Skip to main content

Biotransformation and Detoxification of Environmental Pollutants with Aromatic Structures by Yeasts

  • Chapter
  • First Online:
Yeast Diversity in Human Welfare

Abstract

One of the most important roles of microorganisms in nature is the degradation of naturally occurring or industrially produced organic compounds. Besides bacteria and filamentous fungi, yeasts are abundantly present in many ecosystems and have the ability to degrade numerous organic substances. Naturally occurring substrates for yeasts are polysaccharides, sugars, lipids or proteins, however, in environmental pollutants and xenobiotics structures with aliphatic, alicyclic, aromatic or heterocyclic components dominate. This chapter focuses on the metabolic mechanisms of biotransformation and detoxification of environmental pollutants with aromatic and partially heterocyclic structures by yeasts such as Candida, Debaryomyces, Yarrowia, and Trichosporon species. Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Phenol, chlorinated phenols, methylated and ethylated benzenes, long-chain phenylalkanes and polycyclic aromatic hydrocarbons (some of the latter are contained in mineral oil products), biphenyl and its chlorinated derivatives, dioxins, dibenzofurans, diphenyl ethers and their halogenated derivatives as well as several disinfectants serve as examples of aromatic substrates which undergo degradation or biotransformation by yeasts. Some pollutants can be degraded completely to carbon dioxide and water but many xenobiotics can only be transformed to products many of which have unknown properties and may accumulate in soil and water. The study of these biotransformation mechanisms and the knowledge of the structures and properties of the products formed are of importance for minimising health risks to humans and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adav, S. S., Chen, M.-Y., Lee, D.-J. and Ren, N.-Q. 2007. Biotechnol. Bioeng. 96: 844–852.

    Google Scholar 

  • Ahuatzi-Chacon, D., Ordorica-Morales, G., Ruiz-Ordaz, N., Cristiani-Urbina, E., Juarez-Ramirez, C. and Galindez-Mayer, J. 2004. World J. Microbiol. Biotechnol. 20: 695–702.

    Google Scholar 

  • Aleksieva, Z., Ivanova, D., Godjevargova, T. and Atanasov, B. 2002. Process Biochem. 37: 1215–1219.

    Google Scholar 

  • Ali, N., Eliyas, M., Al-Sarawi, H. and Radwan, S. S. 2011. Chemosphere. 83: 1268–1272.

    Google Scholar 

  • Andersson, P. L., Blom, A., Johannisson, A., Pesonen, M., Tysklind, M., Berg, A. H., Olsson, P. E. and Norrgren, L. 1999. Arch. Environ. Con. Tox. 37: 145–150.

    Google Scholar 

  • Assinder, S. J. and Williams, P. A. 1990. Adv. Microb. Physiol. 31: 1–69.

    Google Scholar 

  • Awe, S., Mikolasch, A., Hammer, E. and Schauer, F. 2008. Int. Biodeterior. Biodegrad. 62: 408–414.

    Google Scholar 

  • Awe, S., Mikolasch, A. and Schauer, F. 2009. Appl. Microbiol. Biotechnol. 84: 965–976.

    Google Scholar 

  • Badali, H., Prenafeta-Boldu, F. X., Guarro, J., Klaassen, C. H., Meis, J. F. and De Hoog, G. S. 2011. Fungal Biol. 115: 1019–1029.

    Google Scholar 

  • Ballerstedt, H., Kraus, A. and Lechner, U. 1997. Environ. Sci. Technol. 31: 1749–1753.

    Google Scholar 

  • Basak, B., Bhunia, B., Dutta, S. and Dey, A. 2013. Int. Biodeterior. Biodegrad. 78: 17–23.

    Google Scholar 

  • Bergauer, P., Fonteyne, P. A., Nolard, N., Schinner, F. and Margesin, R. 2005. Chemosphere. 59: 909–918.

    Google Scholar 

  • Boersma, M. G., Dinarieva, T. Y., Middelhoven, W. J., van Berkel, W. J. H., Doran, J., Vervoort, J. and Rietjens, I. 1998. Appl. Environ. Microbiol. 64: 1256–1263.

    Google Scholar 

  • Bos, P. and Debruyn, J. C. 1973. A. Van Leeuw. J. Microb. 39: 99–107.

    Google Scholar 

  • Bril’kov, A. V., Pechurkin, N. S. and Litvinov, V. V. 1980. Mikrobiologiia 49: 466–72.

    Google Scholar 

  • Bunge, M. and Lechner, U. 2009. Appl. Microbiol. Biotechnol. 84: 429–444.

    Google Scholar 

  • Cejkova, A., Masak, J., Jirku, V., Fialova, A. and Moenandar, D. 2002. Waste Management and the Environment, WIT Press, Ashurst, England, pp. 99–106.

    Google Scholar 

  • Cerniglia, C. E. and Crow, S. A. 1981. Arch. Microbiol. 129: 9–13.

    Google Scholar 

  • Chang, Y.-S. 2008. J. Mol. Microb. Biotech. 15: 152–171.

    Google Scholar 

  • Chaudhry, G. R. and Chapalamadugu, S. 1991. Microbiol. Rev. 55: 59–79.

    Google Scholar 

  • Chen, K. C., Lin, Y. H., Chen, W. H. and Liu, Y. C. 2002. Enzyme Microb. Tech. 31: 490–497.

    Google Scholar 

  • Chrzanowski, L., Bielicka-Daszkiewicz, K., Owsianiak, M., Aurich, A., Kaczorek, E. and Olszanowski, A. 2008. World J. Microbiol. Biotechnol. 24: 1943–1949.

    Google Scholar 

  • Colquhoun, D. R., Hartmann, E. M. and Halden, R. U. 2012. J. Biomed. Biotechnol. Article number: 408690.

    Google Scholar 

  • Cong, L. T. N., Mai, C. T. N., Thanh, V. T., Nga, L. P. and Minh, N. N. 2014. Water Sci. Technol. 70: 329–336.

    Google Scholar 

  • Connor, K., Ramamoorthy, K., Moore, M., Mustain, M., Chen, I., Safe, S., Zacharewski, T., Gillesby, B., Joyeux, A. and Balaguer, P. 1997. Toxicol. Appl. Pharm. 145: 111–123.

    Google Scholar 

  • Corti, A., Frassinetti, S., Vallini, G., Dantone, S., Fichi, C. and Solaro, R. 1995. Environ. Pollut. 90: 83–87.

    Google Scholar 

  • Cox, H. H. J. and Doddema, H. J. 1996. European Patent EP-0710147

    Google Scholar 

  • Cox, H. H. J., Faber, B. W., VanHeiningen, W. N. M., Radhoe, H., Doddema, H. J. and Harder, W. 1996. Appl. Environ. Microbiol. 62: 1471–1474.

    Google Scholar 

  • Cox, H. H. J., Moerman, R. E., vanBaalen, S., vanHeiningen, W. N. M., Doddema, H. J. and Harder, W. 1997. Biotechnol. Bioeng. 53: 259–266.

    Google Scholar 

  • Deng, Y., Zhang, Y., Hesham, A. E.-L., Liu, R. and Yang, M. 2010. Appl. Microbiol. Biotechnol. 86: 1933–1939.

    Google Scholar 

  • Dodge, R. H., Cerniglia, C. E. and Gibson, D. T. 1979. Biochem. J. 178: 223–230.

    Google Scholar 

  • Dutta, T. 2005. Environ. Geochem. Hlth. 27: 271–284.

    Google Scholar 

  • Dutta, T. K. and Harayama, S. 2001. Environ. Sci. Technol. 35: 102–107.

    Google Scholar 

  • Enroth, C. 2003. Acta Crystallogr. D. 59: 1597–1602.

    Google Scholar 

  • Estevez, E., Veiga, M. C. and Kennes, C. 2005. J. Ind. Microbiol. Biot. 32: 33–37.

    Google Scholar 

  • Fahr, K., Wetzstein, H. G., Grey, R. and Schlosser, D. 1999. FEMS Microbiol. Lett. 175: 127–132.

    Google Scholar 

  • Fedorak, P. M. and Westlake, D. W. S. 1986. Appl. Environ. Microbiol. 51: 435–437.

    Google Scholar 

  • Fialova, A., Boschke, E. and Bley, T. 2004. Int. Biodeterior. Biodegrad. 54: 69–76.

    Google Scholar 

  • Fiedler, H. 1996. Chemosphere. 32: 55–64.

    Google Scholar 

  • Field, J. A. and Sierra-Alvarez, R. 2008. Chemosphere. 71: 1005–1018.

    Google Scholar 

  • Fuchs, G., Boll, M. and Heider, J. 2011. Nat. Rev. Microbiol. 9: 803–816.

    Google Scholar 

  • Gaal, A. and Neujahr, H. Y. 1979. J. Bacteriol. 137: 13–21.

    Google Scholar 

  • Gaal, A. and Neujahr, H. Y. 1980. Biochem. J. 191: 37–43.

    Google Scholar 

  • Gaal, A. and Neujahr, H. Y. 1981. Arch. Microbiol. 130: 54–58.

    Google Scholar 

  • Galindez-Mayer, J., Ramon-Gallegos, J., Ruiz-Ordaz, N., Juarez-Ramirez, C., Salmeron-Alcocer, A. and Poggi-Varaldo, H. M. 2008. Biochem. Eng. J. 38: 147–157.

    Google Scholar 

  • Gallastegui, G., Barona, A., Rojo, N., Gurtubay, L. and Elias, A. 2013. Process Saf. Environ. 91: 112–122.

    Google Scholar 

  • Gallucci, M. N., Carezzano, M. E., Oliva, M. M., Demo, M. S., Pizzolitto, R. P., Zunino, M. P., Zygadlo, J. A. and Dambolena, J. S. 2014. J. Appl. Microbiol. 116: 795–804.

    Google Scholar 

  • Garcia-Pena, I., Hernandez, S., Auria, R. and Revah, S. 2005. Appl. Environ. Microbiol. 71: 4280–4285.

    Google Scholar 

  • Garon, D., Krivobok, S. and Seigle-Murandi, F. 2000. Chemosphere. 40: 91–97.

    Google Scholar 

  • Gartiser, S., Stiene, G., Hartmann, A. and Zipperle, J. 2000. UBA-Texte 1–00. Umweltbundesamt, Berlin.

    Google Scholar 

  • Gerecova, G., Nebohacova, M., Zeman, I., Pryszcz, L. P., Tomaska, L., Gabaldon, T. and Nosek, J. 2015. Fems Yeast Research 15: fov006.

    Google Scholar 

  • Gerginova, M., Manasiev, J., Shivarova, N. and Alexieva, Z. 2007. Z. Naturforsch. C 62: 83–86.

    Google Scholar 

  • Giger, W., Brunner, P. H. and Schaffner, C. 1984. Science 225: 623–625.

    Google Scholar 

  • Godjevargova, T., Aleksieva, Z., Ivanova, D. and Shivarova, N. 1998. Process Biochem. 33: 831–835.

    Google Scholar 

  • Golbeck, J. H., Albaugh, S. A. and Radmer, R. 1983. J. Bacteriol. 156: 49–57.

    Google Scholar 

  • Gunsch, C. K., Cheng, Q., Kinney, K. A., Szaniszlo, P. J. and Whitman, C. P. 2005. Appl. Microbiol. Biotechnol. 68: 405–411.

    Google Scholar 

  • Gunsch, C. K., Kinney, K. A., Szaniszlo, P. J. and Whitman, C. P. 2007. Biotechnol. Bioeng. 98: 101–111.

    Google Scholar 

  • Hagler, A. N. and Mendoncahagler, L. C. 1981. Appl. Environ. Microbiol. 41: 173–178.

    Google Scholar 

  • Hagler, A. N., Santos, S. S. and Mendoncahagler, L. C. 1979. Rev. Microbiol. 10: 36–41.

    Google Scholar 

  • Hammer, E., Kneifel, H., Hofmann, K. and Schauer, F. 1996. J. Basic Microb. 36: 239–243.

    Google Scholar 

  • Hammer, E., Krowas, D., Schafer, A., Specht, M., Francke, W. and Schauer, F. 1998. Appl. Environ. Microbiol. 64: 2215–2219.

    Google Scholar 

  • Harris, G. and Ricketts, R. W. 1962. Nature 195: 473–474.

    Google Scholar 

  • Harvey, R. G. 1997. Polycylic aromatic hydrocarbons. Wiley-VCH, New York.

    Google Scholar 

  • Harwood, C. S. and Parales, R. E. 1996. Annual Review of Microbiology 50: 553–590.

    Google Scholar 

  • Hasegawa, Y., Okamoto, T., Obata, H. and Tokuyama, T. 1990. J. Ferment. Bioeng. 69: 122–124.

    Google Scholar 

  • Hashimoto, K. 1970. J. Gen. Appl. Microbiol. 16: 1–13.

    Google Scholar 

  • Hashimoto, K. 1973. J. Gen. Appl. Microbiol. 19: 171–187.

    Google Scholar 

  • Henning, K. 1993. PhD thesis. Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.

    Google Scholar 

  • Hesham, A. E.-L., Khan, S., Liu, X., Zhang, Y., Wang, Z. and Yang, M. 2006a. Yeast 23: 879–887.

    Google Scholar 

  • Hesham, A. E.-L., Wang, Z., Zhang, Y., Zhang, J., Lv, W. and Yang, M. 2006b. Ann. Microbiol. 56: 109–112.

    Google Scholar 

  • Hesham, A. E.-L., Alamri, S. A., Khan, S., Mahmoud, M. E. and Mahmoud, H. M. 2009. Afr. J. Biotechnol. 8: 2218–2223.

    Google Scholar 

  • Hesham, A. E.-L., Khan, S., Tao, Y., Li, D., Zhang, Y. and Yang, M. 2012. Environ. Sci. Pollut. R. 19: 3568–3578.

    Google Scholar 

  • Hlouchova, K., Rudolph, J., Pietari, J. M. H., Behlen, L. S. and Copley, S. D. 2012. Biochemistry 51: 3848–3860.

    Google Scholar 

  • Hofmann, K. H. 1986. J. Basic Microb. 26: 109–111.

    Google Scholar 

  • Hofmann, K. H. and Kruger, A. K. 1985. J. Basic Microb. 25: 373–379.

    Google Scholar 

  • Hofmann, K. H. and Schauer, F. 1988. A. Van Leeuw. J. Microb. 54: 179–188.

    Google Scholar 

  • Hristov, A., Gouliamova, D., Nacheva, L. and Tsekova, K. 2012. Cr. Acad. Bulg. Sci. 65: 335–340.

    Google Scholar 

  • Ivoilov, V. S. and Karasevich, I. N. 1983. Mikrobiologiia 52: 956–961.

    Google Scholar 

  • Iwasaki, Y., Gunji, H., Kino, K., Hattori, T., Ishii, Y. and Kirimura, K. 2010. Biodegradation 21: 557–564.

    Google Scholar 

  • Jerina, D. M., Daly, J. W., Witkop, B., Zaltzman, P. and Udenfrie, S. 1970. Biochemistry 9: 147–156.

    Google Scholar 

  • Jiang, B., Zhou, Z., Dong, Y., Tao, W., Wang, B., Jiang, J. and Guan, X. 2015. Appl. Biochem. Biotech. 176: 1700–1708.

    Google Scholar 

  • Jiang, Y., Wen, J., Lan, L. and Hu, Z. 2007. Biodegradation 18: 719–729.

    Google Scholar 

  • Juarez-Ramirez, C., Ruiz-Ordaz, N., Cristiani-Urbina, E. and Galindez-Mayer, J. 2001. World J. Microbiol. Biotechnol. 17: 697–705.

    Google Scholar 

  • Kanaly, R. A. and Harayama, S. 2000. J. Bacteriol. 182: 2059–2067.

    Google Scholar 

  • Kasai, N., Ikushiro, S.-i., Shinkyo, R., Yasuda, K., Hirosue, S., Arisawa, A., Ichinose, H., Wariishi, H. and Sakaki, T. 2010. Appl. Microbiol. Biotechnol. 86: 773–780.

    Google Scholar 

  • Katayamahirayama, K., Tobita, S. and Hirayama, K. 1994. Water Sci. Technol. 30: 59–66.

    Google Scholar 

  • Kennes, C. and Veiga, M. C. 2004. J. Biotechnol. 113: 305–319.

    Google Scholar 

  • Kim, J. M., Le, N. T., Chung, B. S., Park, J. H., Bae, J.-W., Madsen, E. L. and Jeon, C. O. 2008. Appl. Environ. Microbiol. 74: 7313–7320.

    Google Scholar 

  • Knackmuss, H. J. and Hellwig, M. 1978. Arch. Microbiol. 117: 1–7.

    Google Scholar 

  • Korner, W., Hanf, V., Schuller, W., Bartsch, H., Zwirner, M. and Hagenmaier, H. 1998. Chemosphere. 37: 2395–2407.

    Google Scholar 

  • Krallish, I., Gonta, S., Savenkova, L., Bergauer, P. and Margesin, R. 2006. Extremophiles 10: 441–449.

    Google Scholar 

  • Krug, M., Ziegler, H. and Straube, G. 1985. J. Basic Microb. 25: 103–110.

    Google Scholar 

  • Krug, M. and Straube, G. 1986. J. Basic Microb. 26: 271–281.

    Google Scholar 

  • Kutty, S. N. and Philp, R. 2008. Yeast 25: 465–483.

    Google Scholar 

  • Lahav, R., Fareleira, P., Nejidat, A. and Abeliovich, A. 2002. Microbial. Ecol. 43: 388–396.

    Google Scholar 

  • Lange, J. 1997. PhD thesis. Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.

    Google Scholar 

  • Lange, J., Hammer, E., Specht, M., Francke, W. and Schauer, F. 1998. Appl. Microbiol. Biotechnol. 50: 364–368.

    Google Scholar 

  • Layton, A. C., Sanseverino, J., Gregory, B. W., Easter, J. P., Sayler, G. S. and Schultz, T. W. 2002. Toxicol. Appl. Pharm. 180: 157–163.

    Google Scholar 

  • Lee, J. S., Kang, E. J., Kim, M. O., Lee, D. H., Bae, K. S. and Kim, C. K. 2001. J. Microbiol. Biotechn. 11: 112–117.

    Google Scholar 

  • Liu, H., Yu, Q. J., Wang, G., Ye, F. and Cong, Y. 2011. Process Biochem. 46: 1678–1681.

    Google Scholar 

  • Long, Y., Yang, S., Xie, Z. and Cheng, L. 2014. Can. J. Microbiol. 60: 585–591.

    Google Scholar 

  • MacGillivray, A. R. and Shiaris, M. P. 1993. Appl. Environ. Microbiol. 59: 1613–1618.

    Google Scholar 

  • MacGillivray, A. R. and Shiaris, M. P. 1994. Appl. Environ. Microbiol. 60: 1154–1159.

    Google Scholar 

  • Mahgoub, S., Abdelbasit, H. and Abdelfattah, H. 2015. Desalin. Water Treat. 53: 3381–3387.

    Google Scholar 

  • Margesin, R., Gander, S., Zacke, G., Gounot, A. M. and Schinner, F. 2003. Extremophiles 7: 451–458.

    Google Scholar 

  • Margesin, R., Fonteyne, P. A. and Redl, B. 2005. Res. Microbiol. 156: 68–75.

    Google Scholar 

  • Mazur, P., Pieken, W. A., Budihas, S. R., Williams, S. E., Wong, S. and Kozarich, J. W. 1994. Biochemistry 33: 1961–1970.

    Google Scholar 

  • Middelhoven, W. J. 1993. Anton. Leeuw. Int. J. G. 63: 125–144.

    Google Scholar 

  • Middelhoven, W. J. 2003. Mycoses 46: 7–11.

    Google Scholar 

  • Middelhoven, W. J., Dekievit, H. and Biesbroek, A. L. 1985. A. Van Leeuw. J. Microb. 51: 289–301.

    Google Scholar 

  • Middelhoven, W. J., Coenen, A., Kraakman, B. and Gelpke, M. D. S. 1992. Anton. Leeuw. Int. J. G . 62: 181–187.

    Google Scholar 

  • Mohn, W. W. and Tiedje, J. M. 1992. Microbiol. Rev. 56: 482–507.

    Google Scholar 

  • Morsen, A. and Rehm, H. J. 1987. Appl. Microbiol. Biotechnol. 26: 283–288.

    Google Scholar 

  • Mortberg, M. and Neujahr, H. Y. 1985. J. Bacteriol. 161: 615–619.

    Google Scholar 

  • Neujahr, H. Y. and Gaal, A. 1973. Eur. J. Biochem. 35: 386–400.

    Google Scholar 

  • Neujahr, H. Y. and Gaal, A. 1975. Eur. J. Biochem. 58: 351–357.

    Google Scholar 

  • Neujahr, H. Y. and Kjellen, K. G. 1978. J. Biol. Chem. 253: 8835–8841.

    Google Scholar 

  • Neujahr, H. Y. and Varga, J. M. 1970. Eur. J. Biochem. 13: 37–44.

    Google Scholar 

  • Neujahr, H. Y., Lindsjo, S. and Varga, J. M. 1974. A. Van Leeuw. J. Microb. 40: 209–216.

    Google Scholar 

  • Nikolova, N. and Nenov, V. 2005. Water Sci. Technol. 51: 87–93.

    Google Scholar 

  • Ornston, L. N. and Stanier, R. Y. 1966. J. Biol. Chem. 241: 3776–3786.

    Google Scholar 

  • Paca, J., Jr., Kremlackova, V., Turek, M., Sucha, V., Vilimkova, L., Paca, J., Halecky, M. and Stiborova, M. 2007. Enzyme Microb. Tech. 40: 919–926.

    Google Scholar 

  • Pan, F., Yang, Q. X., Zhang, Y., Zhang, S. J. and Yang, M. 2004. Biotechnol. Lett. 26: 803–806.

    Google Scholar 

  • Polnisch, E., Kneifel, H., Franzke, H. and Hofmann, K. H. 1992. Biodegradation 2: 193–199.

    Google Scholar 

  • Pothuluri, J. V., Freeman, J. P., Evans, F. E. and Cerniglia, C. E. 1990. Appl. Environ. Microbiol. 56: 2974–2983.

    Google Scholar 

  • Potrawfke, T., Timmis, K. N. and Wittich, R. M. 1998. Appl. Environ. Microbiol. 64: 3798–3806.

    Google Scholar 

  • Powlowski, J. B. and Dagley, S. 1985. J. Bacteriol. 163: 1126–1135.

    Google Scholar 

  • Powlowski, J. B., Ingebrand, J. and Dagley, S. 1985. J. Bacteriol. 163: 1136–1141.

    Google Scholar 

  • Prenafeta-Boldu, F. X., Kuhn, A., Luykx, D., Anke, H., van Groenestijn, J. W. and de Bont, J. A. M. 2001. Mycol. Res. 105: 477–484.

    Google Scholar 

  • Prenafeta-Boldu, F. X., Vervoort, J., Grotenhuis, J. T. C. and van Groenestijn, J. W. 2002. Appl. Environ. Microbiol. 68: 2660–2665.

    Google Scholar 

  • Prenafeta-Boldu, F. X., Ballerstedt, H., Gerritse, J. and Grotenhuis, J. T. C. 2004. Biodegradation 15: 59–65.

    Google Scholar 

  • Prenafeta-Boldu, F. X., Guivernau, M., Gallastegui, G., Vinas, M., de Hoog, G. S. and Elias, A. 2012. FEMS Microbiol. Ecol. 80: 722–734.

    Google Scholar 

  • Qi, B., Moe, W. M. and Kinney, K. A. 2002. Appl. Microbiol. Biotechnol. 58: 684–689.

    Google Scholar 

  • Rao, B. V. and Bhat, J. V. 1971. Anton. Van Lee. J. M. S. 37: 303–312.

    Google Scholar 

  • Ren, H. F., Zanma, S., Urano, N., Endo, H., Mineki, S. and Hayashi, T. 2004. Nippon Suisan Gakk. 70: 687–692.

    Google Scholar 

  • Rieche, A., Hilgetag, G., Lorenz, M. and Martini, A. 1962. In: Continuous Cultivation of Microorganisms. Proceedings of the Second Symposium (ed. I. Malek), Czechoslovak Academy of Science, Prague, pp. 293–299.

    Google Scholar 

  • Riedel, K., Beyersdorfradeck, B., Neumann, B. and Schaller, F. 1995. Appl. Microbiol. Biotechnol. 43: 7–9.

    Google Scholar 

  • Rigo, M. and Alegre, R. M. 2004. Folia Microbiol. 49: 41–45.

    Google Scholar 

  • Rigo, M., Alegre, R. M., Mazile Vidal Bezerra, J. R., Coelho, N. and Bastos, R. G. 2010. Braz. Arch. Biol. Techn. 53: 481–486.

    Google Scholar 

  • Rocha, L. L., Cordeiro, R. d. A., Cavalcante, R. M., do Nascimento, R. F., Silveira Martins, S. C., Santaella, S. T. and Maciel Melo, V. M. 2007. Mycopathologia 164: 183–188.

    Google Scholar 

  • Rojo, F., Pieper, D. H., Engesser, K. H., Knackmuss, H. J. and Timmis, K. N. 1987. Science 238: 1395–1398.

    Google Scholar 

  • Romero, M. C., Cazau, M. C., Giorgieri, S. and Arambarri, A. M. 1998. Environ. Pollut. 101: 355–359.

    Google Scholar 

  • Romero, M. C., Hammer, E., Cazau, M. C. and Arambarri, A. M. 2001. World J. Microbiol. Biotechnol. 17: 591–594.

    Google Scholar 

  • Romero, M. C., Hammer, E., Cazau, M. C. and Arambarri, A. M. 2002a. Environ. Pollut. 118: 379–382.

    Google Scholar 

  • Romero, M. C., Salvioli, M. L., Cazau, M. C. and Arambarri, A. M. 2002b. Environ. Pollut. 117: 159–163.

    Google Scholar 

  • Romero, M. C., Reinoso, E. H., Moreno Kiernan, A., Urrutia, M. I. and Kiernan, A. M. 2006. Electron. J. Biotechn. 9: 221–226.

    Google Scholar 

  • Ruiz-Ordaz, N., Hernandez-Manzano, E., Ruiz-Lagunez, J. C., Cristiani-Urbina, E. and Galindez-Mayer, J. 1998. Biotechnol. Progr. 14: 966–969.

    Google Scholar 

  • Safe, S. 1984. CRC Crit. Rev. Toxicol. 13: 319–395.

    Google Scholar 

  • Sakaki, T., Shinkyo, R., Takita, T., Ohta, M. and Inouye, K. (2002) Arch. Biochem. Biophys. 401: 91–98.

    Google Scholar 

  • Salmeron-Alcocer, A., Ruiz-Ordaz, N., Juarez-Ramirez, C. and Galindez-Mayer, J. 2007. Biochem. Eng. J. 37: 201–211.

    Google Scholar 

  • Sariaslani, F. S., Harper, D. B. and Higgins, I. J. 1974. Biochem. J. 140: 31–45.

    Google Scholar 

  • Schauer, F. 1988. Thesis of Habilitation. Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.

    Google Scholar 

  • Schauer, F. and Schauer, M. 1986. Wissenschaftliche Zeitschrift der Ernst-Moritz-Arndt-Universität Greifswald, Mathematisch-Naturwisenschaftliche Reihe 35: 13–23.

    Google Scholar 

  • Schauer, F., Henning, K., Pscheidl, H., Wittich, R. M., Fortnagel, P., Wilkes, H., Sinnwell, V. and Francke, W. 1995. Biodegradation 6: 173–180.

    Google Scholar 

  • Scheller, U., Zimmer, T., Becher, D., Schauer, F. and Schunck, W. H. 1998. J. Biol. Chem. 273: 32528–32534.

    Google Scholar 

  • Schiestl, R. H., Aubrecht, J., Yap, W. Y., Kandikonda, S. and Sidhom, S. 1997. Cancer Res. 57: 4378–4383.

    Google Scholar 

  • Schlosser, D., Grey, R., Höfer, C. and Fahr, K. 2000. Bioremediation of contaminated soils. Marcel Dekker, New York.

    Google Scholar 

  • Schlueter, R., Lippmann, R., Hammer, E., Salazar, M. G. and Schauer, F. 2013. Appl. Microbiol. Biotechnol. 97: 5043–5053.

    Google Scholar 

  • Schlueter, R., Roeder, A., Czekalski, N., Gliesche, D., Mikolasch, A. and Schauer, F. 2014. Appl. Microbiol. Biotechnol. 98: 373–384.

    Google Scholar 

  • Schmidt, E., Hellwig, M. and Knackmuss, H. J. 1983. Appl. Environ. Microbiol. 46: 1038–1044.

    Google Scholar 

  • Schunck, W. H., Mauersberger, S., Huth, J., Riege, P. and Muller, H. G. 1987. Arch. Microbiol. 147: 240–244.

    Google Scholar 

  • Sejlitz, T. and Neujahr, H. Y. 1987. Eur. J. Biochem. 170: 343–349.

    Google Scholar 

  • Seo, J.-S., Keum, Y.-S. and Li, Q. X. 2009. Int. J. Environ. Res. Public Health 6: 278–309.

    Google Scholar 

  • Seyedmousavi, S., Badali, H., Chlebicki, A., Zhao, J., Xavier Prenafeta-Boldu, F. and De Hoog, G. S. 2011. Fungal Biol. 115: 1030–1037.

    Google Scholar 

  • Shoda, M. and Udaka, S. 1980. Appl. Environ. Microbiol. 39: 1129–1133.

    Google Scholar 

  • Sietmann, R., Hammer, E., Moody, J., Cerniglia, C. E. and Schauer, F. 2000. Arch. Microbiol. 174: 353–361.

    Google Scholar 

  • Sietmann, R., Hammer, E., Specht, M., Cerniglia, C. E. and Schauer, F. 2001. Appl. Environ. Microbiol. 67: 4158–4165.

    Google Scholar 

  • Sietmann, R. 2002. PhD thesis. Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany.

    Google Scholar 

  • Sietmann, R., Hammer, E. and Schauer, F. 2002. Syst. Appl. Microbiol. 25: 332–339.

    Google Scholar 

  • Sietmann, R., Gesell, M., Hammer, E. and Schauer, F. 2006. Chemosphere. 64: 672–685.

    Google Scholar 

  • Skene, S. A., Dewhurst, I. C. and Greenberg, M. 1989. Hum. Toxicol. 8: 173–203.

    Google Scholar 

  • Sood, N. and Lal, B. 2009. J. Environ. Manage. 90: 1728–1736.

    Google Scholar 

  • Sood, N., Patle, S. and Lal, B. 2010. Environ. Sci. Pollut. R. 17: 603–610.

    Google Scholar 

  • Sun, Y. M., Quan, X., Chen, J. W., Yang, F. L., Xue, D. M., Liu, Y. H. and Yang, Z. H. 2002. Process Biochem. 38: 109–113.

    Google Scholar 

  • Sutherland, J. B., Selby, A. L., Freeman, J. P., Evans, F. E. and Cerniglia, C. E. 1991. Appl. Environ. Microbiol. 57: 3310–3316.

    Google Scholar 

  • Takada, S., Nakamura, M., Matsueda, T., Kondo, R. and Sakai, K. 1996. Appl. Environ. Microbiol. 62: 4323–4328.

    Google Scholar 

  • Terasaka, S., Inoue, A., Tanji, M. and Kiyama, R. 2006. Toxicol. Lett. 163: 130–141.

    Google Scholar 

  • Thomas, D. R., Carswell, K. S. and Georgiou, G. 1992. Biotechnol. Bioeng. 40: 1395–1402.

    Google Scholar 

  • Tortella, G. R., Diez, M. C. and Duran, N. 2005. CRC Cr. Rev. Microbiol. 31: 197–212.

    Google Scholar 

  • Tsai, S. C., Tsai, L. D. and Li, Y. K. 2005. Biosci. Biotech. Bioch. 69: 2358–2367.

    Google Scholar 

  • Uzura, A., Katsuragi, T. and Tani, Y. 2001. J. Biosci. Bioeng. 91: 217–221.

    Google Scholar 

  • Valli, K., Wariishi, H. and Gold, M. H. 1992. J. Bacteriol. 174: 2131–2137.

    Google Scholar 

  • Vallini, G., Frassinetti, S., D’Andrea, F., Catelani, G. and Agnolucci, M. 2001. Int. Biodeterior. Biodegrad. 47: 133–140.

    Google Scholar 

  • Varga, J. M. and Neujahr, H. 1970a. Plant and Soil 33: 565–571.

    Google Scholar 

  • Varga, J. M. and Neujahr, H. Y. 1970b. Eur. J. Biochem. 12: 427–434.

    Google Scholar 

  • Varma, R. J. and Gaikwad, B. G. 2008. Enzyme Microb. Tech. 43: 431–435.

    Google Scholar 

  • Vollmer, M. D., Fischer, P., Knackmuss, H. J. and Schlomann, M. 1994. J. Bacteriol. 176: 4366–4375.

    Google Scholar 

  • Walker, N. 1973. Soil Biol. Biochem. 5: 525–530.

    Google Scholar 

  • Wang, J., Ma, X., Liu, S., Sun, P., Fan, P. and Xia, C. 2012. In: Seventh International Conference on Waste Management and Technology (eds. L. Jinhui and H. Hualongeds), pp. 299–303.

    Google Scholar 

  • Wang, X., Gong, Z., Li, P. and Zhang, L. 2007. B. Environ. Contam. Tox. 78: 522–526.

    Google Scholar 

  • Wase, D. A. J. and Hough, J. S. 1966. J. Gen. Microbiol. 42: 13–23.

    Google Scholar 

  • Wiseman, A. and Woods, L. F. J. 1979. J. Chem. Technol. Biot. 29: 320–324.

    Google Scholar 

  • Wiseman, A., Gondal, J. A. and Sims, P. 1975. Biochem. Soc. T. 3: 278–281.

    Google Scholar 

  • Wittich, R. M. 1992. BioEngineering 10: 33–40.

    Google Scholar 

  • Wittich, R. M. 1998. Appl. Microbiol. Biotechnol. 49: 489–499.

    Google Scholar 

  • Woertz, J. R., Kinney, K. A., McIntosh, N. D. P. and Szaniszlo, P. J. 2001. Biotechnol. Bioeng. 75: 550–558.

    Google Scholar 

  • Yadav, V., Shitiz, K., Pandey, R. and Yadav, J. 2011. Yeast 28: 81–91.

    Google Scholar 

  • Yordanova, G., Godjevargova, T., Nenkova, R. and Ivanova, D. 2013. Biotechnol. Biotec. Eq. 27: 3681–3688.

    Google Scholar 

  • Yoshimoto, T., Garashi, K., Fujita, T. and Harayama, T. 1990. J. Pestic. Sci. 15: 341–352.

    Google Scholar 

  • Zanaroli, G., Negroni, A., Haeggblom, M. M. and Fava, F. 2015. Curr. Opin. Biotech. 33: 287–295.

    Google Scholar 

  • Zhou, S., Jin, X., Sun, F., Zhou, H., Yang, C. and Xia, C. 2012. Water Sci. Technol. 65: 780–786.

    Google Scholar 

  • Zimmermann, R. 1958. Naturwissenschaften 45: 165–165.

    Google Scholar 

  • Zinjarde, S., Apte, M., Mohite, P. and Kumar, A. R. 2014. Biotechnol. Adv. 32: 920–933.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rabea Schlüter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Schlüter, R., Schauer, F. (2017). Biotransformation and Detoxification of Environmental Pollutants with Aromatic Structures by Yeasts. In: Satyanarayana, T., Kunze, G. (eds) Yeast Diversity in Human Welfare. Springer, Singapore. https://doi.org/10.1007/978-981-10-2621-8_13

Download citation

Publish with us

Policies and ethics