindquist N, Hay ME (1996) Palatability and chemical defense of marine invertebrate larvae. Ecol Monogr 66:431–450

    Google Scholar 

  • Logan A (1986) Aggressive behavior in reef corals: a strategy for survival. Sea Front 32:347–351

    Google Scholar 

  • Madl P, Antonius A, Kleemann K (2005) The silent sentinels – the demise of tropical coral reefs. BUFUS 32–34. Available online: http://biophysics.sbg.ac.at/reefs/reefs.htm. Accessed March 2013

  • Madl P, Egot-Lemaire S (2013) The field and the photon from a physical point of view (Ch.2); Detection and measurement of photonic emissions of biogenic origin (Ch.3). In: Fels D, Cifra M (eds) Fields of the cell (in press)

    Google Scholar 

  • Madl P, Hofmann W, Oldham MJ, Asgharian B (2010) Stochastic morphometric model of the Balb/c mouse lung. Anat Rec 293:1766–1775

    Google Scholar 

  • Margulis L, Schwartz KV (1988) Five kingdoms. W. H. Freeman and Company, New York

    Google Scholar 

  • Marhaver KL, Edwards RA, Rohwer F (2008) Viral communities associated with healthy and bleaching corals. Environ Microbiol 10:2277–2286

    PubMed  CAS  Google Scholar 

  • Márquez LM, van Oppen MJH, Willis BL et al (2002) Sympatric populations of the highly cross-fertile coral species Acropora hyacinthus and Acropora cytherea are genetically distinct. Proc Natl Acad Sci U S A 269:1289–1294

    Google Scholar 

  • Martin KC (2004) Local protein synthesis during axon guidance and synaptic plasticity. Curr Opin Neurobiol 14:305–310

    PubMed  CAS  Google Scholar 

  • Matz MV, Marshall NJ, Vorobyev M (2006) Are corals colorful? Photochem Photobiol 2006(82):345–350

    Google Scholar 

  • Mazel CH (2004) Fluorescent enhancement of signalling in a mantis shrimp. Science 303:51

    PubMed  CAS  Google Scholar 

  • McClanahan TR, Maina J (2003) Response of coral assemblages to the interaction between natural temperature variation and rare warm-water events. Ecosystems 6:551–563

    Google Scholar 

  • Miller KJ, Ayre DJ (2004) The role of sexual and asexual reproduction in structuring high latitude populations of the reef coral Pocillopora damicornis. Heredity 92:557–568

    PubMed  CAS  Google Scholar 

  • Miller DJ, van Oppen MJH (2003) A ‘fair go’ for coral hybridisation. Mol Ecol 12:805–807

    PubMed  CAS  Google Scholar 

  • Moccia R, Chen D, Lyles V et al (2003) An unbiased cDNA library prepared from isolated Aplysia sensory neuron processes is enriched for cytoskeletal and translational mRNAs. J Neurosci 23:9409–9417

    PubMed  CAS  Google Scholar 

  • Mora C, Aburto-Oropeza O, Ayala Bocos A, Ayotte PM, Banks S et al (2011a) Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes. PLoS Biol 9(4):1–9

    Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011b) How many species are there on earth and in the ocean? PLoS Biol 9(8):1–8

    Google Scholar 

  • Mumby PJ, Edwards AJ, Arias-Gonzales JE et al (2004) Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427:533–536

    PubMed  CAS  Google Scholar 

  • Mydlarz LD, Holthouse SF, Peters EC et al (2008) Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors. PLoS ONE 3(3): e1811 1–9

    Google Scholar 

  • Netea MG, Quintin J, van der Meer JWM (2011) Trained immunity: a memory for innate host defense. Cell Host Microbe 9(5):355–361

    PubMed  CAS  Google Scholar 

  • Neulinger SC, Järnegren J, Ludvigsen M et al (2008) Phenotype-specific bacterial communities in the cold-water coral Lophelia pertusa (Scleractinia) and their implications for the coral’s nutrition, health, and distribution. Appl Environ Microbiol 74:7272–7285

    PubMed  CAS  Google Scholar 

  • Okubo N, Motokawa T, Okubo N et al (2007) Embryogenesis in the reef-building coral Acropora spp. Zool Sci 24:1169–1177

    PubMed  Google Scholar 

  • Palmer CV, Modi CK, Mydlarz LD (2009) Coral fluorescent proteins as antioxidants. PLoS One 4(10):e7298 1–9

    Google Scholar 

  • Penland L, Loulechad J, Idip D et al (2004) Coral spawning in the western Pacific Ocean is related to solar insolation: evidence of multiple spawning events in Palau. Coral Reef 23:133–140

    Google Scholar 

  • Purkis SJ, Riegl BM, Dodge RE (2006) Fractal patterns of coral communities: evidence from remote sensing (Arabian Gulf, Dubai, UAE). In: Proceedings of the 10th international coral reef symposium, Okinawa, 28 June–2 July 2004, pp 1753–1762, accessed: Aug. 2013: http://www.nova.edu/ocean/forms/sam_purkis_fractal_patterns_coral.pdf

  • Ramesh P, Venkateswarlu Y (1999) Novel steroid constituents of the soft coral Sinularia dissecta. Steroids 64:785–789

    PubMed  CAS  Google Scholar 

  • Rinkevich B (2004) Allorecognition and xenorecognition in reef corals: a decade of interactions. Hydrobiologia 530(531):443–450

    Google Scholar 

  • Rinkevich B, Sakai K (2001) Interspecific interactions among species of the coral genus Porites from Okinawa. Jpn J Zool 104:91–97

    CAS  Google Scholar 

  • Rinkevich B, Frank U, Bak RPM et al (1994) Alloimmune responses between Acropora hemprichi conspecifics: nontransitive patterns of overgrowth and delayed cytotoxicity. Mar Biol 118:731–737

    Google Scholar 

  • Rohwer F (2010) Coral reefs in the microbial seas. Plaid Press Productions, Oakdale. http://www.nova.edu/ocean/forms/sam_purkis_fractal_patterns_coral.pdf. Accessed August 2013

  • Rohwer F, Kelley S (2004) Culture-independent analyses of coral-associated microbes. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin/Heidelberg

    Google Scholar 

  • Rosenberg E (2004) The bacterial disease hypothesis of coral bleaching. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin/Heidelberg

    Google Scholar 

  • Rosenberg E, Kushmaro A, Kramarsky-Winter E et al (2009) The role of microorganisms in coral bleaching. ISME J 3:139–146

    PubMed  CAS  Google Scholar 

  • Roussis V, Chinou IB, Tsitsimpikou C et al (2001) Antibacterial secondary metabolites antibacterial activity of volatile secondary metabolites from Caribbean soft corals of the genus Gorgonia. Flavour Fragr J 16:364–366

    CAS  Google Scholar 

  • Rowan R (2004) Coral bleaching: thermal adaptation in reef coral symbionts. Nature 430:742

    PubMed  CAS  Google Scholar 

  • Rozenblat YBH, Rosenberg E (2004) Temperature-regulated bleaching and tissue lysis of Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. In: Rosenberg E, Loya Y (eds) Coral health and disease. Springer, Berlin/Heidelberg

    Google Scholar 

  • Ryan FP (2006) Genomic creativity and natural selection: a modern synthesis. Biol J Linn Soc 88:655–672

    Google Scholar 

  • Salih A, Larkum A, Cox G, Kühl M, Hoegh-Guldberg O (2000) Fluorescent pigments in corals are photoprotective. Nature 48(2000):850–853

    Google Scholar 

  • Sampayo EM, Ridgway T, Bongaerts P et al (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci U S A 105:10444–10449

    PubMed  CAS  Google Scholar 

  • Santos SR, Taylor DJ, Kinzie A et al (2002) Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23:97–111

    PubMed  CAS  Google Scholar 

  • Shackelton LA, Holmes EC (2004) The evolution of large DNA viruses: combining genomic information of viruses and their hosts. Trends Microbiol 12:458–465

    PubMed  CAS  Google Scholar 

  • Sharon G, Rosenberg E (2008) Bacterial growth on coral mucus. Curr Microbiol 56:481–488

    PubMed  CAS  Google Scholar 

  • Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol 67:371–380

    PubMed  CAS  Google Scholar 

  • Slattery M, James A, McClintock JB, Heine JN (1995) Chemical defenses in Antarctic soft corals: evidence for antifouling compounds. J Exp Mar Biol Ecol 190:61–77

    CAS  Google Scholar 

  • Slattery M, Hines GA, Starmer J et al (1999) Chemical signals in gametogenesis, spawning, and larval settlement and defense of the soft coral Sinularia polydactyla. Coral Reef 18:75–84

    Google Scholar 

  • Spalding MD, Ravilious C, Green EP (2001) World atlas of coral reefs. UNEP-WCMC and University of California Press, Los Angeles

    Google Scholar 

  • Stambler N, Dubinsky Z (2005) Corals as light collectors: an integrating sphere approach. Coral Reef 24:1–9

    Google Scholar 

  • Stat M, Morris E, Gates RD (2008) Functional diversity in coral– dinoflagellate symbiosis. Proc Natl Acad Sci U S A 105:9256–9261

    PubMed  CAS  Google Scholar 

  • Takabayashia M, Santos CR, Cook CB (2004) Mitochondrial DNA phylogeny of the symbiotic dinoflagellates (Symbiodinium, Dinophyta). J Phycol 40:160–164

    Google Scholar 

  • Tanner JE (1997) Interspecific competition reduces fitness in scleractinian corals. J Exp Mar Biol Ecol 214:19–34

    Google Scholar 

  • Thompson KR, Otis KO, Chen DY et al (2004) Synapse to nucleus signaling during long-term synaptic plasticity: a role for the classical active nuclear import pathway. Neuron 44:997–1009

    PubMed  CAS  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001) Zooxanthellae of Montastraea annularis species complex: patterns of distribution of four taxa of symbiodinium on different reefs and across depths. Biol Bull 201:348–359

    PubMed  CAS  Google Scholar 

  • Twan WH, Hwang JS, Chang CF (2003) Sex steroids in scleratinian coral, Euphyllia ancora: implication in mass spawning. Biol Reprod D 68:2255–2260

    Google Scholar 

  • Twan WH, Hwang JS, Lee YH et al (2006) Hormones and re-production in scleractinian corals. Comp Biochem Physiol A Mol Integr Physiol 144:247–253

    PubMed  Google Scholar 

  • Van Oppen JH, McDonald BJ, Willis B et al (2001) The evolutionary history of the coral genus Acropora (Scleractinia, Cnidaria) based on a mitochondrial and a nuclear marker: reticulation, incomplete lineage sorting, or morphological convergence? Mol Biol Evol 18:1315–1329

    PubMed  Google Scholar 

  • Van Oppen M, Leong JA, Gates RD (2009) Coral-virus interaction: a double-edged sword? Symbiosis 47:1–8

    Google Scholar 

  • Van Veghel MLJ, Cleary DFR, Bak RPM (1996) Interspecific interactions and competitive ability of the polymorphic reef-building coral Montastrea annularis. Bull Mar Sci 58:792–803

    Google Scholar 

  • van Woesik R (2009) Calm before the spawn: global coral spawning patterns are explained by regional winds fields. Proc R Soc B 1524:1–8

    Google Scholar 

  • Vargas-Angel B, Colley SB, Hoke SM et al (2006) The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reef 25:110–122

    Google Scholar 

  • Veron JEN (1986) Corals of Australia and the Indo-Pacific. University of Hawaii Press, Honolulu

    Google Scholar 

  • Veron JEN (1995) Corals in space and time – the biogeography and evolution of the Scleractinia. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Veron JEN, Stafford-Smith M (2000) Corals of the world, vol 3. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Villarreal LP (2005) Viruses and the evolution of life. ASM Press, Washington, DC

    Google Scholar 

  • Vytopil E, Willis B (2001) Epifaunal community structure in Acropora spp. (Scleractinia) on the Great Barrier reef: implications of coral morphology and habitat complexity. Coral Reef 20:281–288

    Google Scholar 

  • Watanabe K, Sekine M, Iguchi K (2003) Isolation of three marine prostanoids, possible biosynthetic intermediates for clavulones, from the Okinawan soft coral Clavularia viridis. Pharm Bull 51:909–913

    CAS  Google Scholar 

  • Weis VM (2008) Cellular mechanisms of Cnidarian bleaching: stress causes the collapse of symbiosis. Exp Biol 211:3059–3066

    CAS  Google Scholar 

  • Weis VM, Reynolds WS, deBoer MD et al (2001) Host-symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral Fungia scutaria. Coral Reef 20:301–308

    Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    PubMed  CAS  Google Scholar 

  • Westfall JA, Sayyar KL (1997) Ultrastructure of neurons and synapses in the tentacle epidermis of the sea anemone Calliactis parasitica. J Morphol 232:207–216

    PubMed  CAS  Google Scholar 

  • Wilsanand V, Wagh AB, Bapuji M (1999) Antibacterial activities of anthozoan corals on some marine microfoulers. Microbios 99:137–145

    PubMed  CAS  Google Scholar 

  • Witzany G (2010) Biocommunication and natural genome editing. Springer, Dordrecht

    Google Scholar 

  • Witzany G (ed) (2011) Biocommunication in soil microorganisms. Springer, Heidelberg/New York

    Google Scholar 

  • Witzany G (ed) (2012) Biocommunication of fungi. Springer, Dordrecht

    Google Scholar 

  • Witzany G, Baluska F (eds) (2012) Biocommunication of plants. Springer, Heidelberg/Berlin

    Google Scholar 

  • Yamazato K, Yeemin T (1986) Preliminary study on the inter- and intraspecific interactions among corals of Khang Khao Island, the Sichang Islands, Gulf of Thailand. Galaxea 5:163–174

    Google Scholar 

  • Yasumoto M, Mada K, Ooi T et al (2000) New terpenoid components from the volatile oils of the soft corals Clavularia viridis and Sarcophyton acutangulum. J Nat Prod 63:1534–1536

    PubMed  CAS  Google Scholar 

  • Zawada DG, Jaffe JS (2003) Changes in the fluorescence of the Caribbean coral Montastraea faveolata during heat-induced bleaching Limnol. Oceanography 48(1):412–425

    Google Scholar 

  • Zhang GW, Ma XQ, Kurihara H et al (2005) New hemiketal steroid from the soft coral Cladiella sp. Org Lett 7:991–994

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. K. Kleeman, University of Vienna for allowing us to obtain the morphometric data of numerous coral specimens. We also want to thank Dr. K. & W. Loch from the Reef Expedition Maldives 2007 who organized a visit to the Darmstadt Museum housing the Scheer & Pillai coral-collection to complement the allometric census.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guenther Witzany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Madl, P., Witzany, G. (2014). How Corals Coordinate and Organize: An Ecosystemic Analysis Based on Biocommunication and Fractal Properties. In: Witzany, G. (eds) Biocommunication of Animals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7414-8_20

Download citation

Publish with us

Policies and ethics